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Summary

Two different structures of Saturated Super-Twisting Algorithms are presented. Both
structures switch between a Relay Controller and Super-Twisting Algorithm through
a switching law that is based on Lyapunov level curves allowing the algorithms to
generate bounded control signals. The Relay Controller works as the saturated con-
trol signal enforcing the system trajectories to reach a predefined neighborhood of the
origin in which the Super-Twisting Algorithm dynamics does not saturate, ensuring
finite-time convergence to the origin. In order to increase the maximal admissi-
ble bound of the perturbations, the second algorithm also includes a perturbation
estimator setting Super-Twisting’s integrator to the theoretically exact perturbation
estimation. Experimental results are presented to validate the proposed algorithms.
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1 INTRODUCTION

The Super-Twisting Algorithm1,2 (STA) is one of the most important algorithms in sliding mode theory. It was designed to
substitute a First Order Sliding Mode Controller (FOSMC) which generates a discontinuous control signal, by a continuous one.
It allows the theoretically exact rejection of Lipschitz perturbations and ensures a quadratic precision of the output with respect
to the sampling step due to its homogeneity properties. In addition, a second order sliding mode is achieved in finite-time, i.e.
the sliding variable and its derivative are robustly driven to zero in finite-time. It has been widely used in the conventional
Sliding Mode design, where systems of higher-order and non-linear dynamics can be reduced into the desired sliding dynamics
of co-dimension one, i.e. a sliding variable of relative degree one, covering a wide class of systems3,4,5,6; and for robust exact
differentiation2 among several higher-order sliding mode differentiators7,8.
The original version of STA, as it was introduced in Levant’s Theorem 5, p.12571, is a saturated control law, i.e. the control

signal is bounded. To ensure the saturation, the author proposed a switching strategy saturating the term of STA that is propor-
tional to the square root of the state as well as the integral term separately. However, this switching logic can generate undesired
oscillations along the saturation value as shown below.
In contrast to the original version, the most popular form of the STA2 is given by

u = −�1|x|
1
2 sign (x) + z,

ż = −�2sign (x) .
(1)

where x is the state of a first order system, and �1, �2, two positive constants. The first term of the control law is a nonlinear
function proportional to the square root of the state while the second one is a nonlinear integral term. The STA works as a non-
linear Proportional-Integral controller leading to potentially unbounded control signals. However, in practical implementations
the control effort is always limited.
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It is well known9 that the application of controllers with integral action in feedback loops with bounded control inputs lead
to the so-called integral windup effect. This refers to the situation where a significant change in the set-point causes actuator
saturation and as a result the error in the integral term is accumulated significantly. This leads to undesired overshoot or even to
instability. Some classic anti-windup techniques make use of disabling the integral function until the variable to be controlled
has entered a region where the control signal does not saturate or use additional feedback of the difference between designed
and saturated control signal.
The objective of this paper is to propose two different structures of Saturated Super-Twisting Algorithms (SSTA) using an

anti-windup technique in order to make the STA’s control signal not to exceed predefined bounds. The contributions are:

(a) In the first SSTA, a switching law is used to combine a Relay Controller (RC) with a STA to drive the system trajectory
to zero in finite-time fulfilling a saturation condition. The switching condition is designed based on a Positively Invariant
Set (PINS) formed by the level curve of the Lyapunov function from Moreno et al10 lying between the saturation curves.
This approach is compared with the original STA1 that also takes into account saturation.

(b) In comparison with Castillo et al11, the second algorithm includes a more detailed proof where the performance of the
closed loop system is improved by means of an additional perturbation estimator which takes advantage of the time
intervals where the RC controller is active. Prescribed finite-time convergence gains of the estimator are obtained with
the Lyapunov function from Polyakov et al12. This version of SSTA allows the rejection of perturbations with higher
magnitude.

(c) Experiments on a real world mechanical system are carried out to illustrate the performance of the proposed STA.

The paper is organized as follows. Section 2 introduces the problem. Section 3 presents the first SSTA algorithm with a
numerical example. Section 4 introduces a second algorithm using a perturbation estimator. In Section 5, experimental results
for a mechanical plant are presented. Finally, Section 6 summarizes and concludes the work.

2 PROBLEM STATEMENT

Consider the first order perturbed system
ẋ = u + �(t), x0 = x(0), (2)

where x ∈ ℝ is the state and u ∈ ℝ the control input.

Assumption 1. The perturbation term �(t) is a bounded and globally Lipschitz continuous function, i.e.

|�(t)| ≤ �max < �, |�̇(t)| ≤ L. (3)

The goal is to robustly (with respect to the perturbation) drive the state to the origin in finite-time with a saturated control
signal that is continuous except at a finite number of switching instants fulfilling

|u(t)| ≤ �, (4)

where � ∈ ℝ is a given constant.

3 SATURATED SUPER TWISTING ALGORITHM

In order to guarantee boundedness of the control signal, the following dynamic switched control law13 is proposed

u =

⎧

⎪

⎨

⎪

⎩

uRC = −�sign (x) t < t1

uSTA = −�1⌈x⌋1∕2 + z else
(5a)

ż =

{

0 t < t1
−�2sign (x) else

(5b)
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Start

yes
|x(t0)| ≤ �

no

u = uRC

u = uSTA|x(t)| ≤ �no yes

FIGURE 1 Principle of the proposed algorithm. At maximum one transition from RC to STA is possible.

where the notation ⌈a⌋b = |a|bsign (a) is used and z(t0 = 0) = 0. t1 is the time instant when the trajectory of the system reaches
the neighborhood |x(t)| ≤ � for the first time, i.e.

t1 = inf
{

t ∶ |x(t)| ≤ �
}

, (5c)

where � is a sufficiently small positive constant to be defined later. Note that if the initial condition satisfies |x(t0)| ≤ �,
t0 = t1 = 0.
The principle of the switching law is shown in Fig. 1. The RC is activated if the initial condition satisfies |x(t0)| > �. STA

is activated if the state satisfies |x(t)| ≤ � for the first time. Subsequently, STA remains activated for all future times even if
|x(t)| > �.
Next, it is shown that the proposed algorithm force the trajectories to zero in finite-time fulfilling the saturation in the control

input.

Theorem 1. Suppose that the perturbation �(t) satisfies (3). Furthermore, (a) let the gains satisfy

�1 > 0, �2 > 3L + 2L2

�21
, (6)

(b) let the switching threshold � be chosen such that

0 ≤ � ≤
2�2
2
�21 + 4�2

, 
2 =
�21 + 8�2
2�21 + 8�2

, (7)

and (c) suppose that the maximum perturbation bound satisfies

�max < ��; � =
2
2� +

√

��1 − 2
√


3
2�(
2 − 1)

(8)

where 
3 = 
2�2 + �
((

�21
2
+ 2�2

)

(


2 − 1
)

+ �21
4

)

+
√

�
2�1�.
Then, all the trajectories of the closed loop system consisting of (2) and (5) converge to the origin in finite-time, and u(t) fulfills
(4). ▴

A sketch of proof using Lyapunov function10 and positive invariant sets (PINS) is given in the Appendix.

Remark 1. Note that the proposed algorithm allows the trajectories of the STA to behave freely in the phase plane, i.e. even
leaving the set |x(t)| ≤ � without generating high frequency switching for x = ±�.

Note that the condition (8) is restrictive since

� = 1

1 +
√

1 + �21
�21+8�2

< 1
2

(9)

when � = 0. As a direct consequence, only maximal 50% of the effort in the control signal can be used to overcome perturbations.
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FIGURE 2 Finite-time convergence to zero of the states at the maximum rate with saturated control signal |u| ≤ � = 10.
Sampling step � = 0.05s.

3.1 Example 1
Consider system (2) with the following perturbation and initial condition:

�(t) = sin(3t) − 3.5, x0 = 20.

The control input is saturated to |u| ≤ � = 10. The gains were selected as in (6) with respect to �(t), as �1 = 6 and �2 = 10.
Choosing � = 0, the maximum allowed perturbation in (8) is �max = 4.66. Note that perturbation �(t) fulfills (8).
Fig. 2 shows how the system trajectories converge to zero in finite-time. From the initial time t0 = 0 to t1 ≈ 1.5 the saturation

of the control signal drives the state towards zero with the maximum possible rate. Then, a discontinuity in the control signal
produced by the switching law occurs and a Super-Twisting Algorithm reaching phase from second 1.5 to 3.5 takes place. The
trajectories converge to zero in finite-time compensating the perturbation.
The original STA1, Theorem 5, p.1257, defined by

u = u1 + u2,

u̇1 =

{

−u |u| > �
−�sign (�) , |u| ≤ �

u2 =

{

−�|�0|psign (�) |�| > �0
−�|�|psign (�) |�| ≤ �0

was also simulated with the same gains � = �1, � = �2, and parameters � = 10, �0 = 5 and p =
1
2
. Results are shown in Fig.

3. Note that the saturation level is generated by high frequency switching in the control signal that can cause undesired stress in
the actuator. Note also that the convergence is slightly slower.

4 SATURATED SUPER-TWISTING WITH A PERTURBATION ESTIMATOR

In order to overcome restriction (8), an estimator of the perturbation based on Davila et al14 is used. It is defined by
̇̂x1 = �1⌈e1⌋1∕2 − x̂2 + u
̇̂x2 = −�2sign

(

e1
)

,
e1 = x − x̂1,
e2 = x̂2 + �(t),

(10)

where x̂1 is an estimate of x1, x̂2 is an estimate of −�(t), and �1 and �2 positive constant gains to be designed.



Castillo ET AL 5

-10

0

10

20

S
ta

te
s

0 1 2 3 4 5 6 7 8
Time [s]

-10

-5

0

5

10

C
on

tr
ol

 u

0 0.5 1 1.5
-11

-10

-9

FIGURE 3 Results for the original STA from1. Sampling step � = 0.05s.

These estimates are used to initialize z in (5) when a switching from RC to STA at time t1 occurs, i.e.

z(t1) = x̂2(t1) (11)

With the appropriate selection of �1 and �2, the state x̂1 converges to x1 and z and x̂2 converge to −�(t) in finite-time Te. The
estimator has to be tuned in such a way that it is guaranteed that it converges before RC switches to STA, i.e. Te < t1.

Theorem 2. Suppose that perturbation �(t) satisfies (3). Furthermore, (a) let the gains satisfy

�1 >0, (12a)

�2 >3L +
2L2

�21
, (12b)

�1 ≥max{8.8
√

L̃, 6
√

2L}, (12c)
�2 ≥max{19L̃ − 4L, 14L} (12d)

with

L̃ =

(

�2max + ��max
)

|x0 − �|
, (13)

for initial conditions x0 ≠ 0.
Then, all the trajectories of system (2) in closed-loop with (5), (10) and (11) will converge to the origin in finite-time fulfilling

(4). ▴

The proof is given in the Appendix.

Remark 2. In contrast to the first algorithm presented in this paper, the second one allows one to reject perturbations with (a
higher) maximal magnitude �max < �. Nevertheless, if the initial condition is extremely close or inside of the neighborhood
|x| ≤ �, the perturbation estimator cannot be applied and condition (8) of Theorem 1 should be fulfilled.

Remark 3. The estimator gains (12c)-(12d) ensure the finite-time convergence of the estimator states to e1 = e2 = 0 in a time
smaller than

Te < Tcmin =
|x0 − �|
� + �max

. (14)

Time Tcmin represents the minimum reaching time for the RC as shown in the Appendix.
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FIGURE 4 The selection of the estimator’s gains as in (12c) and (12d), ensures convergence of the estimator in a finite time Te
smaller than the reaching time of the state t1.

4.1 Example 2
Consider system (2) with a perturbation �(t) = 0.9 cos(10t) − 9, and a saturated control input |u| ≤ � = 10. According to (12a)
and (12b), the controller gains are chosen as �1 = 4, �2 = 37.12505, and � = 0. Using (12c), (12d) and (13), we get �1 = 19,
and �2 = 63.5. The estimation of the state reaching time is Tcmin =

|20|
10+9.9

= 1.0050s.
The estimation error in Fig. 4 converges to zero before second 1 (Te ≈ 0.6s), i.e. faster than the state converges to zero.

When the state reaches |x| = � = 0 at time t1, the STA’s integrator is initialized with the exact value of the perturbation
z(t1) = x̂2s(t1) = −0.9 cos(10t1) + 9. Then, the trajectories are maintained in sliding mode x = ẋ = 0 for all future time with an
equivalent control u = −�̂(t) = −0.9 cos(10t) + 9. Note that the maximal perturbation �max = 9.9 is near to the control limit.

5 EXPERIMENTS

For testing the proposed algorithm, a ECPTorsionalModel 205† is used. It consists of inertial subsystems interconnected through
springs as shown in Fig. 5. Its design allows the reconfiguration of inertias, springs and the interconnection between subsystems.
Consider the problem of velocity tracking of a second-order mechanical system, i.e. second and third subsystems from above

will be disconnected. Its dynamics can be represented by

Jmq̈ + F (q, q̇) = � + !(t), (15)

where q, q̇ ∈ ℝ are the state variables and � ∈ ℝ the input torque which is limited by |�| ≤ � = 0.7Nm. The terms in
the differential equation (15) represent the moment of inertia Jm = 0.0286kgm2, a bounded function F representing locally
Lipschitz unknown dynamics of the system and !(t) possibly external Lipschitz disturbances.
It is desired to realize exact velocity tracking of the trajectory q̇d . By defining the error variable e1 = q̇− q̇d , the velocity error

dynamics are given by
ė1 = 
̄

(

� + !(t) − F (q, q̇)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

�(t)

)

− q̈d , (16)

with 
̄ = 1∕Jm and �(t) = !(t) − F (q, q̇), which is a bounded locally Lipschitz perturbation. The perturbation is assumed to be
bounded by a constant |�(t)| ≤ �max < � = 0.7Nm. Applying the control law � = q̈d


̄
+ u, where u ∈ ℝ is a new control input

†http://www.ecpsystems.com (accessed on April 4, 2018)
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FIGURE 5 ECP Model 205: Torsional Plant.

yields
ė1 = 
̄

(

u + �(t)
)

.

Here, we can apply the SSTA as in (5) using (11). Perturbation estimator (10) is implemented with a slight modification to take
into account 
̄ such that

̇̂x1 = �1⌈e1⌋1∕2 − x̂2 + 
̄u
̇̂x2 = −�2sign

(

e1
)

.
(17)

Figure 6 shows the velocity tracking of a polynomial trajectory q̇d including three steps at seconds 30, 35, and 45. A STA with a
saturation function at its output without any anti-windup technique (STA+sat(u)) and no perturbation estimator in comparison
with the proposed SSTA (with perturbation estimator) were applied to the plant with the same gains �1 = 0.12, �2 = 0.45, that
were adjusted experimentally. The measurements clearly show overshoots, and relative errors up to 41% produced by integrator
wind-up.
In contrast, the SSTA with perturbation estimator is able to reach the desired step levels without any overshoot. The corre-

sponding control signals of experiments are depicted in Fig. 7. STA+sat(u) integrates the tracking error during all saturation
intervals. On the other hand, SSTA (5) jumps from STA to RC behavior when |uSTA| > � and jumps back to STA with the
exact amount of integral control action to exactly compensate the dynamics and perturbations of the system avoiding the over-
shoot. The estimation error and the perturbation estimation are shown in Fig. 8. Video of the experiment can be found at
https://youtu.be/-JIIfdY2-2s.

6 CONCLUSIONS

Two different versions of SSTA are presented. Both versions use a dynamic switching that is based on PINS obtained from level
curves of the Lyapunov function in Moreno et al10. RC ensures the system trajectories to reach a PINS in finite-time where the
STA’s continuous control signal is able to drive system trajectory to zero in finite-time fulfilling the saturation condition.
In order to increment the maximum bound of the perturbation supported by the SSTA, the second version includes a

perturbation estimator allowing to set the STA’s integrator to theoretically exact value of the perturbation.
Experiments were carried out using a mechanical system (see Fig. 5) that was set up as a second order system in order to

illustrate the performance of the of the proposed scheme.
The proposed SSTA algorithm paves the ground for a wide use in real world applications, where saturated control is inevitable.

https://youtu.be/-JIIfdY2-2s
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FIGURE 6 Velocity tracking of a desired polynomial trajectory q̇d including three steps at second 30, 35, and 45.
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APPENDIX

A SKETCH OF THE PROOF OF THEOREM 1

The next section some elements of Castillo et al13 are shown in order to have elements for better understanding of the subsequent
proof.

1. First, in10 it is shown that if the parameters �1 and �2 are designed as in (6), the function,

Vs(x, z) = Vs(�1, �2) = �TP�, (A1)

with
P =

[

p11 −p12
−p12 p22

]

= 1
2

[

4�2 + �21 −�1
−�1 2

]

> 0, (A2)

and vector �T =
[

�1 �2
]

=
[

⌈x⌋
1
2 z

]

is a Lyapunov function for the closed loop with the STA. It ensures the finite-time
convergence of the state to the origin and the exact compensation of the perturbation.

2. The admissible range for threshold � based on PINS for the closed loop with RC and STA is derived. The saturation of
the control signal uSTA = ±� can be interpreted as the curves z = ±�+�1⌈x⌋

1
2 in the phase plane (x, z) (see black dashed

lines in Fig. A1).

3. The maximum Positive Invariant Set (PINS) contained between the two saturation curves, such that only touches the
saturation curves in only one point is defined as Ωs = {� ∈ ℝ2

|Vs ≤ cs},

cs = �
2, 
2 =
p11p22 − p212

p22�21 − 2p12�1 + p11
(A3)

Then, as shown in Fig. A1(left), Vs(x, 0) = cs defines the maximum value of � such that PINS does not exceed the
saturation curves.

Vs(x, 0) = p11|x| ≤ cs → |x| ≤
cs
p11

, (A4)

then
0 ≤ � ≤

cs
p11

. (A5)
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FIGURE A1 (left) Nominal Phase Plane with the maximal PINS between the saturation curves. (right) Phase Plane with
perturbation |�(t)| ≤ �max. Switch of control law in a neighborhood of the origin |x| ≤ � (green). System trajectory (blue)

Finally with (A2) we get (7).

4. To find themaximumbound for the perturbation (8) a level curve fromLyapunov function (A2) in presence of the perturba-
tion is evaluated in one of the saturation curves (the second curve is excluded due to symmetry), i.e.Vs(�1, �+�1�1−�max) =
l�. This can be represented as a quadratic equation a��21 + b��1 + c� = 0. Setting the discriminant b2� − 4a�c� = 0 one can
get that l� = (�max − �)2
2.

5. A second level curve is evaluated at z = 0, i.e. Vs(�1,−�max) = l� . This has two roots with respect �1. Taking into account
that �1 = ⌈x⌋

1
2 , set the minimum of the roots equals to

√

� (i.e. x = �), and solving for l� we get

l� = �p11 + �2maxp22 + 2�max
√

�p12. (A6)

6. Both conditions are obtained by setting l� = l� , and solving for �max, we get the maximum allowed bound for the
perturbation depending on the size of the neighborhood |x| ≤ �, see Fig. A1(right),

�max ≤ ��; � =

2� +

√

�p12 −
√


3
�(
2 − p22)

, (A7)

where 
3 = (p212 + 
2p11 − p11p22)� + 2
2p12�
√

� + 
2p22�2.

7. Taking the values of the Lyapunov function (A2), we get condition (8).

8. If � is set to zero, � in (A7) reduces to

� =

2� −

√


2�2

�(
2 − 1)
=

2 −

√


2
(
2 − 1)

⋅

2 +

√


2

2 +

√


2
= 1

1 +
√


2

2
⋅
√


2
√


2

= 1
1 + 1

√


2

. (A8)

Substituting (7) in the last expression one can get

� = 1

1 +
√

1 + �21
�21+8�2

(A9)

which is clearly less than 1
2
.
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B PROOF OF THEOREM 2

The proof works in two steps. First, it is shown how the estimator has to be tuned to achieve convergence before the RC switches
to STA. Then, conditions for the STA parameters are derived.
The error dynamics of estimator (10) are

ė1 = −�1⌈e1⌋1∕2 + e2
ė2 = −�2sign

(

e1
)

+ �̇
(B10)

with e2 = x̂2 + �(t). Therefore, there exists a time Te > 0 where e1 = e2 = 0 as shown in10,12. This implies that x̂2 = −�(t) for
all future time t > Te. In the next section we design the estimator gains to make the time Te smaller than the minimum time of
convergence of the state under the Relay Controller.
The estimation of the minimum reaching time Tcmin of the RC is made considering the case when the perturbation helps the

system trajectories to converge. Then, using the Lyapunov function

Vc(x) = c1|x|, c1 > 0 (B11)

from13 yields the time-derivative
V̇c(x) = −c1� + c1sign(x)�(t) (B12)

resp.
min

|�(t)|≤�max
V̇c(x) = −c1

(

� + �max
)

. (B13)

If we select c1 = 1∕(� + �max), the Lyapunov function derivative becomes V̇c ≥ −1 and

Vc(x) ≥ Vc(x0) − t =
|x0 − �|
� + �max

− t

for t0 = 0. This shows that Vc reduces to zero no earlier than in time Tcmin given in (14).
Second, consider the Lyapunov function in Polyakov et al12

Ve(e1, e2) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

k2

4

(

e2⌈e1⌋0



+ k0em(ē)

√

s(ē)
)2

e1e2 ≠ 0

2k̄2e22
�21

e1 = 0

|e1|
2

e2 = 0

(B14)

where ē = [e1 e2]T . The terms k, and k0 depend on the state e1 and e2, k̄ is a parameter to design depending on L and the gains
�1 and �2. s(ē) and m(ē) are also non-linear functions of the state, and g = 8
∕�21 with 
(ē) ∶= �2 − Lsign

(

e1e2
)

.
Note that with the knowledge of the initial condition x0 it is possible to set x̂1(0) = x0, and therefore e1(0) = x0 − x̂1(0) = 0

to use the second case of (B14). We choose a parametrization of the estimator gains

�1 = 2
√

(18L + �), (B15a)
�2 = 14L + �, (B15b)

with � > 0, such that the conditions of Theorem 112 hold, i.e.

�2 = 14L + � > 5L,

and
64L < �21 < 8(�2 − L)
64L < (2

√

18L + �)2 < 8((14L + �) − L)
64L < 72L + 4� < 104L + 8�.

Parameter gmay take two possible values g− = 8(�2−L)∕�21 , g
+ = 8(�2+L)∕�21 depending on the values of 
 ∈ {�2+L, �2−L}.

Function g = 2(14L+�±L)
18L+�

also varies depending on the selection of the parameter �. Note that g is monotone with respect to �
since its derivative with respect to � is positive, i.e.

dg
d�

= 2
18L + �

−
2(14L ± L + �)
(18L + �)2

=
2(4L ± L)
(18L + �)2

> 0.
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Therefore the limits of g− and g+ when � → 0 and � →∞ are taken:

lim
�→0

g− = 13
9
, lim
�→∞

g− = 2,

lim
�→0

g+ = 15
9
, lim
�→∞

g+ = 2.
(B16)

The whole range of variation of g depending on 
 and � is g ∈ [gm, gM ] = [
13
9
, 2].

Parameter k̄ should belong to a intersection set of the intervals I(gm) ∩ I(gM ) ≠ 0, where the interval I(g),

I(g) =

(

2
g
+ e(1∕

√

g−1)(−(�∕2)−arctan(1∕
√

g−1))
√

g
, e

(1∕
√

g−1)((�∕2)−arctan(1∕
√

g−1))
√

g

)

. (B17)

Evaluating the numeric endpoints of g, I(g−) = [1.4027, 2.01] and I(g+) = [1.0670, 1.5509], k̄ can be selected as k̄ = 1.4768.
Using Theorem 1 in Polyakov et al12, we ensure that the time derivative of (B14) along the trajectories of the system satisfies

V̇e ≤ −k
√

V e ≤ −kmin
√

V e (B18)

and if the bound for |e2(0)| = |�(0)| = �max, the reaching time estimate can be referred to as

Te ≤
2
kmin

√

Ve(0, �max), (B19)

with
kmin =

�1
√

8
min

g∈{g−,g+}
�∈{0,∞}

f (g, �)

and

f (g, �) =

|

|

|

|

|

|

|

|

|

|

|

|

|

gk̄ −
√

ge

⎛

⎜

⎜

⎜

⎜

⎝

arctan

(

−1
√

g−1

)

+
⎛

⎜

⎜

⎝

�(�21 g−8�2)
16L

⎞

⎟

⎟

⎠

√

g−1

⎞

⎟

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

|

|

|

|

|

.

Evaluating f with the two limits gm and gM and the given value ofL, f (g, �) ∈ [fm, fM ] = [0.1550, 2.8066], and kmin =
�1
√

8
fm.

From (B14), (B19), and setting the reaching time of the estimator Te less than the minimum reaching time of the state Tcmin,
we have

Te ≤
8k̄�max
�21fm

< Tcmin. (B20)

Substituting (14) in (B20) and solving for �1 results in

�1 ≥

√

8k̄
fm

(

�2max + ��max
)

|x0 − �|
. (B21)

From parametrization (B15a), we solve for � such that

� = 1
4
�21 − 18L. (B22)

Substituting (B22) in parametrization (B15b) yields

�2 =
1
4
�21 − 4L.

Using the equality case of (B21) results in

�2 ≥
2k̄
fm

(

�2max + ��max
)

|x0 − �|
− 4L. (B23)

Note that the value of the gains �1 and �2 tends to zero and to −4L, respectively, as x0 tends to infinity because the restriction
� > 0 disappeared in this expressions. Therefore, conditions (B21) and (B23) are expressed as the maximum of two values to
get (12c) and (12d).
As shown before and in Castillo et al13, the PINS for STA (red lines in Fig. B2) move up or down in the (x, z)-plane depending

on �max. In addition, they change its size depending on �.
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0

x

0z

−�2 �2

�max1

�max2

−�

�

�1−�1

FIGURE B2 With the exact estimation of the perturbation the trajectories can start into a PINS of a size depending on �.

With the exact estimate of the perturbation, the integral control is set to z = −�(t)when the trajectory enters the neighborhood
|x| ≤ �. Following the proof in13, we find a PINS (�2 = 0) such that

Vs(�1, 0) = c� = (�max − �)2
2
where Parameter c� is related to a sublevel set that touches curve z = � + �1�1 in one point as shown in more detail in13.
Solving for x leads to

|x| ≤ � ≤
(�max − �)2

p11

2.

This completes the proof. ■
Note that the maximal rejectable perturbation depends on �, i.e. the smaller �, the bigger maximum perturbation up to �max =

�, when � = 0.
The big red region in Fig.B2 equals a PINS for the choice � = �1. As a result perturbations with maximum |�max1| can be

rejected. A choice of � = �2 < �1 gives a smaller red region as shown in Fig.B2. As a consequence, perturbations with higher
magnitude |�max2| > |�max1| can be eliminated.
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