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Abstract— A robust control algorithm for spatially dis-
tributed multi-input networked control systems with time-
varying transmission delays is proposed. In order to increase
the dependability of the spatially distributed scheme, a pivotal
requirement to the algorithm is the exclusive usage of locally
available information in each controller node. This ensures that
no communication between the controller nodes is necessary.
The algorithm consists of a buffering mechanism and discrete-
time integral sliding mode control laws which are capable of
rejecting matched perturbations with bounded change rate.
The effectiveness of the proposed approach is demonstrated
by means of a numerical simulation.

I. INTRODUCTION

In modern control systems, the feedback loop is often
closed using networked communication technologies. This
means that sensors, controllers and actuators exchange their
information using shared communication channels. Espe-
cially large scale systems with several actuators benefit from
this architecture as there may be the need, e.g., due to re-
stricted computational power of the controller nodes, that the
control law has to be implemented in a spatially distributed
fashion. Spatially distributed implementation refers to an
architecture, where the control law is not executed on only
one central controller node but is distributed over several
controller nodes. Figure 1 shows a very general networked
control system (NCS) where for each of the m input channels,
a controller node is implemented. This architecture benefits
also from increased flexibility, e.g. additional actuator and
controller nodes can easily be added to the network. Ad-
ditionally, large spatial distances can be overcome with a
significantly reduced wiring effort or even wirelessly. How-
ever, this architecture comes along with additional challenges
regarding the controller design. Depending on the network
technology, the communication path could be affected by
data loss and/or transmission delays.

There are several scientific publications targeting the de-
sign of control algorithms which are robust with respect to
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Fig. 1. Architecture

data losses (see e.g. [1], [2]). An additional big challenge is
to design the control algorithm such that the networked in-
duced delays are considered in the design process. Some ap-
proaches, e.g. [3] and [4] make use of Lyapunov-Krasovskii
analysis to ensure stability of the closed loop system affected
by time-varying delays. Others are based on prediction in
order to compensate for the influence of delays and data
losses, e.g. [5]. Furthermore, event triggered control is used
to reduce the network load, which in consequence potentially
lead to reduced delays and data losses (see e.g. [6] and [7]).
Very good overviews on the existing methods are given in
[8] and [9].

In [10] a sliding mode based control algorithm which
deals with time-varying delays is proposed. It makes use
of discrete-time first order sliding mode control in order
to stabilize the NCS and alleviate matched perturbations.
This approach was extended in [11] where two discrete-time
sliding mode algorithms for sliding variables with higher
relative degree where presented.

In the present paper, a control algorithm for multi input
systems based on integral sliding mode control is presented.
The algorithm is designed with a special focus on the
possibility to implement it in a spatially distributed fashion.
In order to achieve high dependability of the distributed
system, no communication between the controller nodes is
required. Additionally, the algorithm offers the possibility
to consider the networked induced delay individually for
each controller node which permits different priorities of the
communication links or spatial location of the controller and
actuator nodes. This paper significantly differs from [10],
[11] since in these papers first order sliding mode approaches
for single input systems applying eigenvalue assignment for
the sliding surface design were proposed. Especially the
requirement that the algorithm should be implementable in a



spatially distributed fashion introduced additional challenges
in the controller design.

II. PROBLEM STATEMENT

Consider the linear time-invariant plant

dxxx
dt

= AAAcxxx(t)+BBBc (uuu(t)+ fff (t)) (1)

with state vector xxx ∈ Rn, inputs uuu =
[
u1 u2 · · · um

]T
and matched perturbations fff =

[
f1 f2 · · · fm

]T. The
dynamic matrix AAAc and input matrix BBBc have appropriate
dimensions. All elements of the state vector xxx are sampled
with the constant sampling time T which results in the
sampled states xxxk = xxx(kT ). For each of the m input channels
a controller node is implemented which receives data via
a communication network. Due to network imperfections,
the ith controller node receives the data delayed by the
variable time delay τs

i,k ∈ R+ and evaluates the control law
based on the received data which introduces an additional
variable time delay τc

i,k ∈ R+ which accounts for limited
computational resources. The ith controller node transmits
the computed output to the ith actuator, who receives the
data delayed by τa

i,k ∈ R+. The following assumptions are
made:

Assumption 1: System (1) is controllable, the input matrix
BBBc has full column rank and the constant sampling time
T is non-pathological i.e., controllability is not lost due to
sampling (see [12]).

Assumption 2: The communication network ensure loss-
free communication (no packet dropouts occur) and the sum
of all time delays for each input channel is bounded i.e.,

τi,k = τs
i,k + τc

i,k + τa
i,k ≤ δiT ∀k, i = 1,2, . . . ,m (2)

with δi ∈ N.

Assumption 3: The sampling time T is chosen small
enough to ensure that the intersample behavior of the
matched perturbation fff (t) is negligible and can therefore be
assumed as piece-wise constant i.e.,

fff (t) = fff (kT ) = fff k kT ≤ t ≤ (k+1)T, k ∈ N0. (3)

Additionally, the change rate of each component is bounded,
i.e.

sup
∣∣∣∣ fff i,k+1− fff i,k

T

∣∣∣∣= Li < ∞. i = 1,2, . . . ,m. (4)

The control algorithm proposed in this paper aims for
two goals. Firstly, system (1) should be robustly stabilized
via a networked feedback. Secondly, there should be no
communication necessary between the m controller nodes.

III. OVERVIEW OF PROPOSED APPROACH

In fig. 2 the architecture of the proposed approach is
depicted. The controller nodes are designed as discrete-time
integral sliding mode controllers (D-ISMC). Using integral
sliding mode control with an adequate choice of the sliding
variables offers the possibility to cast the problem in a form,
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where algorithms designed for systems with relative degree
one, can be applied.

Additionally, a buffer is needed at each input channel,
which keeps the round trip time (the delay from the sensor to
the actuator) constant. Therefore, a time stamp is attached by
the sensor to each measurement packet before transmission.
The controller nodes receive the measurements and transmit
their outputs with the time stamp from the sensor attached.
The buffer is located directly at the zero-order hold and
due to a time synchronization technique between buffers and
sensor, the current delay τi,k can be computed by the buffer.
The buffer stores the received packets and forwards them
after the additional delay

τb
i,k = δiT − τi,k (5)

which ensures constant round trip times[
δ1 δ2 · · · δm

]T T = δδδ T . In multimedia applications,
this buffering mechanism is very common (see e.g. [13])
but has been introduced in the control community as
well (see e.g. [14]). In the following sections, the model
of the buffered networked control system as well as the
discrete-time integral sliding mode controller design will be
described in more detail.

IV. MODEL OF THE PLANT WITH BUFFERED NETWORK

Using the constant sampling time T , the constant round
trip times δδδ T ensured by the buffers in combination with
plant (1), the discrete-time model of the NCS is given by

xxxk+1 = AAAxxxk +BBB(ûuuk + fff k) (6)

with AAA = eAAAcT , BBB =
∫ T

0 eAAAcsBBBcds =
[
bbb1 bbb2 · · · bbbm

]
and

ûuuk =
[
u1,k−δ1 u2,k−δ2 · · · um,k−δm

]T. Defining the lifted
state vector

ξξξ k =
[
xxxT

k u1,k−1 · · · u1,k−δ1 · · · (7)

· · · um,k−1 · · · um,k−δm

]T

results in a lifted model

ξξξ k+1 = ÂAAξξξ k + B̂BBuuuk + B̂BB f fff k (8)



with

ÂAA =



AAA 000n×(δ1−1) bbb1 · · · 000n×(δm−1) bbbm
0001×n 000 0 · · · 000 0
000(δ1−1)×n III 000 · · · 000 000
...

...
...

. . .
...

...
0001×n 000 0 · · · 000 0
000(δm−1)×n 000 000 · · · III 000


(9a)

B̂BB =



000 · · · 000
1 · · · 0
000 · · · 000
...

. . .
...

000 · · · 1
000 · · · 000


B̂BB f =



BBB
000
000
...
000
000


. (9b)

The matrices of the lifted model have dimensions ÂAA ∈
R(n+θ)×(n+θ) and B̂BB, B̂BB f ∈R(n+θ)×m with θ = ∑

m
i=1 δi. Please

note that the perturbation fff k does not fulfill the matching
condition for the lifted model (8) (see [15]) but it is fulfilled
for the original system (6). Hence, a sliding mode control
law can be designed in order to robustly stabilize the origin
of state vector xxxk but not state vector ξξξ k which complies
with the problem statement.

V. CONTROLLER DESIGN

Integral sliding mode control is a very effective method
to robustify a control loop, which was designed for the
unperturbed case i.e. fff k = 000, ∀k. This is achieved by defining
the control law as

uuuk = uuuN
k +uuuS

k (10)

where uuuN
k represents a nominal control law and uuuS

k the sliding
mode part of the control law. In order to comply with the
problem statement, the control law will be designed not only
to achieve asymptotical stability of the nominal lifted plant,
i.e. (8) with fff k = 000, ∀k, but also no data exchange between
the controller nodes should be necessary. As a consequence,
the ith controller node cannot use the whole state vector ξξξ k
because this vector would include the controller outputs of
all other controller nodes and their history.

A. Nominal Control Law

The nominal lifted model

ξ̂ξξ k+1 = ÂAAξ̂ξξ k + B̂BBuuuN
k (11)

with nominal lifted state vector

ξ̂ξξ k =
[
xxxT

k uN
1,k−1 · · · uN

1,k−δ1
· · · (12)

· · · uN
m,k−1 · · · uN

m,k−δm

]T

results from (8) for fff k = uuuS
k = 000, ∀k. In the following theo-

rem, the nominal control law is designed based on theorem 5
in [16] in such a way that global asymptotical stability of the
nominal closed loop system is achieved. Additionally, each
controller node uses only the measurements xxxk and locally
available information.

Theorem 1: Let assumptions 1 and 2 hold.
Consider the constant round trip times δδδ T ensured by the
buffers, the nominal lifted model (11), and controller

uuuN
k = KKKξ̂ξξ k =

[
KKKx KKK2

]
ξ̂ξξ k (13)

with

KKKx ∈ Rm×n, KKK2 =


kkkT

1 000 · · · 000
000 kkkT

2 · · · 000
...

...
. . .

...
000 000 · · · kkkT

m

 , kkkT
i ∈ R1×δi .

(14)

If there exist a symmetric positive definite matrix YYY ∈
Rn+θ×n+θ , matrices

ZZZ =
[
ZZZx ZZZ2

]
with ZZZx ∈ Rm×n, (15a)

ZZZ2 =


zzzT

1 000 · · · 000
000 zzzT

2 · · · 000
...

...
. . .

...
000 000 · · · zzzT

m

 , zzzT
i ∈ R1×δi (15b)

and XXX =

[
XXX1 000
XXX2 XXX3

]
with XXX1 ∈ Rn×n, XXX2 ∈ Rθ×n,

XXX3 =


X̄XX3,1 000 · · · 000

000 X̄XX3,2 · · · 000
...

...
. . .

...
000 000 · · · X̄XX3,m

 with X̄XX3,i ∈ Rδi×δi

(16)

and a scalar 0≤ γ < 1 that satisfy[
XXX +XXXT−YYY XXXTÂAA

T−ZZZTB̂BB
T

ÂAAXXX− B̂BBZZZ (1− γ)YYY

]
> 0, (17)

then the nominal lifted closed loop system is globally asymp-
totically stable with

KKK2 = ZZZ2XXX−1
3 and KKKx = (ZZZx−KKK2XXX2)XXX−1

1 . (18)

Additionally, only measurements xxxk and local information,
i.e. the history of the own control signals ui,k, is used in
each controller node.

Proof: Considering the multiplication

KKKXXX =
[
KKKxXXX1 +KKK2XXX2 KKK2XXX3

]
(19)

and applying (18) gives

KKKXXX = ZZZ. (20)

Using (20) in (17) gives[
XXX +XXXT−YYY XXXT(ÂAA− B̂BBKKK)T

(ÂAA− B̂BBKKK)XXX (1− γ)YYY

]
> 0. (21)

Applying theorem 3 in [17] to (21) with N = 1, G1 = XXX ,
S1 = YYY and A1 = ÂAA− B̂BBKKK proofs the global asymptotical
stability of the nominal closed loop system.
Additionally, due to the specific structure of KKK2, the ith

controller node uses only locally available information.



Remark 1: Some applications trigger the need to design
the nominal control law in such a way that it depends
exclusively on the measurements xxxk and not on the history of
the actuating signals. The solution to this problem represents
a special case of theorem 1. Setting ZZZ2 = 000 and using a dense
matrix XXX3 ∈Rθ×θ results in a nominal control law (13) with
KKK2 = 000.

B. Sliding Mode Control Law

In the following theorem, the sliding mode based part
of the control law is designed such that the input channels
are decoupled and no communication between the controller
nodes is necessary.

Theorem 2: Let assumptions 1–3 hold. Consider the con-
stant round trip times δδδ T , ensured by the buffers (5), and
lifted model (8) with state vector ξξξ k.
The discrete-time integral sliding variables are defined as

σσσ k =
[
σ1,k · · · σm,k

]T
= MMMξξξ k +wwwk (22)

with

MMM =

mmmT
1 1 0001×(δ1−1) · · · 0 0001×(δm−1)

... 000(m−1)×1
. . . · · · 000 000

mmmT
m 0 000 · · · 1 000


(23a)

MMMx =
[
mmm1 · · · mmmm

]T
= BBB+ (23b)

where BBB+ = (BBBTBBB)−1BBB denotes the left inverse of BBB.
Let the nominal control law in (10) be given by (13) and

wwwk+1 =
[
w1,k · · · wm,k

]T
=−MMM(ÂAAξξξ k + B̂BBuuuN

k ). (24)

The sliding mode part uuuS
k in (10) is given by

uS
i,k = σi,k−T αi

√
|σi,k|sign

(
σi,k
)
+T νi,k (25)

νi,k+1 = νi,k−T βi sign
(
σi,k
)

where

αi = 1.5
√

Λi, βi = 1.1Λi, Λi ≥
Li

T
, (26)

with change rates Li (4).
Then

1) the states xxxk of system (6) are ultimately bounded.
2) only measurements xxxk and local information, i.e. the

history of the own control signals ui,k, is used in each
controller node.

Remark 2: The super twisting is capable of compensating
for perturbations with bounded change rate but unbounded
amplitude which fits perfectly the problem statement of this
paper, therefore this algorithm was chosen.

Proof: The proof consists of two parts. In the first part
it will be shown, that a sliding mode controller based on
theorem 2 results in the ultimate boundedness of the states
xxxk.
In the second part it will be shown that the resulting control
law uses only the locally available information. Considering
the forward increment of (22) and using (8), (10) results in

σσσ k+1 = MMMÂAAξξξ k +MMMB̂BB
(
uuuN

k +uuuS
k
)
+MMMB̂BB f fff k +wwwk+1. (27)

Using (24), (27) simplifies to

σσσ k+1 = MMMB̂BBuuuS
k +MMMB̂BB f fff k (28)

According to assumption 1, BBBc has full column rank and the
sampling time not equal to a pathological sampling time.
Thus, the left inverse MMMx =BBB+ exists since BBB has full column
rank as well.
As a result,

MMMB̂BB = MMMB̂BB f = IIIm (29)

is satisfied using (23a) and (23b). This simplifies (28) even
further to

σσσ k+1 = uuuS
k + fff k. (30)

From (30) one can see, that the ith sliding variable σi,k is
affected only by the corresponding control signal uS

i,k and
perturbation fi,k. Due to this property, m discrete-time sliding
mode controllers can be independently designed.

Consider a continuous-time perturbed integrator

dσi

dt
= ũi +ϕi (31)

dϕi

dt
= ∆i(t)

with bounded perturbation sup(|∆i(t)|) = Lϕi < ∞. Applying
the super twisting algorithm

ũi =−αi
√

σi sign(σi)+νi (32)
dνi

dt
=−βi sign(σi)

proposed in [18] results in a finite time stable closed loop
system for suitably chosen parameters αi and βi, e.g. the
well-established setting

αi = 1.5
√

Φi, βi = 1.1Φi, Φi ≥ Lϕi , (33)

whose stability was recently proven in [19]. Applying Euler
forward discretization of (31) and (32) results in the discrete
time closed loop system

σi,k+1 = σi,k−T αi

√
|σi,k|sign

(
σi,k
)
+T σ̄i,k (34)

σ̄i,k+1 = σ̄i,k +T ∆i,k−T βi sign
(
σi,k
)

with σ̄i,k = νi,k +ϕi,k. Applying (25) to the ith component
of (30) and considering the bounded change rate (4) of
perturbation (3) and ϕi,k+1 = ϕi,k +T ∆i,k results in (34) with
fi,k = T ϕi,k. Therefore, the change rate Lϕi is derived from
(4) by

Lϕi = sup
∣∣∣∣ϕi,k+1−ϕi,k

T

∣∣∣∣= sup
∣∣∣∣ fi,k+1− fi,k

T 2

∣∣∣∣= Li

T
(35)

which proofs the equivalence of (26) and (33). As a con-
sequence, the ultimate boundedness of the sliding variables
σi,k and states xxxk is ensured (see [20]).

To show that the ith controller node uses only xxxk and the
history of ui,k, variables σσσ k and wwwk+1 have to be analyzed,
because in theorem 2 they depend on the whole lifted state



vector. Evaluating the ith component of (22) considering (7)
and (23a) results in

σi,k = mmmT
i xxxk +ui,k−1 +wi,k. (36)

Computing

MMMÂAAξξξ k = MMMxAAAxxxk +MMMx
[
bbb1 · · · bbbm

]︸ ︷︷ ︸
IIIm

u1,k−δ1
...

um,k−δm

 (37)

applying (7), (9a), (13) and (23a), gives the ith component
of (24) as

wi,k+1 =−mmmT
i AAA−uN

i,k−ui,k−δi . (38)

From (36) and (38) it is clearly visible that apart from the
measurements xxxk only local information is used in each
controller node.

VI. NUMERICAL SIMULATION

The effectiveness of the proposed approach is verified by
means of a numerical simulation. For this simulation, the
unstable continuous-time plant (1) with

AAAc =


−3 −3 −2 1

2 −3 −2 2
1 2 −3 1
−3 −3 3 0

 BBBc =


−1 −3 0

1 3 1
−3 3 −1
−2 −3 2

 (39)

was chosen. The constant sampling time is set to T = 0.1s
and the constant round trip times ensured by the buffers
are known to be δδδ T =

[
4 7 6

]
T . The sensor, controllers

and buffers were implemented using the ”TrueTime” toolbox
[21]. Constructing the lifted model (8) and solving the LMI
given in theorem 1 for γ = 0.98 results in the nominal control
law (13) with

KKKx =

 0.25 −0.0224 −0.487 −0.509
−0.00241 0.0011 0.00261 0.00405
−0.00449 0.00172 0.00553 0.00655

 (40)

kkkT
1 =

[
0.461 0.365 0.213

]
kkkT

2 =
[
80.5 57.9 32.0 16.5 9.08 4.68 2.19

]
·10−3

kkkT
3 =

[
47.3 33.0 20.9 12.6 6.77 2.88

]
·10−3

The perturbation was chosen as

fff k = ρρρ1 sin(ωωω1kT )+ρρρ2 sin(ωωω2kT )+ρρρ3 (41)

with

ρρρ1 = ρρρ3 =

1
2
3

 , ωωω1 =

0.1
0.2
0.3

 , ρρρ2 =

3
2
1

 , ωωω2 = ωωω1π.

(42)

Computing the exact change rates (4) of (41) results in

LLL =
[
L1 L2 L3

]T
=
[
1.04 1.66 1.84

]T
. (43)

TABLE I
PARAMETER SETTING FOR SLIDING MODE CONTROLLERS

i Λi αi βi
1 10.6 4.88 11.66
2 16.8 6.15 18.48
3 18.6 6.47 20.46

0

2

4

σ 1
,k

0

10

20

σ 2
,k

0 20 40 60 80 100 120 140
0

10

20

t
σ 3

,k

0 20 40 60 80 100 120 140
−0.4

0

0.4

0 20 40 60 80 100 120 140
−0.4

0

0.4

0 20 40 60 80 100 120 140
−0.4

0

0.4

Fig. 3. Sliding variables σσσ k

Based on theorem 2, the sliding variable σσσ k is given by (22)
with

MMMx =

mmmT
1

mmmT
2

mmmT
3

=

−0.384 0.661 −2.24 −1.31
−1.38 1.14 1.07 −0.302
−1.28 3.55 −1.26 3.05

 (44)

MMM =

mmmT
1 1 0001×2 0 0001×6 0 0001×5

mmmT
2 0 000 1 000 0 000

mmmT
3 0 000 0 000 1 000


andwwwT

1
wwwT

2
wwwT

3

=

0.0121 −0.522 2.09 1.43
0.684 −1.3 −0.697 0.0633

1.4 −2.0 0.33 −3.38

 (45)

wwwk+1 =

wwwT
1 000 −1 000 0 000 0

wwwT
2 000 0 000 −1 000 0

wwwT
3 000 0 000 0 000 −1

ξξξ k−uuuN
k .

One possible choice for parameters (26) considering (43) is
given in table I.

Simulation results for the sliding variables σσσ k using the
proposed approach is depicted in fig. 3. This figure shows
the ultimate boundedness of the sliding variable. The blue
lines in fig. 4 show the evolution of the plant states xxxk. The
control signals uuuk are depicted in fig. 5.

To demonstrate the massively increased accuracy achieved
by using sliding mode control techniques, a simulation was
performed without using the sliding mode part of the control
law, i.e. uuuk = uuuN

k .
The resulting plant states xxxk are represented by the red

curves in fig. 4. A comparison of the curves in fig. 4 reveals
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the significant increase in accuracy. As the sliding variables
act as an accuracy measure, the increased accuracy can also
be verified by analyzing the sliding variables. For uuus

k = 0
the sliding variables equal the perturbations (41). Therefore,
comparing the amplitude of the sliding variables in fig. 3
with the amplitudes of the perturbations in (41) corroborates
the increased accuracy as well.

VII. CONCLUSIONS AND OUTLOOK

A spatially distributed integral sliding mode control based
algorithm for multiple input NCS with time-varying trans-
mission delays was presented in this paper. The nominal
control law as well as the sliding mode part of the control law
are designed such that, apart from the measurement values,
only local information is used in each controller node. As
a consequence, no communication between the controller
nodes is necessary which increases the dependability. The
specific choice of the sliding variables offer the possibility
to use a discretized version of the super-twisting algorithm
to improve the accuracy when perturbations act on the
NCS. A numerical simulation exemplified the effectiveness
of the proposed approach. In future research, the proposed
approach will be extended in order to explicitly consider
additional network effects like data loss. In order to reduce
discretization induced chattering, the proposed approach will
be extended by more sophisticated discretization methods of
the super twisting algorithm (e.g. [22], [23]).
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