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Abstract— In this paper, an eigenvalue-based discretization
scheme is applied to a novel adaptive super-twisting-algorithm.
Following the proposed procedure the discretization chatter-
ing effect is avoided entirely. An attractive property of the
adaptation law is the insensitivity of the closed-loop system
to overly large gains which in existing laws potentially leads
to instability. Using Lyapunov’s direct method the stability of
the feedback is loop shown. Numerical examples underline the
beneficial properties of the proposed methodology.

I. INTRODUCTION

Design techniques based on sliding mode control are often
the first choice when dealing with systems subject to external
non-vanishing disturbances and model uncertainties [1], [2],
[3], [4], [5]. However, the tuning of the control laws is
not straightforward and often requires a priori knowledge
about the disturbances acting on the plant, e.g., an upper
bound on the amplitude. This drawback can be overcome
by introducing adaptation schemes for the controller gains.
see, e.g., [6], [7], [8]. Commonly, sliding mode controllers
are expressed in continuous-time whereas the practical im-
plementation requires a discrete-time formulation. It is well-
known that the discretization of sliding mode based con-
trollers is a critical step in the design process as an improper
discretization leads to undesired phenomena in the resulting
feedback loop such as discretization chattering, i.e, high
frequency oscillations [9], [10], [11]. These oscillations are
in particular problematic when using some gain adaptation as
this constellation may trigger unbounded growth of controller
gains which in consequence leads to loop instability.

In [12] the implicit discretization is applied to a Super-
Twisting observer with time varying gain which allows to
adjust a desired convergence time. The implicit scheme
allows to avoid the discretization chattering irrespective of
unbounded gains. However, it is assumed that the upper
bound of the disturbances is known a priori. Other adaptive
discrete-time sliding mode approaches can be found in [13],
[14]. To the best knowledge of the authors, the discretization
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of adaptive gain super-twisting-algorithms (AGSTAs) has not
yet been addressed in literature.

In this work a continuous-time AGSTA together with
a proper discretization scheme is proposed. The presented
adaptation law is based on an algorithm as introduced in [15].
In contrast to the original algorithm it provides an increased
adaptation rate. The discretization scheme is based on the
techniques published in [16]. The algorithm presented in this
paper provides the above mentioned attractive features such
as gain adaptation, discretization chattering avoidance and,
does not require any a priori knowledge about the disturbance
slew rate. Furthermore, the control law is given by explicit
recursions guaranteeing a straightforward implementation.

The paper is structured as follows: In Section II a moti-
vating example, illustrating loop instability when applying
explicit Euler discretization to the AGSTA [7] is given.
In Section III the used discretization scheme is revisited,
Section IV outlines the proposed adaption scheme and the
main result is presented. An illustrative example is discussed
in Section V and Section VI concludes the paper.

II. MOTIVATION

As motivating example consider a scalar plant ẋ = u+
ϕ(t), where u and ϕ represent the control signal and an
external (possibly non-vanishing) disturbance, respectively.
The disturbance is assumed to satisfy |ϕ̇| ≤ L with the
positive constant L. The goal is to drive the system state x
to zero despite the disturbance ϕ . If L is known the problem
can be solved by applying the super-twisting-algorithm

u =−β1|x|
1
2 sign(x)+ v

v̇ =−β2sign(x)
(1)

as controller with the positive real constant parameters β1,
β2 and the controller state variable v, see [17]. In the case
of an unknown bound L the problem can typically be solved
by applying a suitable controller parameter adaptation to the
Super-Twisting-Algorithm (STA). The adaptation scheme

β̇1 =

{
ω1sign(|x|−µ) β1 > βm

ω2 β1 ≤ βm

β2 = ω3β1 (2)

originally proposed in [7], with tuning parameters ω1, ω2,
ω3, µ and βm, allows to drive the state variable x into the
vicinity of x = 0. In contrast to other adaptation algorithms
see, e.g., [15] this approach also allows to reduce the gains of
the controller by introducing the parameter µ . This is usually
desirable as overly large controller gains will inevitably
lead to chattering. In general, the chattering, however, is
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Fig. 1. Simulation of the closed loop system: The upper plot shows the
states x1 and x2 of the system. The lower plot shows the temporal evolution
of the adaptation variable γ

evoked by unmodeled dynamics in the control loop such
as, e.g., actuator and sensor dynamics and time delays as
well as the discrete-time realization of the controller in
a digital environment. The chattering due to the discrete-
time realization of the controller, which goes along with
sampling of the control output, often is termed discretization
chattering, see [16]. For the super-twisting-algorithm it has
been shown that without any parameter adaptation and in the
presence of sampling with sampling time Ts, the trajectories
of the closed loop, that is, x1 := x and x2 := v−ϕ do not
converge to the origin but stay in a vicinity of it, i.e., the
homogeneous ball

R = {x1,x2 ∈ R : |x1| ≤ µ1T 2
s , |x2| ≤ µ2Ts} (3)

with constants µ1, µ2 ∈ R+ [18]. Note that, with properly
tuned controller gains β1 and β2 the constants µ1, µ2 are
typically small so that the closed-loop performance is satis-
factory.

When enhancing the algorithm with some adaptation
mechanism, the parameter tuning, however requires special
attention. This is illustrated by the following simulation
example. Fig. 1 shows the temporal evolution of the system
states of the closed loop governed by the plant and the
AGSTA (1) with gain adaptation (2). The values for this
simulations were chosen as: Ts = 0.05 s, the initial values
x1,0 = 1, x2,0 = 1, β1,0 = 4 and the parameters ω1 = 2,
µ = 0.001, ω3 = βm, ω2 = 1 and βm = 0.01. The continuous-
time AGSTA has been discretized using the forward Euler
discretization.

It is clearly visible that in the beginning the algorithm
works as intended. The system states approach the origin
and also the adaptation law adapts the gains accordingly.
However, after approximately t = 0.5 s the system-states start
to oscillate, i.e., chattering is present. Since the plant state
oscillates and do not decrease any more also the adaptation
law cannot decrease and will continue to grow, which, in

turn, will further increase the amplitude of the oscillation.
Consequently, the system states will grow unbounded.

It is noteworthy that this effect can be avoided by in-
creasing the parameter µ . However proper tuning requires
knowledge on the chattering amplitude which depends on
the controller gains and thus also on the parameters of the
adaptation algorithm and its initialization. This renders the
tuning cumbersome and often unpractical. This issue calls
for advanced discretization schemes that allow to avoid the
discretization chattering and, in particular, render the closed
loop insensitive to overly large gains which means that the
chattering amplitude should not grow when growing the
gains. One such discretization scheme for the STA is the
implicit discretization proposed in [19]. Others have been
proposed in [20], [16], [18]. In the following the technique
described in [16] is exploited to discretize an adaptive STA.

III. DISCRETIZATION SCHEME

Consider the plant dynamics written as

ẋ = u+ϕ,

ϕ̇ = ∆.
(4)

Under zero-order-hold discretization the plant dynamics (4)
are governed by the recursions[

xk+1
ϕk+1

]
=

[
1 Ts
0 1

][
xk
ϕk

]
+

[
Ts
0

]
uk +

[
T 2

s
2
Ts

]
[−L, L]. (5)

For the realization of the STA in a digital environment, the
continuous-time STA (1) needs to be discretized. To that end
the continuous time closed-loop plant, i.e.,

ẋ1 =−β1|x1|
1
2 sign(x1)+ x2,

ẋ2 =−β2sign(x1)+∆
(6)

is rewritten in so-called pseudo-linear representation. In
general, the pseudo-linear form of a non-linear system

ẋ = f(x) (7)

with state vector x∈Rn and vector field f : Rn→Rn is given
by

ẋ = M(x)x. (8)

Note that, in general the state dependent matrix M : Rn →
Rn×n is nonlinear and not unique. The closed loop system
(6) can be expressed as

d
dt

[
x1
x2

]
=

[
−β1|x1|−

1
2 1

−β2|x1|−1 0

][
x1
x2

]
+

[
0
1

]
∆ (9)

in pseudolinear form for all x1 ∈R,x1 6= 0. The basic idea of
the discretization scheme is to obtain the discrete-time STA
by mapping the state-dependent eigenvalues

s1,2 = |x1|−
1
2 p1,2 (10)

of the the dynamic matrix

M(x) =
[
−β1|x1|−

1
2 1

−β2|x1|−1 0

]
(11)



where p1,2 are the roots of the polynomial

ω(s) = s2 +β1s+β2 (12)

to the discrete-time domain. The parameter pi are related to
the parameters βi in the following manner:

β2 = p1 p2, β1 =−(p1 + p2), p1, p2 ∈ R−. (13)

The discrete-time controller uk is computed by assigning this
discrete-time eigenvalues qi to the dynamic matrix of the
discrete-time closed-loop. This is achieved via

uk =−β1φ1 + vk

vk+1 = vk−Tsβ2φ2
(14)

with

φ1 =−
1

Tsβ1
(q1 +q2−2)x1,k (15a)

φ2 =
1

T 2
s β2

(q1−1)(q2−1)x1,k (15b)

and defining x2,k = ϕk + vk and xk = [x1,k x2,k]
T results in

xk+1 = Mdxk (16)

with

Md,m =

[
qm(s1)+qm(s2)−1 Ts

1
Ts
[qm(s1)+qm(s2)−1−qm(s1)qm(s2)] 1

]
m ∈A

(17)

A = {E, I,M,P}. Controller (14) was proposed in [18]. The
matrix Md has eigenvalues at zi = qi. Therefore, q1 and q2
are the discretized eigenvalues of the continuous-time system
(6).

As proposed in [16], the mapping of the continuous-time
eigenvalues can be done in different ways, e.g.

1) Explicit Euler

qE(s) = fE(si) = 1+ si(x1)Ts (18a)

2) Implicit

qI = fI(si) =
1

1− si(x1)Ts
(18b)

3) Matching

qM = fM(si) = esi(x1)Ts (18c)

4) Pade Approximation

qP = fP(si) =
1+ si(x1)

Ts
2

1− si(x1)
Ts
2

. (18d)

Note that the discretized eigenvalues qi are functions of
the continuous-time eigenvalues. Substituting the forward
Euler mapping (18a) into (14) yields the forward Euler
discretization of the continuous STA, see, [16]. In contrast
to the explicit Euler mapping the other approaches provide
for the elimination of the discretization chattering and the
insensitivity to overly large gains. Thus, the latter three
approaches are in particular suitable for the discretization of

an adaptive gains STA. In the following it is focused on the
Matching approach and the impact of this procedure on the
discretization of an adaptive algorithm is investigated. The
application of these procedure is shown in the next section.
It is noteworthy that by using the Matching-Approach and
assuming real continuous-time eigenvalues, the discrete-time
eigenvalues are qi ∈ [0,1], i.e. the eigenvalues are always
contained in the unit disk in the complex plain. However,
stability of the closed-loop system can not be concluded from
the eigenvalues, as they depend on the state variable x1.

IV. ADAPTIVE DISCRETE-TIME
SUPER-TWISTING-ALGORITHM

The proposed discrete-time algorithm is motivated by the
continuous-time adaptive STA

u =−β1γ|x|
1
2 sign(x)+ v

v̇ =−β2γ
2sign(x)

(19)

where the adaptation variable γ is governed by

γ̇ =
γ

2
α

{
|x|− 1

2 γ |x1| ≥ γ2

|x| 12 1
γ
|x1|< γ2 (20)

where γ(0) needs to be a positive real number and α

represents a positive constant. This adaptive gain STA in
combination with plant (4) yields the closed-loop system

ẋ1 =−β1γ|x1|
1
2 + x2,

ẋ2 =−β2γ
2sign(x1)+∆,

(21)

where x1 and x2 represent the state variables. Note that the
adaptation law (20) is a modified version of the algorithm
proposed in [15] and provides an increased adaptation rate in
the case of large deviations from |x1|= 0. As in the previous
section, also this closed-loop system can be represented in
pseudo-linear form, i.e.,

d
dt

[
x1
x2

]
=

[
−β1γ|x1|−

1
2 1

−β2γ2|x1|−1 0

][
x1
x2

]
+

[
0
1

]
∆. (22)

Proposition 1: Consider the closed loop system (21) con-
sisting of the plant (4) with controller (19) and adaptation
(20). The parameter satisfy (13) and α < β1. In the unper-
turbed case, i.e., ϕ(t) = 0,∆ = 0, ∀t, the origin x1 = x2 = 0
is globally asymptotically stable.

Proof: The same Lyapunov-function as used in [15],
i.e.,

V (x1,x2) = γ
2|x1|+

1
2p1 p2

x2
2. (23)

is used to show the asymptotic convergence to zero of the
state variables in system (23). The time derivative of (23)
along the trajectories of system (21) is given

V̇ (x1) =−γ
3
β1|x1|

1
2 +2γγ̇|x1|. (24)

Using the adaptation law (20) this can be written as

V̇ =−γ|x1|
1
2

{
γ2(β1−α) |x1| ≥ γ2

β1γ2−|x1|α |x1|< γ2 (25)



which is negative semi-definite if α < β1. The asymptotic
stability of x1 = x2 = 0 can be concluded by the application
of the Extended Invariance Principle as outlined in [21].

The eigenvalues of the state-dependent dynamic matrix in
system (22) are

s∗1,2 = γs1,2 = γ|x1|−
1
2 p1,2, (26)

which relates the eigenvalues s1,2 from the closed-loop
system without adaptation with the eigenvalues s∗1,2 from the
closed-loop system with adaptation. Adaptation law (20) is
also a pseudo-linear system representation with eigenvalue

sa =
α

2

γ|x1|−
1
2 |x1| ≥ γ2

|x1|
1
2

γ
|x1|< γ2

. (27)

The adaptive discrete-time STA proposed in this paper is
obtained by the discrete-time STA (14) with an eigen-
value mapping q(s∗1,2(x1,k)) in combination with discrete-
time adaptation law

γk+1 = γk ·q(sa(x1,k)), (28)

which is also established by the same discretization method-
ology. Therein x1,k = x1(kTs) and k = 0,1,2, . . ..

The focus in this paper stays on the Matching-approach,
which means that all discretizations take place using the
mapping procedure (18c).

With this mapping, the closed loop is globally asymptoti-
cally stable.

Proposition 2: Consider the closed loop composed of the
plant (5) and the controller (14), (15a), (15b) with adaptation
(26), (27), (28) and mapping (18c). Let the parameters satisfy
β1 =−2p, β2 = p2 with p ∈ R and p < 0 and

α <
1
Ts

[
ln

(
−
(
−1+ epTs

)2 (−1−2epTs + e2pTs
)

2p2T 2
s

)
−2pTs

]
.

Then, in the unperturbed case, i.e., ϕ(t) = 0, ∀t, the origin
x1,k = x2,k = 0 is globally asymptotically stable.

Proof: Consider the candidate Lyapunov-function

Vk = γ
2
k |x1,k−Tsx2,k|+

1
2p2 x2

2,k. (29)

Using (5), (14) and (15a), (15b) the first difference yields

∆Vk = γ
2
k+1|q̄2x1,k|+

1
2p2

(
− 1

Ts
(q̄−1)2x1,k + x2,k

)2

− γ
2
k |x1,k−Tsx2,k|−

1
2p2 x2

2,k (30)

where, due to the particular choice of the parameters, q̄ =
qM(s1(x1,k)) = qM(s2(x1,k)) holds. Reformulating (30) as

∆Vk =

(
γ

2
k+1q2sign(x1,k)+

1
2p2T 2

s
(q−1)4x1,k

)
x1,k

−
(

1
p2T 2

s
(q−1)2x1,k

)
Tsx2,k− γ

2
k |x1,k−Tsx2,k| (31)

and defining

f1(x1,k) := γ
2
k+1q2sign(x1,k)+

1
2p2T 2

s
(q−1)4x1,k (32)

f2(x1,k) :=
1

p2T 2
s
(q−1)2x1,k (33)

leads to

∆Vk = f1(x1,k)x1,k− f2(x1,k)Tsx2,k− γ
2
k |x1,k−Tsx2,k|. (34)

Note that ∆Vk < 0 holds if

f1(x1,k)x1,k− f2(x1,k)Tsx2,k < γ
2
k |x1,k−Tsx2,k| (35)

holds. Functions f1(x1,k) and f2(x1,k) are odd and
sign( f1(x1,k)) = sign( f2(x1,k)) = sign(x1,k), which results
from q ∈ [0,1]. The inequality is fulfilled if | f1(x1,k)| <
| f2(x1,k)| < γ2

k . Note that for this inequality to hold true in
the limit the adaptation law must satisfy γ2

k+1 = γ2
k as

lim
x1,k→∞

f1(x1,k) = γ
2
k+1, lim

x1,k→∞
f2(x1,k) = γ

2
k . (36)

It can be verified from (28) that in the limit limx1,k→∞ fi(x1,k)

the relation γ2
k+1 = γ2

k indeed holds. In the following, due to
symmetry, only x1,k > 0 is considered to show | f1(x1,k)| <
| f2(x1,k)|, which then, using (32) and (33) takes the form

γ
2
k+12p2T 2

s
x1,k

|x1,k|
+q2(q−2)2x1,k < x1,k. (37)

The cases x1,k ≥ γ2 and x1,k < γ2 of the adaptation law (27),
(28) are now being investigated by substituting γk+1 in (37).
Case |x1,k| ≥ γ2:
Inequality (37) yields

γ
2
k e2 α

2 γk|x1,k|
− 1

2 Ts
q22p2T 2

s

|x1,k|
+q2(q−2)2 < 1. (38)

Introducing the variable τ = γk pTs√
|x1,k|

leads to

g1(τ) := 1− e2τ(2τ
2e

α
p τ +(eτ −2)2)> 0. (39)

Note that τ incorporates both, γ and x1,k and, therefore,
the interval |x1,k| ≥ γ2 which covers case 1 is equivalent to
τ ∈ [pTs,0). Recall that p < 0.

Case |x1,k|< γ2:
Using the second part of the adaptation law and following
the same procedure as above one obtains

g2(τ) := 1−
(

e
α pT 2

s
−τ 2τ

2 + e4τ −4e3τ +4e2τ

)
> 0 (40)

for τ ∈ (−∞, pTs].
Thus, if (39) and (40) hold true, (29) is a Lyapunov

function. To verify (39) and (40) the roots of the two
exponential polynomials need to be determined which is
done numerically in this paper.

In order to enhance the investigation of the stability the
influence of the parameter α is taken into account. At the
switching point τ = pTs, g1(τ = pTs) = g2(τ = pTs)> 0 must
hold. In this regard the maximum value αm for α can be



calculated by setting g1(τ = pTs) = g2(τ = pTs) = 0 which
yields the expression

αm =−
(2pTs− ln(− (−1+epTs )2·(−1−2epTs+e2pTs )

2p2T 2
s

))

Ts
. (41)

Hence, if α < αm, g1(τ = pTs) = g2(τ = pTs)> 0.
Functions g1(τ) and g2(τ) are plotted in Fig. 2 with α =

αm, Ts = 0.05s and p = −5. From this plot it can be seen
that the two functions are always greater than zero except
on two occasions. One is at τ = 0, which equals x1,k → ∞,
the other one depends on α at the switching point.
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Fig. 2. Function values of g1(τ) and g2(τ) as evolution ofer τ .
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Fig. 3. Relation of the maximum adaptation speed αm to controller gain
p

Fig. 3 shows the relation from the adaptation speed αm
over the controller gain p, thus representing a visualization of
(41). The relation is not linear, but depends on the controller
gain and therefore changes with the original chosen values
for p.

The dynamical system (17) together with (18c) and (26)
approaches the dead beat system (42) if γ → ∞.

xk+1 =

[
−1 Ts
− 1

Ts
1

]
xk +

[
T 2

s
2
Ts

]
[−L, L] (42)

The maximum factor ξ by which the dead beat system
can increase the peak of its input [−L, L] is called peak gain
[22]. It is defined as

ξ = ||h||1 (43)

with h being the impulse response of the dead bead system
(42) and specifying x1,k as the output.

V. SIMULATION EXAMPLE
Results which are obtained by simulating the unperturbed

closed loop system consisting of the plant (5) and the
proposed discrete-time control strategy using controller (14),
(15a), (15b) with adaptation (26), (27), (28) and mapping
(18c) are plotted in Fig. 4. The sampling time is Ts = 0.05s,
initial values are

[
x1,0 x2,0

]T
=
[
1 1

]T and γ0 = 1. and
the gain parameters are chosen to p =−2 and α = 1.
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Fig. 4. Simulation of the closed loop system: The upper plot shows the
states x1 and x2 of the system. The lower plot shows the temporal evolution
of the adaptation variable γ , discretized with the Matching-approach

The temporal evolutions of the states and the adaptation
variable are visible. In comparison to the motivating example
given in section II, see Fig. 1, the system is stable and also
under the adaptation there is no discretization chattering,
which is avoided effectively. This also lets the adaptation
variable to converge to a constant value and a steady state
is reached.
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Fig. 5. Comparison of Matching- and Euler-forward approach: The vector
norm of x1 and x2 shows a discretization chattering which increases in
amplitude with the Euler-forward discretization whereas the Matching-
approach allows for a smooth transition to zero of the vector norm.

The vector-norm of the state-variables x1 and x2 is visible
as the red line in Fig. 5. Additionally the simulation was
carried out by using the Euler forward discretization method
(18a) instead of the Matching approach (18c), where the
result can bee seen as the blue line. Due to the discretization
chattering and the continuous adaptation of γ the Euler



forward discretized system shows an increasing vector-norm
in the temporal evolution whereas the system discretized by
the Matching method shows no fluctuations of the states and
the vector-norm converges to zero.
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Fig. 6. Simulation of the closed loop system: The upper plot shows the
states x1 and x2 of the system. The lower plot shows the temporal evolution
of the adaptation variable γ , discretized with Euler-forward

In Fig. 6 the proposed algorithm, again consisting of
the plant (5) and the discrete-time control strategy using
controller (14), (15a), (15b) with adaptation (26), (27), (28)
and mapping (18c), was used with an external disturbance
∆ = 5sin(t) present. The initial controller gain p = −2 is
not sufficient to compensate for the disturbance. In order
to show the adaptation of the variable γ a small α = 0.5
was chosen, all other initial values remain unchanged to
the previous example. The results in Fig. 6 show that the
algorithm is adapting to the present disturbance by increasing
the adaptation variable γ in order to increase the controller
gain. The state space variable x1 is converging into a band
with the size of ξ ·max(∆k) = 0.0025 · 5 = 0.0125, which
is indeed the result of the disturbance present with the gain
of the dead beat system (43) and displayed as the dashed
lines in Fig. 6. Although the adaptation variable γ continues
to increase, the vector-norm does not which underlines the
insensitivity of the proposed methodology to overly large
gains.

VI. CONCLUSION

An eigenvalue-based discretization scheme was applied
to a novel adaptive super-twisting-algorithm. This approach
evades the discretization chattering effectively and therefore

an unbounded growth in chattering amplitude, see Fig. 1.
The resulting algorithms are insensitive to overly large gains
and are given in explicit recursions which is advantageous
for the application in real world control hardware.

Although the final analytical proof of the positiveness of
the inequalities (39) and (40) is still outstanding, global
asymptotic stability is evaluated with the help of Lyapunov’s
direct method and by interpreting Fig. 2.
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