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Abstract—An extended version of a Simulink®-block providing
on-line differentiation algorithms based on discretized sliding-
mode concepts is presented. Based on user-specified settings it
computes estimates of the time-derivatives of the input signal
up to order ten. Different discrete-time estimation algorithms as
well as optional filtering properties can be selected. The paper
includes an overview of the implemented algorithms, a detailed
explanation of the developed Simulink®-block and two examples.
The first example illustrates the application of the toolbox in a
numerical simulation environment whereas the second one shows
results obtained via an electrical laboratory setup.

Index Terms—on-line discrete-time differentiation, sliding-
mode observation, MATLAB®/Simulink®-toolbox, signal filtering

I. INTRODUCTION

In applications of control, signal processing, fault detec-
tion, state and parameter estimation on-line differentiation of
signals is an important operation. Therein, the signals to be
differentiated are captured by analog-to-digital converters and
are available for processing within a discrete-time environment
such as micro-controllers or programmable logic controllers.
In the case of on-line algorithms it is important to provide the
computed results within one sampling period. In contrast to
offline differentiation, the algorithms should not be computa-
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tionally expensive in order to save processing power and to
reduce performance degrading delays.

Due to the relevance of the topic several approaches for
on-line differentiation have been developed. Apart from well-
known standard approaches like finite-differences or ideal
differentiators in combination with first order lag elements,
more advanced observer-based algorithms have proven to be
effective tools. In [1] a linear High Gain Differentiator is pre-
sented and its behavior in the presence of measurement noise
is studied. In [2] a class of nonlinear continuous differentiators,
which allow for the exact reconstruction of the derivatives of
polynomial functions in the absence of measurement noise
within finite time, is considered. For signals with a bounded
(n+ 1)st derivative and in the absence of measurement noise
the Robust Exact Differentiator (RED), see [3], [4], and the
Uniform Robust Exact Differentiator (URED), see [5], allow
for the exact reconstruction of the first n derivatives within
finite time and fixed time, respectively. In order to improve the
performance of the RED when differentiating noisy signals, a
filtering extension is proposed in [6].

However, the discrete-time implementation of those ad-
vanced methods in a digital environment is not straightfor-
ward. Furthermore, especially when estimating derivatives of
higher order, the tuning of the differentiator parameters is a
cumbersome and challenging task.

In order to make the aforementioned algorithms easily
accessible and applicable, an on-line differentiation toolbox
for Simulink®has been implemented1.

1The toolbox is available for download at http://www.reichhartinger.at.submitted to IEEE ICM 2021, International Conference on Mechatronics



In contrast to the previous versions [7], [8], which imple-
mented a certain discretization scheme of the RED only, the
toolbox presented in this paper provides different discrete-
time versions of a linear differentiator, a nonlinear but con-
tinuous differentiator, the RED and the URED. In addition,
recently developed methods including filtering options for
the differentiation of noisy signals are implemented. In order
to keep the tuning as simple as possible, the choice of the
differentiator parameters is reduced to the tuning of a so-called
robustness factor. Also in contrast to the previous versions of
the toolbox, automatic code generation for embedded hardware
is supported. This allows for the direct application of the
implemented differentiators in a real-time environment without
the need of manually coding the algorithms.

Note that throughout the paper, the notation

f (k)(t) =
dkf(t)

dtk
and, in particular, f (0)(t) = f(t) (1)

is recurrently used.

II. METHODOLOGY - OUTLINE

All methods implemented in the toolbox follow the same
basic principle, which is indicated in Fig. 1. The signal
f(t) = f (0)(t) to be differentiated n times is considered
to be generated by n + 1 times integration of its (n + 1)st

derivative f (n+1)(t). The amplitude of f (n+1)(t) is assumed
to be bounded by a constant L ≥ 0, i.e.,

|f (n+1)(t)| ≤ L ∀t, (2)

which is usually satisfied in most practical applications. Typ-
ically, f (0)(t) is corrupted by some measurement noise η(t),
i.e., f̃(t) = f (0)(t) + η(t). Thus, f̃(t) is regarded as the noisy
output of the chain of n+ 1 integrators

df (0)

dt
= f (1),

...

df (n−1)

dt
= f (n),

df (n)

dt
= f (n+1),

(3)

with output

f̃(t) = f (0)(t) + η(t). (4)

The goal is to reconstruct the integrator states
f (0)(t), . . . , f (n)(t) of system (3) from the noisy output
f̃(t). However, even in the absence of measurement

Fig. 1. The signal f(t) = f (0)(t) to be differentiated n times is obtained
by n+ 1 times integrating its (n+ 1)th derivative f (n+1)(t). In practical
applications, f(t) is corrupted by measurement noise η(t).

noise, i.e., η(t) ≡ 0, this problem is not trivial since the
input f (n+1)(t) as well as the initial conditions of the
integrators f (0)(t0), . . . , f (n)(t0) are unknown. The methods
implemented in this toolbox solve this task by using a
observer-based approach. The observer

dz0
dt

= z1 − ϕ0(e)e,

...
dzn−1

dt
= zn − ϕn−1(e)e,

dzn
dt

= −ϕn(e)e,

(5)

consists of a copy of the “virtual” integrator chain (3) and
additional correction terms ϕ0(e)e, . . . , ϕn(e)e, which are
functions of the observer error e = z0 − f̃(t). The variable
zi, i = 0, . . . , n, denotes the estimate of the corresponding
derivative f (i)(t). The derivative estimation methods imple-
mented in the toolbox differ from each other in the particular
choice of the correction terms ϕi(e). The different methods
ensure convergence of the derivative estimates zi into a certain
neighborhood of the actual derivatives f (i)(t). Depending
on the particular choice of the correction terms, different
theoretical properties in terms of the convergence behavior,
the robustness w.r.t. the unknown input f (n+1)(t) and the
sensitivity w.r.t. the measurement noise η(t) are achieved.

As already mentioned above, each differentiator algorithm
of the toolbox can be enhanced by some filtering characteris-
tics.

A. Filtering Differentiator Design
For design purposes the integrator chain depicted in Fig. 1

is written in state-space representation

Σd :

{
d
dtf = Adf + bdf

(n+1),

f̃ = cTd f + η
(6)

with state vector f :=
[
f (0) . . . f (n)

]T
, and cTd =[

1 0 . . . 0
]
, bTd =

[
0 . . . 0 1

]
. The matrix Ad is an upper-shift

matrix of size n+ 1, i.e.,

Ad =

(
0n×1 In×n

0 01×n

)
(7)

where In×n denotes the identity matrix of size n. The output
of system Σd is connected in series to a filter of order nf + 1
represented by

Σf :

{
d
dtg = Afg + bf f̃ ,

g0 = cTf g,
(8)

where g is the state vector, cTf =
[
1 0 . . . 0

]
, bTf =

[
0 . . . 0 1

]
and Af is an upper shift matrix of size nf . The interconnection
of System Σd and the filter Σf results in

d

dt

[
g
f

]
=

[
Af bfc

T
d

0 Ad

] [
g
f

]
+

[
bfη

bdf
(n+1)

]
,

g0 =
[
cTf 0

] [g
f

]
.

(9)



As mentioned above a differentiator is obtained by designing
an observer for the interconnected system (9). The observer

d

dt

[
w
z

]
=

[
Af bfc

T
d

0 Ad

] [
w
z

]
−
[
ϕf(ε0)
ϕd(ε0)

]
ε0 (10)

consists of a copy of system (9) and correction terms
ϕf(ε0), ϕd(ε0) which are functions of the estimation error
ε0 = w0 − g0 = cTf (w − g). Taking into account (10) and
(9), the dynamics of the estimation errors ε := w − g and
e := z − f yield

d
dt

[
ε
e

]
=

([
Af bfc

T
d

0 Ad

]
−
[
ϕd(ε)cTf 0
ϕf(ε)c

T
f 0

])[
ε
e

]
−
[

bfη
bdf

(n+1)

]
.

(11)

For implementation purposes the expression for d
dtε given

in (11) is rearranged, by using the second Equation in (6), as

d

dt
ε = Afε + bfc

T
d z −ϕf(ε0)ε0 − bf f̃ , (12)

which eventually gives, together with the differential equations
for d

dtz in (10), the filtering differentiator

d

dt

[
ε
z

]
=

[
Af bfc

T
d

0 Ad

] [
ε
z

]
−
[
ϕf(ε0)
ϕd(ε0)

]
ε0 −

[
bf
0

]
f̃ . (13)

The correction terms are obtained by prescribing n+ nf + 1
eigenvalues of the dynamic matrix in (11). In the implemen-
tation of this toolbox all eigenvalues are placed at

si = −r|ε0|
d

1−d(n+nf ) i = 1, . . . , n+ nf + 1 (14)

which yields a family of continuous and discontinuous dif-
ferentiators as discussed in [2], the parameter d ∈ [0, −1]
represents the homogeneity degree and r is a positive tuning
parameter. The choice d = −1 gives the robust exact filtering
differentiator (see [6]) whereas the choice d = 0 gives the
high gain observer [1] with additional filtering option.

B. Overview of the implemented concepts

The algorithm implemented in the toolbox is designed in an
analogous way in discrete-time with sampling time Ts. There,
the eigenvalues are assigned to λi,k.

Within the toolbox the discretization method can be adjusted
via the parameter m = {0, 1, 2}. The choice
• m = 0 yields the explicit discretization proposed in [9]

and is characterized by

λi,k = 1 + Tssi,k = 1− Tsr|ε0,k|
d

1−d(n+nf ) (15)

with ε0,k = ε0(kTs).
• whereas m = 1 corresponds to the matching approach

(see [8], [10]) obtained by selecting

λi,k = eTssi,k = e−Tsr|ε0,k|
d

1−d(n+nf ) . (16)

• m = 2 gives the URED, see [11], with the eigenvalues

λi,k =
|ε0,k|

1
n+nf+1

Tsrµ|ε0,k|+ |ε0,k|
1

n+nf+1 + Tsr
. (17)

Fig. 2. Appearance of the Simulink block.

where µ is a positive tuning parameter.
With the two parameters m and d a variety of possibly filtering
differentiators which have been proposed in literature can be
obtained. For example:
• m = 1, d = 0 gives the discrete time High gain observer

as presented in [12]
• m = 0, d = −1 gives the sliding mode based so-called

Generalized Homogeneous Differentiator presented in
[9].

• m = 1, d = −1 gives the sliding mode based so-called
Matching Differentiator presented in [8], [10],

• m = 2 gives a semi-implicit discretized URED of
arbitrary order which can be obtained by generalizing
the ideas presented in [11].

III. THE DIFFERENTIATOR SIMULINK BLOCK

The described methods are implemented in
MATLAB®/Simulink®and are available in form of the
Simulink®block shown in Fig. 2. This block has one scalar
input and three output ports. The first output x0 provides
a convergence measure for tuning the robustness factor
parameter r. In the unfiltered case, the output equals the
difference f−z0 whereas in the filtered case, it is the negative
first state variable, i.e., −ε0. The second output z0 is an
estimate for the input signal f . The third and last output, the
vector z, contains the estimates of the n derivatives of the
input signal, i.e., z1 to zn. The length of z therefore equals
the differentiation order n.

Fig. 3 shows the corresponding user interface of the
Simulink®block. The parameters to be tuned are the following:
The differentiation order n, the robustness factor r, the sample
time Ts, and, in case filtering is enabled, the filtering order nf .
Furthermore, there are the differentiator type and, if set to Set
Homogeneity Degree manually, the homogeneity de-
gree d. Finally, the discretization method can be adjusted via
the parameter m, and the tuning gain for Uniform RED µ,
in the case of m = 2.

As explained in Section II, the discretization method can be
selected by the parameter m which allows the values 0, 1 or 2.

IV. TOOLBOX APPLICATION EXAMPLES

In this section the application of the toolbox is demonstrated
by means of two examples. Numerical simulation results
obtained by differentiating a signal suggested by literature
are shown in Section IV-A. An electric circuit driven by
an embedded control unit is used to illustrate the real-world
applicability of the toolbox, see Section IV-B.



Fig. 3. User interface of the Simulink®block.

A. Simulation Example

In this section, the signal

f̃(t) = f(t) + η(t), f(t) = −0.4 sin t+ 0.8 cos(0.8t),

η(t) = cos(104t+ 0.7791) + 0.0375 sin2(100t)bcos(100t)e− 1
2

− 0.075bcos(100t)e 3
2 , (18)

which was defined in [6], serves as input signal to the
differentiator block with different parameter settings. Note
that there exist time instances where f̃ is unbounded. This
was introduced in order to investigate the performance of
differentiators also for such occurrences. Furthermore, in (18)
the function baeb = |a|bsign(a) is used. In all simulations,
the sample time is Ts = 10−5 s. In simulation scenario a,
a RED without using an additional filter is used. Then, in
simulation scenario b, the signal is applied to a RED with
activated filter. Further, the results for a URED are shown in
simulation scenario c and in simulation scenario d, a higher
order RED with filter is used. For comparison purposes, in
simulation scenario e, an unfiltered linear differentiator is used.
The results can be seen in Fig. 4 to 9 respectively.

In all simulation scenarios, the actual signal f is recon-
structed with satisfying accuracy despite the measurement
noise η, see Fig. 4. Thus, the estimate z0 for the actual signal
f might also be used for signal denoising purposes.

The results of simulation scenario a show a significant devi-
ation in the amplitude in the estimation of the first derivative,
z1,a, and a large phase shift in the estimation of the second
derivative, z2,a. Simulation scenario b shows results similar

0 5 10 15 20 25 30 35 40

time in s

-5

0

5

Fig. 4. Input function f̃ , actual function f , and the estimates for the input
function out of all 5 simulations scenarios (scenario a to scenario e).
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Fig. 5. First and second derivatives in simulation scenario a: Unfiltered RED,
with n = 2, nf = 0, r = 1, d = −1 and m = 1.

to those in [6]. One can see only small deviations in the
amplitude of z1,b and a small phase shift in z2,b compared
to the true derivatives f (1) and f (2) respectively. By using
the URED in simulation scenario c, faster convergence of the
estimates is achieved. However, larger deviations in the initial
transient phase can be observed. In simulation scenario d,
the differentiation order is increased to n = 4, whereas the
filtering order nf = 2 is reduced in comparison to simulation
scenarios b and c. Nevertheless, the deviation in amplitude in
the estimation of the first derivative z1,d is reduced as well
as the phase shift in the second derivative estimation, z2,d.
The last simulation scenario e was performed using a linear
differentiator of order 2 without filter. The continuous-time
transfer functions of these linear differentiators for the first
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Fig. 6. Derivatives in simulation scenario b: Filtered RED, with n = 2,
nf = 3, r = 1, d = −1 and m = 1.
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Fig. 7. Derivatives in simulation scenario c: Filtered URED, with n = 2,
nf = 3, r = 1, d = −1, m = 2 and µ = 5000.
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Fig. 8. Derivatives in simulation scenario d: Filtered higher order RED, with
n = 4, nf = 2, r = 1, d = −1 and m = 1.
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Fig. 9. Derivatives in simulation scenario e: Unfiltered linear differentiator,
with n = 2, nf = 0, r = 4, d = 0 and m = 1.

and second derivatives are

G1(s) =
L{z1,e(t)}

L
{
f̃(t)

} =
48s2 + 64s

s3 + 12s2 + 48s+ 64

G2(s) =
L{z2,e(t)}

L
{
f̃(t)

} =
64s2

s3 + 12s2 + 48s+ 64
. (19)

The results are similar to those obtained by the RED without
filter given in simulation scenario a, while showing a smaller
phase shift in the estimate for the second derivative, z2,e.

B. Application to a series resonator

In this section the presented differentiator toolbox is demon-
strated by means of a real world experiment. For this purpose a
series resonator as shown in Fig. 10 is used. The differentiation
is performed for an on-line reconstruction of the current
through the series resonator by differentiating the measured
capacitor’s voltage.

1) Mathematical Model: The dynamics of the circuit is
modeled by

L
dx1
dt

= −Rx1 − x2 + u , C
dx2
dt

= x1, (20a)

y = x2 + η, (20b)

where R, L and C denote the resistance, the inductance
and the capacity of the corresponding electric components,
respectively. The voltage u is regarded as the input, the output
y is given by the measured voltage x2 which is corrupted by
the noise η, the current through the circuit is denoted by x1. In
the present application the dynamics of the measured voltage
x2 of the capacitor C is used to estimate the current x1 by

x̂1 = C
dy

dt
, (21)

where x̂1 denotes the estimate of x1, see Equation (20a).

Fig. 10. Schematics of the series resonator used for real world experiments.

Fig. 11. Experimental setup consisting of a processor board of type Texas
Instruments LAUNCHXL-F28069M (left), a connector board with a measuring
amplifier (middle) and the circuit under investigation (right) [13].

2) Experimental Setup: Fig. 11 shows the experimental
setup, which consists of a processor board of type Texas
Instruments LAUNCHXL-F28069M, a connector board with a
measuring amplifier and the RLC-series resonance circuit [13].
The parameters of this resonator are R = 39.5 Ω, C = 78µF
and L = 0.4 H. Measurements in the circuit are collected
via a MATLAB®/Simulink®interface between a computer and
the processor board. This interface and the processor board
limit the sampling frequency to less than 1 kHz to retrieve
assured measurements without missing data points. Therefore,
the sampling frequency was set to 500 Hz, leading to a
sample time of Ts = 2 ms. Furthermore, only steady-state
measurements are considered, i.e., measurements were only
recorded after about 15 s.

3) Results: As input source signal to the circuit the signal
u(t) = A sin(wt), with the three frequencies wa = 2 rad

s ,
wb = 5 rad

s and wc = 20 rad
s and the three amplitudes

Aa = 1 V, Ab = 1 V and Ac = 2 V, respectively is used.
These frequencies are far away from the resonance frequency
of (LC)−1/2 ≈ 179 rad

s . This results in a bad signal-to-noise-
ratio which renders the measurements problematic for direct
computation of the current. The goal is to retrieve a better
estimation of the current in the circuit by computing the first
derivative of the measured signal y, see Equation (21).

In this experiment the following parameters of the differen-
tiator toolbox were chosen: n = 2, nf = 1, d = −1, m = 1.
This choice yields a RED of order n = 2 in combination
with a filter of order nf = 1 discretized by the matching
approach. The robustness factor r is adjusted depending on
the frequency w. For the three different frequencies wa, wb

and wc, the robustness factors are ra = 2.1, rb = 4.2,
rc = 14.0 respectively. For comparison, also the scaled current
measurements are shown. The estimate g is determined using
the transfer function G(s) = L{g(t)}

L{f̃(t)} = s
s

10w+1 with a cutoff
frequency of 10 times the input frequency. Fig. 12 shows
the measurements f̃ with the three different input signals.
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Fig. 12. Measurements of the voltage across the capacitor, f̃(t), in experi-
ments a to c.
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Fig. 13. Results of experiment a: Input signal with frequency wa = 2 1
s

and
robustness factor ra = 2.1.

The recorded noise is higher in the first two measurements.
The results are summarized in Fig. 13 to 15. The analytical
derivative f (1) (in red) was determined using the input signal
u(t) and the circuit parameters R, L and C. Especially in
experiments a and b, the scaled current measurements i/C
(in gray) deviate significantly from f (1). Here, it shall be
stated, that the resulting figures where cut from above and
below. The current i was measured by measuring the voltage
across a shunt resistor of 4.8 Ω. In experiments a and b, the
amplitude of this shunt voltage is around 2 mV respective
1 mV. It is noteworthy that such small voltages cannot be
measured reliably with this experimental setup. The estimate
g (in green) basically tracks f (1) correctly, however there is
much noise present. The estimate z1 for the derivative from
the toolbox (in black) matches the analytical derivative f (1)

much better in these experiments and contains only little noise.
In the last experiment c, the scaled current measurements are
much less noisy, but continue to contain a negative bias. The
estimate gc is less noisy, but also differs strongly from f

(1)
c at

certain time instants.

V. CONCLUSION

In this paper an updated version of the
MATLAB®/Simulink®differentiator toolbox has been
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Fig. 14. Results of experiment b: Input signal with frequency wb = 5 1
s

and
robustness factor rb = 4.2.
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Fig. 15. Results of experiment c: Input signal with frequency wc = 20 1
s

and robustness factor rc = 14.0.

presented. The Simulink®toolbox provides on-line estimates
of the derivatives of the input signal of arbitrary order.
This toolbox supports automatic code generation (in earlier
versions this feature was supported upon request only). The
tuning of the differentiator toolbox is essentially achieved
by the selection of a single parameter (robustness factor)
and thus is straightforward. Furthermore, now the toolbox
provides a number of advanced options which allow to
select a variety of differentiators such as the Robust Exact
Differentiator, the Uniform Robust Exact Differentiator or the
High Gain Observer. Additionally, the new version contains a
filtering option which is beneficial when differentiating noisy
signals. Exploiting the filtering option, the toolbox may also
be used to perform signal denoising. The application of the
toolbox has been demonstrated in simulation as well as in an
practical example.
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