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Abstract— In this paper, a system, which is subject to pertur-
bations and unknowns, with a saturating actuator is considered.
In order to design a robust feedback control law based on the
sliding mode approach, the standard super-twisting algorithm
is modified adopting an anti-windup technique. The control
signal introduced into the system is continuous everywhere and
the performance of the conventional super-twisting controller
is significantly improved in the case that the initial condition
of the system is far away from the origin. Global finite-
time stability properties of the closed-loop are investigated,
which gives a parameter setting for the controller. Having
employed numerical simulations, feasibility and effectiveness
of the scheme are indicated.

I. INTRODUCTION

The Super-Twisting Algorithm (STA) as a well-known
second-order sliding mode control method has been success-
fully applied to systems affected by disturbances, which are
Lipschitz continuous. For systems of relative degree more
than one, a sliding function needs to be defined such that the
relative degree of the system with respect to this function
is one. Having used this algorithm, the time derivative of
the sliding variable is not incorporated into the control
law design and an absolutely continuous control signal is
provided [1], [2]. Moreover, if the actuator dynamics are fast
enough, the asymptotic accuracy of the sliding variable under
discrete-time measurements is improved and the chattering
effect is reduced comparing with the first-order sliding mode
control [3].

However, in the case that the control input is introduced to
the system through a saturating actuator, the signal produced
by the conventional super-twisting controller may exceed the
saturation bounds. This causes the windup effect since the
discontinuous integral action exists therein. In [4], the largest
domain of attraction for such a system under the aforemen-
tioned control is computed and the finite-time stability within
this domain is guaranteed. It is shown that in the case the
initial condition of the closed-loop system belongs to this
domain, the control signal remains within the bounds and the
windup does not occur. It becomes evident when the initial
values are outside this domain, the closed-loop satisfactory
performance may be degenerated.

In order to attenuate the windup effect, switching be-
tween two control strategies based on the saturation limits
is included in the sliding mode control laws designed in
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[5], [6]. This may result in high frequency switching on
the limits and therefore undesirable zigzag motion in the
control input as well as the system trajectory. In [7], [8], a
saturated super-twisting technique with at most one switch
between two different sliding mode control algorithms is pro-
posed. Although, this tackles the aforementioned problem, a
neighborhood of the origin needs to be defined to make the
switch based on that and a disturbance estimator needs to
be employed in order to deal with perturbations with the
bounds close to the saturation limits. The latter makes the
sliding mode control scheme redundant due to the fact that
both the controller and estimator reconstruct perturbations.
A different version of saturated super-twisting control law is
designed in [9], which is compact in the sense that switching
from one algorithm to another one and the estimator are not
used. However, this modification makes a fairly restrictive
assumption on the bounds and class of disturbances.

The significant contribution of this paper is to introduce
a comprehensive second-order sliding mode control strategy
adopting an anti-windup scheme, in which the properties of
the standard STA are retained, the disturbance estimator is
not incorporated, and no additional constraint on the bounds
and class of perturbations are imposed. The rest of the paper
is organized as follows: the problem and the objective are
explained in Section II. The proposed control law design is
described in Section III. The stability analyses of the closed-
loop system are carried out in Section IV. Simulation results
are illustrated in Section V followed by a conclusion given
in Section VI.

II. PROBLEM STATEMENT

Consider that a system is described by

dz

dt
= b(t)satρ(u) + a(t) , (1)

where the output of the system is denoted by z ∈ R and u is
the scalar control input. The actuator is saturated if |u| ≤ ρ
does not hold, where ρ is a known constant. This is realized
from the definition

satη (y) =

{
y for |y| ≤ η ,
η dyc0 for |y| > η ,

(2)

where the notation

dyc0 = sgn(y) as a particular case of dycγ = |y|γsgn(y)

is used. The possibly time-varying function a(t) represents
the effect of perturbations and b(t) denotes a multiplicative
unknown corresponding to the input u, which may also be a
function of time t.
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Assumption 1. The functions a(t) and b(t) are globally
bounded and Lipschitz continuous, i.e.

|a(t)| ≤ aM , |da
dt
| ≤ La ,

0 < bm ≤ b(t) ≤ 1 , |db
dt
| ≤ Lb ,

(3)

where aM , La, bm, and Lb are some known constants and
without loss of generality, the upper bound of b(t) is one.
Furthermore, ρ > aM

bm
is satisfied.

The objective is to design a feedback control law for
system (1) such that
• the system state z converges to the origin in a finite time

despite the presence of disturbances and unknowns;
• the control signal u is continuous everywhere and in

the case that its absolute value is not confined to the
saturation limit ρ, the windup effect is mitigated.

In order to achieve that, a novel control approach based on
the STA is introduced in the next section.

III. PROPOSED ANTI-WINDUP STRATEGY

The conventional super-twisting controller is designed as

u = −k1 dzc
1
2 + ν , (4a)

dν

dt
= −k2 dzc0 , (4b)

where k1 and k2 are the positive constants to be tuned.
An anti-windup technique is incorporated into the aforemen-
tioned control law as

u = −k1 dzc
1
2 + ν , (5a)

dν

dt
= −k2 dzc0 − k3βν , |ν0| ≤

k2
k3
, (5b)

where the initial value of the state variable ν(t = 0) = ν0 ,
similarly to the saturated STA considered in [9], is chosen
appropriately. The value of the binary variable β is assigned
as

β =

{
1 if |u| > ρ ,

0 if |u| ≤ ρ .
It is shown later that at most, one switch in β from 1 to
0 occurs if the positive gains k1, k2, and k3 are selected
appropriately. This implies that in the case the produced
control signal satisfies |u| ≤ ρ , the actuator saturation does
not happen afterwards. Sufficient conditions for choosing the
control parameters are given in the next section. Please note
that, in contrast to [7], [8], the introduced actuating signal
is continuous everywhere due to the fact that the aforemen-
tioned switch lies in the same channel as the discontinuous
element of the algorithm is. Furthermore, in contrast with
[5], the term k2 dzc0 exists in (5) for any value of u, which
prevents high frequency switching on the saturation bounds.

It is worth mentioning that, comparing to [9], the control
signal generated here does not remain within the bounds ±ρ
if the initial value of z is very large. However, the proposed
control scheme enjoys the advantages that the windup effect
is also alleviated and the standard STA is recovered close to

the origin. The latter contributes significantly to an enlarge-
ment of the class of addressed disturbances in the sense that
the Lipschitz constant La does not need to be a portion of
the limit ρ. It is noted that, in comparison with [7], [8], the
implementation of control law (5) is relatively simpler since
β switches if the control input absolute value is out of the
bound ρ and there is no need to define a neighborhood of
the origin. Moreover, without using a disturbance estimator,
perturbations with the maximum possible bound aM that is
close to bmρ can be handled here.

IV. STABILITY ANALYSIS

Global finite-time stability properties of the closed-loop
are established in this section.

Proposition 1. Suppose that the inequalities in (3) are
satisfied. For system (1) under control law (5), the origin
z = 0 is globally finite-time stable if the control parameters
are selected such that

k1 > 2

√
k2ρ

bmρ− aM
, k2 >

La + LbaM
b2m

,
k2
k3
≤ ρ (6)

hold.

Proof. In the case that |u| > ρ , the closed-loop dynamics
reads as

dz

dt
= ρb(t) duc0 + a(t) , (7a)

dν

dt
= −k2 dzc0 − k3ν . (7b)

As it is proved in [9, Lemma 1], |ν| is bounded here by a
calculable constant since (7b) is a linear differential equation
with the state variable ν and the bounded input dzc0. Having
chosen ν0 and the control gains as given in (5b) and (6)
respectively, |ν| ≤ ρ holds as long as β = 1. Thus, in
this phase that the actuator is saturated, either −k1 dzc

1
2 and

ν are in the same sign or they have different signs with
k1|z|

1
2 > |ν|+ ρ. Therefore,

duc0 =
⌈
−k1 dzc

1
2

⌋0
= −dzc0

is fulfilled here, which implies that |z| is decreasing while ν
is bounded. After the finite time T , |z| 12 ≤ 2ρ

k1
is satisfied,

which leads to|u| = ρ for the first time and a switch to β = 0.
In the following, it is shown that the control signal remains
within the limits afterwards, i.e.

∣∣u(t)
∣∣ ≤ ρ , ∀t > T .

On the occasion |u| = ρ , taking the time derivative of |u|
along the trajectory of system (1) yields

d|u|
dt

=
du

dt
duc0 =

(
−k1

2
|z|− 1

2
dz

dt
+
dν

dt

)
duc0

= −k1
2
|z|− 1

2

(
b(t)|u|+ a(t) duc0

)
− k2 dzc0 duc0

≤ −k
2
1 (bmρ− aM )

4ρ
+ k2 . (8)

If the sufficient conditions imposed in (6) are met, then
d|u|
dt < 0 holds, which implies that |u| cannot increase. In
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order to guarantee the globally boundedness of |u| by ρ in
the case that the control signal is within the limits at the
very beginning, it needs to be indicated that |z| 12 does not go
beyond 2ρ

k1
afterwards. For |u| ≤ ρ , the closed-loop dynamics

of the standard super-twisting is obtained as

dz

dτ
= −k1 dzc

1
2 + ω , (9a)

dω

dτ
=

1

b(t)

(
−k2 dzc0 + δ

)
, (9b)

where time is scaled through dτ = b(t)dt , the auxiliary
variable ω is defined as ω = ν + a(t)

b(t) , and δ is the time

derivative of a(t)
b(t) . By setting dz

dτ = 0, the maximum value of

|z| 12 for this case can be determined. It becomes evident that
ν and z are in the same sign when |z| 12 has the largest value.
Since dν

dt has the opposite sign in that case, having selected
ν0 such that |ν0| ≤ ρ is fulfilled, |ν| cannot be greater than
ρ. As it is mentioned in Assumption 1, |a(t)b(t) | is bounded by

ρ. Hence, 2ρ
k1

is the maximum value of |z| 12 in the phase that
the actuator is not saturated.

In system (9), the asymptotic stability of the state vector
ζ :=

[
z ω

]T
can be ensured by using the Lyapunov

function candidate considered in [10] as

V (ζ) =


2
√
ω2 + 3λ2k21z − ω for ζ ∈M ,

2
√
ω2 − 3λ2k21z + ω for −ζ ∈M ,

3 |ω| otherwise.
(10)

The positive constant λ < 1 is chosen such that

k1 >
1

λ

√
2k2
bm

(11)

is met, but the set M is left the same as that one defined in
[10] as

M =
{
ζ | z ≥ 0 , ω ≤ λk1

√
z
}
. (12)

The time derivative of V in the scenario of ζ ∈ M along
the trajectory of system (9) reads as

dV

dτ
=

3λ2k21
(
−k1
√
z + ω

)
− 2ω

(
k2−δ
b(t)

)
√
ω2 + 3λ2k21z

+
k2 − δ
b(t)

. (13)

It is noted that, despite the presence of b(t), dV
dτ is also a

homogeneous function (see e.g. [11]) of degree zero with
respect to

√
z and ω. Therefore, as it is done in [10],

the performance of function (13) for z and ω such that
ω2 + 3λ2k21z = 1 holds is assessed in the following. Having
defined the function g(ω) as

g(ω) =
dV

dτ

∣∣∣
ω2+3λ2k21z=1

= −λk21
√

3− 3ω2 + 3λ2k21ω +

(
k2 − δ
b(t)

)
(1− 2ω) ,

(14)

the second derivative of g with respect to ω in the interval[
−1, 12

]
is

d2g

dω2
=

√
3λk21

(1− ω2)
3
2

≥ 0 ∀ω ∈
[
−1,

1

2

]
\ {−1} . (15)

The local maximums of g that are on the border of the
aforementioned interval are computed as

g(−1) = 3

(
k2 − δ
b(t)

− λ2k21
)
, (16a)

g(
1

2
) =

3λ (λ− 1) k21
2

. (16b)

It is noted that if the control constants k1 and k2 are
selected as given in (6), the condition set on k1 in (11)
as well as k2 > |δ| is fulfilled. Thus, g(−1) is less than
3
(

2k2
bm
− λ2k21

)
. From (11) and 0 < λ < 1, it is derived

that both g(−1) and g( 1
2 ) are negative. As a result of this

negativeness, through homogeneity, it can be concluded that
dV
dτ < 0 holds in the entire set M. The second scenario in
(10), i.e. −ζ ∈ M , can be investigated symmetrically. In
the third scenario, differentiating V with respect to τ and
applying (9b) to that gives

dV

dτ
=

3

b(t)

(
−k2 dzωc0 + dωc0 δ

)
. (17)

As it is mentioned above,|δ| is less than the chosen parameter
k2, which also results in the negative definiteness of dV

dτ in
this scenario. Owing to that the time derivative of V along
the trajectory of system (9) is upper bounded by a negative
constant almost everywhere, the finite-time convergence of
ζ is realized. This completes the global finite-time stability
proof of the origin z = 0.

Remark 1. According to (6), it is achieved that

aM < bmρ−
4k2ρ

k21
. (18)

It can be seen that having chosen k2 > |δ| , by assigning
a larger value to k1, perturbations with a larger bound aM
close to bmρ can be addressed. Please note that k3 does not
impose any constraint on the permissible bound and class of
disturbances.

V. SIMULATION EXAMPLES

In this section, it is demonstrated in simulation how the
proposed control scheme comparing to the control strategies
recorded in the literature is able to deal with three different
problem settings. Since a multiplicative unknown is not
considered in [7], [8], [9], in the first two cases, it is
assumed that b(t) = 1. However, the bound of perturbations
is enlarged from aM < ρ

2 in the first case to aM that is
close to ρ in the second case. In the third case, the system
is subject to both unknowns and disturbances , i.e. b is a
time-varying function. In all the cases, it is supposed that
the actuating signal is saturated with ρ = 5. It is aimed to
drive the system output z to zero in a finite time applying
the continuous control input u.



In the first and second cases, the results obtained through
the aforementioned versions of saturated STA are compared
with the achieved closed-loop performance of the proposed
technique in this paper. The saturated version presented in
[7], [8] is implemented as

[
u
dν
dt

]
=



[
−ρ dzc0

0

]
, ν0 = 0 if s = 0 ,[

−k1 dzc
1
2 + ν

−k2 dzc0

]
, ν(t = t1) = ν̄ if s = 1 ,

(19)
where ν̄ is set to zero and negative sign of disturbances
estimation in [7] and [8] respectively. The value of the binary
variable s is determined by a dynamic switching law. The
parameters k1 and k2 are chosen therein such that

k1 > 0 , k2 > 3La +

(
2La
k1

)2

(20)

are satisfied. The saturated STA considered in [9] is imple-
mented as

u = −k1satε

(
dzc 1

2

)
+ ν , (21a)

dν

dt
= −k2 dzc0 − k3ν , |ν0| ≤

k2
k3
, (21b)

where the satε function is defined as given in (2). It is
guaranteed that the control signal u remains within the
bounds ±ρ if the positive gains k1, ε, k2, and k3 are selected
such that

k1ε+
k2
k3
≤ ρ (22)

is fulfilled. Having carried out the stability analysis of the
closed-loop system in the presence of perturbations, fairly
restrictive conditions on the parameters are imposed therein.
However, in the simulation example presented in [9], it is
shown that controller (21) may be tuned satisfying (22) and
the necessary condition

k2 > k3aM + La . (23)

Furthermore, in order to make a comparison, the system
under the conventional super-twisting control law given in
(4) is simulated in all the cases. The sufficient conditions set
in [4] as

k1 > 1.8

√
k2 + Γ

bm
, k2 > Γ =

La + LbaM
b2m

(24)

are met here for selecting the control constants.

A. First Case

In this simulation case, perturbations are represented as

a(t) = 1 + 0.6 sin(t) + 0.8 sin(5t) . (25)

As mentioned above, b(t) = 1 is known in this case.
Therefore, in the conditions of the proposed scheme as well
as the conventional STA given in (6), (24), k2 just needs
to be greater than La = 4.6. The selected control con-
stants are listed in Table I. Since disturbances are bounded

TABLE I
PARAMETERS OF DIFFERENT CONTROLLERS

Controller Parameter Simulation Case

1st 2nd 3rd

Proposed Scheme
k1 6.1 14 21.8
k2 4.7 4.7 14.2
k3 1 1 3

Conventional STA k1 5.5 5.5 12.4
k2 4.7 4.7 14.2

Saturated STA in [7], [8] k1 4 4 —
k2 16.5 16.5 —

Saturated STA in [9]

k1 4 4 —
k2 10.7 10.7 —
k3 2.5 2.5 —
ε 0.18 0.18 —

with aM = 2.4 < ρ
2 , the saturated STA considered in [7],

in which the disturbance estimator is not incorporated, is
employed in this case and its gains are set fulfilling (20).
For the saturated version introduced in [9], having met (22)
and (23), the parameters values are provided in Table I. For
all the algorithms, the numerical simulation is carried out
through MATLAB/Simulink with a sampling step size of
1 ms and the initial values z(t = 0) = z0 = 30 and ν0 = 0.
Their performance is shown in Fig. 1. It is revealed in the
upper plot that the same rate of convergence is achieved by
applying the approaches proposed in this paper and in [7].
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Fig. 1. Simulation response curves of the first case obtained through the
system under four different control laws (5), (4), (19) with ν̄ = 0, and (21),
which are labeled respectively with the Proposed Scheme, Conventional
STA, Saturated STA in [7], and Saturated STA in [9].
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The output of the system under the control law designed in
[9] drives also similarly to the origin. Please note that the
implementation of the strategy introduced in [7] is not as
simple as the implementation of others. As it is illustrated in
the zoomed portion of the plot, similar precision is obtained
through all the algorithms. The evolution of the control sig-
nals introduced to the system through the saturating actuator
is depicted in the lower plot. It is noted that in contrast to
the bounded signals produced through control laws (19) and
(21), the signals generated by controllers (5) and (4) are not
bounded by the saturation limits. Although, this results in
a large overshoot and long settling time in the performance
of the conventional STA, the proposed scheme contributes
significantly to the counteraction of the windup effect.

B. Second Case
In this scenario, b(t) = 1 remains known, but the bound

of disturbances given in (25) is increased as

a(t) = 3.1 + 0.6 sin(t) + 0.8 sin(5t) . (26)

Since La remains the same as last case, some of the
control gains values are left the same, see Table I. However,
aM = 4.5 is close to the saturation bound ρ. Hence, having
well-tuned the perturbation estimator constants such that
the estimation error converges in a finite time faster than
the convergence of the system output, information of the
estimator is exploited in implementation of control law (19).
As it is indicated in Fig. 2, this saturated version of STA with
the estimator as well as the proposed technique produces a
similar satisfactory performance. It is worth mentioning that
the simulation is initialized in this case with z0 = −30 and
ν0 = 0, and disturbances estimation is not incorporated into
the design of control law (5). In the zoomed portion of the
upper plot, it is demonstrated that the output of the system
under control law (21) does not converge with the same
accuracy as those obtained through the other algorithms. This
is due to the fact that in this approach, La needs to be a
portion of the limit ρ and therefore there is no chance both
inequalities (22) and (23) are satisfied in the case aM is close
to ρ. The values given in Table I for this controller is the
second simulation case are assigned such that the absolute
value of the control signal is confined to ρ.

C. Third Case
In this case, in addition to perturbations a(t) given in (25),

a multiplicative unknown is taken into consideration as

b(t) = 0.8 + 0.2 sin(t) . (27)

It is noted that b(t) is lower bounded by bm = 0.6 and
therefore disturbances need to be bounded by aM < 3
(according to Assumption 1). As mentioned above, this
problem setting is not dealt with in [7], [8], [9]. Thus,
simulation response curves obtained through the system
under control laws (5), (4) are compared in this scenario,
see Fig. 3. It can be clearly seen that the windup effect is
also mitigated in this performance of the proposed approach,
in which the precision is satisfactory comparing the result of
the conventional STA.
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Fig. 2. Simulation results of the second case comparing the proposed
approach with the conventional STA, the saturated STA applying the
disturbance estimator as presented in [8], as well as the saturated version
of STA introduced in [9].

VI. CONCLUSION

This article presents an anti-windup strategy for the super-
twisting algorithm. It is shown that the generated control
signal is continuous everywhere. Having applied this control
technique to a first-order system with a saturating actuator,
disturbances, and unknowns, the finite-time convergence of
the closed-loop system states is guaranteed by means of the
Lyapunov function. Since the standard super-twisting algo-
rithm is recovered after a finite time, the class of addressed
perturbations is not restricted by the saturation limit. Further-
more, without using the disturbance estimator, perturbations
with the maximum permissible bound (by the actuator) are
tackled. For different problem settings, the performance of
the proposed scheme is assessed and compared in simulation
with the results of the saturated and conventional versions of
the super-twisting algorithm.
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