Schriftliche Prüfung aus **Systemtechnik** am 29. 01. 2014

Name / Vorname(n):

Matrikel-Nummer:

Bonuspunkte aus den MATLAB-Übungen:

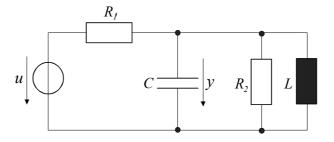
O ja O nein

1 2 3 4
erreichbare Punkte 4 6 6 5
erreichte Punkte

1 6 6142, 111000000 1411 11096141195 4114 11400114011411950000111111

Aufgabe 1:

Betrachten Sie folgendes elektrisches Netzwerk bestehend aus idealen Bauteilen: einer Kapazität (C), einer Induktivität (L) und zwei Ohmschen Widerständen (R_1, R_2). Die von der idealen Spannungsquelle gelieferte Spannung wird mit u symbolisiert. Mit y bezeichnen wir die Spannung an der Kapazität C. Fassen Sie das Netzwerk als ein System mit der Eingangsgröße u und der Ausgangsgröße y auf.



Führen Sie einen geeigneten Zustandsvektor x ein und ermitteln Sie ein Modell der Form

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}u \qquad \qquad y = \mathbf{c}^T \mathbf{x} + du.$$

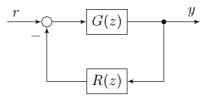
Aufgabe 2:

Betrachten Sie ein lineares, zeitinvariantes, zeitdiskretes System mit der Eingangsgröße u_i , der Ausgangsgröße y_i und der Gewichtsfolge g_i :

$$g_i = \left(-1\right)^i - \left(-2\right)^i.$$

a) Bestimmen Sie die Übertragungsfunktion $G(z) = \frac{y(z)}{u(z)}\Big|_{x_0=0}$ des Systems.

Betrachten Sie nun folgende Zusammenschaltung:



mit

$$R(z) = \frac{2z+4}{z} \, .$$

b) Zeigen Sie, dass das Gesamtsystem folgende Übertragungsfunktion besitzt:

$$T(z) = \frac{y(z)}{r(z)} = \frac{z}{z^2 + 5z + 6}$$

- c) Besitzt T(z) die BIBO Eigenschaft? (Begründen Sie Ihre Antwort)
- d) Geben Sie einen Zustandsraumdarstellung von T(z) in der Form

$$\mathbf{x}_{i+1} = \mathbf{A}_{\mathrm{d}} \mathbf{x}_i + \mathbf{b}_{\mathrm{d}} u_i \qquad y_i = \mathbf{c}_{\mathrm{d}}^{T} \mathbf{x}_i + d_{\mathrm{d}} u_i$$

an und zeichnen Sie das dazugehörige Strukturbild.

Aufgabe 3:

Gegeben sei ein lineares und zeitinvariantes System

$$\frac{d\mathbf{x}}{dt} = \mathbf{A} \,\mathbf{x} + \begin{bmatrix} 1\\1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 2 \end{bmatrix} \mathbf{x}.$$

Von der Systemmatrix ist nur das charakteristische Polynom

$$\Delta(s) = s^2 - 9$$

und ein Rechts-Eigenvektor $\mathbf{p}_1 = \begin{bmatrix} -1 & 2 \end{bmatrix}^T$ bekannt. Im Rahmen eines Experimentes wurde für den Anfangszustand $\mathbf{x}_0 = \begin{bmatrix} 10 & 10 \end{bmatrix}^T$

$$\lim_{t\to\infty} \mathbf{x}(t) = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$$

beobachtet.

- a) Ermitteln Sie die Systemmatrix A.
- b) Zeigen Sie, dass die Gewichtsfunktion g(t) des Systems durch

$$g(t) = 2e^{-3t}$$

gegeben ist. Ist das System BIBO stabil?

- c) Berechnen Sie die Systemantwort y(t) für den Anfangszustand $\mathbf{x}_0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ und die Eingangsgröße $u(t) = 2\sigma(t)$.
- d) Skizzieren Sie den Verlauf der Trajektorien des freien Systems (mit Angabe des Richtungssinnes für wachsende Zeiten t) in der x_1 x_2 -Ebene für folgende Anfangszustände:

$$\mathbf{x}_0^{(1)} = \begin{bmatrix} -2\\4 \end{bmatrix}, \quad \mathbf{x}_0^{(2)} = \begin{bmatrix} 0\\-2 \end{bmatrix}, \quad \mathbf{x}_0^{(3)} = \begin{bmatrix} -2\\-2 \end{bmatrix}, \quad \mathbf{x}_0^{(4)} = \begin{bmatrix} -3\\0 \end{bmatrix}$$

Hierbei muss der asymptotische Verlauf der Trajektorien (t $\rightarrow \infty$) *erkennbar sein!*

Aufgabe 4:

Es seien folgende *ungekürzte* Übertragungsfunktionen von linearen, zeitinvarianten Systemen gegeben (d.h. die Systemordnung entspricht jeweils dem Grad des Nennerpolynoms):

$$G_1(s) = \frac{1}{s^2 + 6s + 3.5}$$

$$G_2(s) = \frac{5s + 3}{s^3 + 2s^2 + 1}$$

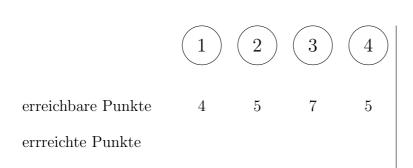
$$G_3(s) = \frac{(2s^2 + s + 1)(s + 1)}{s^5 + 3s^4 + 2s^3 + 3s^2 + 4s + 2}$$

$$G_4(s) = \frac{s - 1}{s^3 + 4s^2 - 3s - 2}$$

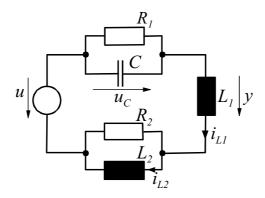
Überprüfen Sie jedes dieser Systeme sowohl auf BIBO- als auch auf asymptotische Stabilität. (Begründen Sie Ihre Antworten!)

Schriftliche Prüfung aus **Systemtechnik** am 28.03.2014

Name / Vorname(n):		
Matrikel-Nummer:		
Bonuspunkte aus den Matlab-Übungen:) ja	onein



Betrachten Sie folgendes ideale elektrische Netzwerk bestehend aus einer Spannungsquelle, einer Kapazität C, zwei Induktivitäten L_1 und L_2 , sowie zwei Ohmschen Widerständen R_1 und R_2 . Die von der Spannungsquelle gelieferte Spannung wird mit u symbolisiert. Mit y wird die Spannung an der Induktivität L_1 bezeichnet.



Fassen Sie das Netzwerk als ein System mit der Eingangsgröße u und der Ausgangsgröße y auf.

Führen Sie den Zustandsvektor $\mathbf{x} = \begin{bmatrix} u_{\rm C} & i_{\rm L1} & i_{\rm L2} \end{bmatrix}^T$ ein und ermitteln Sie ein mathematisches Modell der Form

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x} + \mathbf{b}u, \qquad y = \mathbf{c}^T \mathbf{x} + du.$$

Aufgabe 2:

Gegeben sei ein lineares zeitinvariantes System mit der Eingangsgröße u, dem Zustandsvektor \mathbf{x} und der Ausgangsgröße y:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \begin{bmatrix} -1 & 1 & 0\\ 0 & 0 & 1\\ 0 & -3 & \alpha \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix} u, \qquad y = \begin{bmatrix} 2 & 0 & 0 \end{bmatrix} \mathbf{x}.$$

Dabei ist α ein reeller Parameter.

- a) Ermitteln Sie den größtmöglichen Wertebereich des Parameters α , für den das System asymptotisch stabil ist.
- b) Zeigen Sie, dass die Übertragungsfunktion $G(s) = \frac{y(s)}{u(s)}\Big|_{\mathbf{x}_0 = \mathbf{0}}$ durch

$$G(s) = \frac{2s - 2\alpha + 4}{s^3 + (1 - \alpha)s^2 + (3 - \alpha)s + 3}$$

gegeben ist. (*Hinweis:* Fassen Sie das System als Serienschaltung zweier Teilsysteme auf.)

c) Geben Sie den größtmöglichen Wertebereich des Parameters α an, für den das System die BIBO-Eigenschaft besitzt.

Aufgabe 3:

Betrachten Sie folgendes lineare zeitinvariante System mit der Eingangsgröße u, dem Zustandsvektor \mathbf{x} und der Ausgangsgröße y:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \begin{bmatrix} -1 & 2\\ 3 & -6 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1\\ -1 \end{bmatrix} u, \qquad y = \begin{bmatrix} 1 & -2 \end{bmatrix} \mathbf{x}.$$

a) Transformieren Sie obiges System in ein äquivalentes System in Diagonalform:

$$\frac{\mathrm{d}\mathbf{z}}{\mathrm{d}t} = \mathbf{\Lambda}\mathbf{z} + \boldsymbol{\delta}u, \qquad \qquad y = \overline{\boldsymbol{\delta}}^T\mathbf{z}.$$

- b) Ermitteln Sie die Übertragungsfunktion G(s). Besitzt das System die BIBO-Eigenschaft? (Begründen Sie Ihre Antwort!)
- c) Für eine sinusförmige Eingangsgröße u(t) wurde im eingeschwungenen Zustand

$$y(t) = \sin(7t)$$

beobachtet. Ermitteln Sie den Verlauf der Eingangsgröße u(t).

d) Für eine unbekannte Eingangsgröße wurde ausgehend vom Anfangszustand $\mathbf{x}_0 = \mathbf{0}$ die Ausgangsgröße

$$y(t) = 3e^{-3t} - 3e^{-7t} \qquad \text{für } t \ge 0$$

beobachtet. Bestimmen Sie den zugehörigen Verlauf von u(t).

e) Skizzieren Sie für folgende Anfangszustände den Verlauf der Trajektorien des freien transformierten Systems in der z_1 - z_2 -Ebene:

$$\mathbf{z}_0^{(1)} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}, \qquad \mathbf{z}_0^{(2)} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \qquad \mathbf{z}_0^{(3)} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \qquad \mathbf{z}_0^{(4)} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}.$$

Hierbei muss der asymptotische Verlauf der Trajektorien $(t \to \infty)$ erkennbar sein!

Aufgabe 4:

Gegeben Sei folgende Differenzengleichung eines zeitdiskreten linearen zeitinvarianten Systems mit der Eingangsfolge (u_i) und der Ausgangsfolge (y_i) :

$$6y_{i+2} + y_{i+1} - y_i = 6u_{i+1} + 12u_i$$
 $(i = 0, 1, 2, ...).$

- a) Ermitteln Sie die Übertragungsfunktion $G(z) = \frac{y(z)}{u(z)}\Big|_{\mathbf{x}_0 = \mathbf{0}}$ des Systems.
- b) Existiert ein asymptotisch stabiles Zustandsraummodell der Form

$$\mathbf{x}_{i+1} = \mathbf{A}_{d}\mathbf{x}_{i} + \mathbf{b}_{d}u_{i}, \qquad y_{i} = \mathbf{c}_{d}^{T}\mathbf{x}_{i} + d_{d}u_{i}$$

mit obiger Übertragungsfunktion? (Begründen Sie Ihre Antwort!) Wenn ja, geben Sie ein solches an.

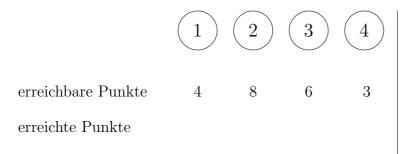
c) Existiert ein nicht asymptotisch stabiles Zustandsraummodell der Form

$$\mathbf{x}_{i+1} = \overline{\mathbf{A}}_{\mathrm{d}} \mathbf{x}_i + \overline{\mathbf{b}}_{\mathrm{d}} u_i, \qquad y_i = \overline{\mathbf{c}}_{\mathrm{d}}^T \mathbf{x}_i + \overline{d}_{\mathrm{d}} u_i$$

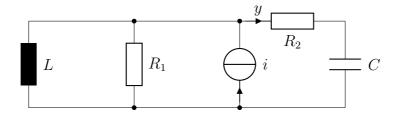
mit obiger Übertragungsfunktion? (Begründen Sie Ihre Antwort!) Wenn ja, geben Sie ein solches an.

Schriftliche Prüfung aus **Systemtechnik** am 28.05.2014

Name / Vorname(n):		
Matrikel-Nummer:		
Bonuspunkte aus den Matlab-Übungen:) ja	O nein



Betrachten Sie folgendes ideale elektrische Netzwerk bestehend aus einer idealen Stromquelle, einer Kapazität C, einer Induktivität L und zwei Ohmschen Widerständen R_1 und R_2 . Der von der Stromquelle gelieferte Strom wird mit i bezeichnet. Mit y wird der Strom durch den Widerstand R_2 bezeichnet.



Fassen Sie das Netzwerk als ein System mit der Eingangsgröße i und der Ausgangsgröße y auf. Führen Sie den Zustandsvektor $\mathbf{x} = \begin{bmatrix} u_{\mathrm{C}} & i_{\mathrm{L}} \end{bmatrix}^T$ ein und ermitteln Sie ein mathematisches Modell der Form

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x} + \mathbf{b}i, \qquad y = \mathbf{c}^T \mathbf{x} + di.$$

Aufgabe 2:

Gegeben sei folgendes lineares zeitinvariantes System mit der Eingangsgröße u und der Ausgangsgröße y:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \begin{bmatrix} -5 & 3\\ 0 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0\\ 5 \end{bmatrix} u, \qquad y = \begin{bmatrix} -2 & 1 \end{bmatrix} \mathbf{x}$$

- a) Zeichnen Sie das Strukturbild des Systems.
- b) Bestimmen Sie die zugehörige Transitionsmatrix $\Phi(t)$.
- c) Ist das System asymptotisch bzw. BIBO-stabil? (Begründen Sie Ihre Antworten!)
- d) Ermitteln Sie die Ausgangsgröße y(t) für

$$\mathbf{x}_0 = \begin{bmatrix} -1\\0 \end{bmatrix}, \qquad \qquad u(t) = \sigma(t) = \begin{cases} 0 & t < 0\\1 & t \ge 0 \end{cases}$$

und stellen Sie sie graphisch dar.

e) Skizzieren Sie für folgende Anfangszustände den Verlauf der Trajektorien (mit Angabe des Richtungssinnes für wachsende Zeiten t) des freien Systems in der x_1 - x_2 -Ebene:

$$\mathbf{x}_0^{(1)} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}, \qquad \mathbf{x}_0^{(2)} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \qquad \mathbf{x}_0^{(3)} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \qquad \mathbf{x}_0^{(4)} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}.$$

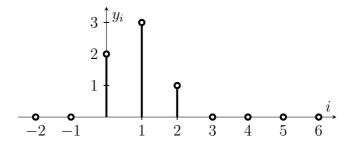
Hierbei muss der asymptotische Verlauf der Trajektorien $(t \to \infty)$ erkennbar sein!

Aufgabe 3:

Gegeben sei ein zeitdiskretes lineares zeitinvariantes System mit dem Zustandsvektor \mathbf{x} , der Eingangsfolge (u_i) und der Ausgangsfolge (y_i) . Mit σ_i wird im Folgenden der zeitdiskrete Einheitssprung

$$\sigma_i = \begin{cases} 0 & i < 0 \\ 1 & i \ge 0 \end{cases}$$

bezeichnet. Für $\mathbf{x}_0 = \mathbf{0}$ und $u_k = \sigma_i - \sigma_{i-2}$ wurde folgende Ausgangsfolge beobachtet:



- a) Ermitteln Sie die z-Übertragungsfunktion G(z) des Systems.
- b) Besitzt das System die BIBO-Eigenschaft? (Begründen Sie Ihre Antwort!)
- c) Geben Sie ein Zustandsraummodell der Form

$$\mathbf{x}_{i+1} = \mathbf{A}_{d}\mathbf{x}_{i} + \mathbf{b}_{d}u_{i}, \qquad y_{i} = \mathbf{c}_{d}^{T}\mathbf{x}_{i} + d_{d}u_{i}$$

an, welches die Übertragungsfunktion G(z) besitzt.

d) Geben Sie eine Eingangsfolge (u_i) an, sodass für $\mathbf{x}_0 = \mathbf{0}$

$$y_i = \begin{cases} 1 & i = 0 \\ 0 & i > 0 \end{cases}$$

gilt.

Aufgabe 4:

Betrachten Sie folgendes lineare zeitinvariante System

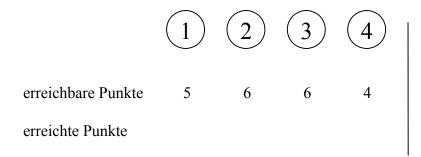
$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \begin{bmatrix} \alpha & 0 & 0 & 0\\ 0 & 0 & 0 & -2\\ 0 & 1 & 0 & \beta\\ 0 & 0 & 1 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1\\ 0\\ 2\\ 4 \end{bmatrix} u, \qquad \mathbf{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \mathbf{x} + \gamma u.$$

Hinweis: Es handelt sich um eine Parallelschaltung zweier Teilsysteme.

- a) Bestimmen Sie den größtmöglichen Wertebereich der Parameter α , β und γ , für den das System asymptotisch stabil ist. (Begründen Sie Ihre Antwort!)
- b) Bestimmen Sie den größtmöglichen Wertebereich der Parameter α , β und γ , für den das System die BIBO-Eigenschaft besitzt. (Begründen Sie Ihre Antwort!)

Schriftliche Prüfung aus **Systemtechnik** am 08. 07. 2014

Name / Vorname(n):		
Matrikel-Nummer:		
Bonuspunkte aus den MATLAB-Übungen:	O ja	O nein



Gegeben sei folgendes autonome, *lineare und zeitinvariante* System mit dem Zustandsvektor \mathbf{x} und der Ausgangsgröße y:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \begin{bmatrix} -1 & 2 \\ . & . \end{bmatrix} \mathbf{x}$$

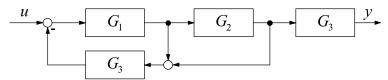
Aus Versehen gingen einige Daten der Systemmatrix verloren. Dafür kennt man einen Eigenwert s = -1 und einen Rechts-Eigenvektor $\mathbf{p} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}^T$.

- a) Bestimmen Sie die Dynamikmatrix A.
- b) Ist das System asymptotisch stabil? Geben Sie eine mathematische Begründung an!
- c) Ermitteln Sie die zugehörige Transitionsmatrix $\Phi(t)$.
- d) Skizzieren Sie den Verlauf der Trajektorien (mit Angabe des Richtungssinnes für wachsende Zeiten t) in der $x_1 x_2$ Ebene für folgende Anfangszustände:

$$\mathbf{x}_0^{(1)} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}, \quad \mathbf{x}_0^{(2)} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \quad \mathbf{x}_0^{(3)} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \quad \mathbf{x}_0^{(4)} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Aufgabe 2:

Gegeben sei folgende Zusammenschaltung von vier Teilsystemen mit den Übertragungsfunktionen $G_1(s)$, $G_2(s)$ beziehungsweise $G_3(s)$:



Fassen Sie diese als *ein* System mit der Eingangsgröße *u* und der Ausgangsgröße *y* auf. Für die Übertragungsfunktionen gilt:

$$G_1(s) = 5$$
, $G_2(s) = \frac{s-1}{s+\alpha}$, $G_3(s) = \frac{1}{s+2}$

Hierbei ist α eine reelle Konstante.

a) Zeigen Sie, dass die Übertragungsfunktion des Systems mit der Eingangsgröße *u* und der Ausgangsgröße *y* durch

$$T(s) = \frac{y(s)}{u(s)}\Big|_{AW=0} = \frac{5(s-1)}{s^2 + s(\alpha + 12) + 7\alpha - 5}$$

gegeben ist.

- b) Bestimmen Sie den größtmöglichen Wertebereich des Parameters α für welchen das System die BIBO-Eigenschaft besitzt!
- c) Berechnen Sie für hinreichend große Werte t die Antwort y(t) auf die Eingangsgröße $u(t) \equiv 12$ für folgende Parameterwerte:

(i)
$$\alpha = -1$$
 (ii) $\alpha = 0$

Aufgabe 3:

Gegeben sei das folgende Blockschaltbild eines zeitdiskreten Systems mit der Führungsgröße r und der Ausgangsgröße y:

r L(z) y

a) Als Führungsgröße wird – bei verschwindendem Anfangszustand – die Folge $(r_i) = (1,0,0,0,0,0,...)$ gewählt. Für die Elemente der zugehörigen Ausgangsfolge gilt dann:

$$y_i = \begin{cases} 0 & \text{für } i = 0,1\\ -4 \cdot (-0.25)^{i-1} & \text{für } i > 1 \end{cases}$$

Ermitteln Sie die Führungsübertragungsfunktion $T(z) = \frac{y(z)}{r(z)}\Big|_{AW=0}$.

- b) Berechnen Sie die ersten fünf Elemente der Sprungantwort des Systems.
- c) Ermitteln Sie die Übertragungsfunktion L(z).
- d) Besitzt L(z) die BIBO Eigenschaft? Geben Sie eine mathematische Begründung an.

Aufgabe 4:

Betrachten Sie folgendes ideale elektrische Netzwerk bestehend aus einer Spannungsquelle, einer Induktivität L, zwei Kapazitäten C_1 und C_2 sowie zwei Ohm'schen Widerständen R_1 und R_2 . Die von der Spannungsquelle gelieferte Spannung wird mit u symbolisiert. Mit y wird die Spannung am Widerstand R_2 bezeichnet.



Fassen Sie das Netzwerk als ein System mit der Eingangsgröße *u* und der Ausgangsgröße *y* auf.

a) Führen Sie einen geeigneten Zustandsvektor \mathbf{x} ein und ermitteln Sie ein mathematisches Modell der Form $\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}u$, $y = \mathbf{c}^{\mathsf{T}}\mathbf{x} + du$.

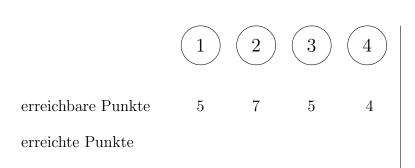
Für bestimmte Parameterwerte sowie eine bestimmte Wahl der Zustandsgrößen kann das mathematische Modell wie folgt dargestellt werden:

$$\frac{\mathbf{d}\mathbf{x}}{\mathbf{d}t} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & -1 \\ 0 & 1 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} u, \quad y = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix} \mathbf{x}.$$

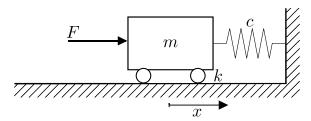
b) Bestimmen Sie die Übertragungsfunktion $G(s) = \frac{y(s)}{u(s)}\Big|_{AW=0}$.

Schriftliche Prüfung aus **Systemtechnik** am 26.09.2014

Name / Vorname(n):		
Matrikel-Nummer:		
Bonuspunkte aus den Matlab-Übungen:	○ ja) nein



Betrachten Sie folgendes mechanische System bestehend aus einem Wagen mit der Masse m und einer linearen Feder mit der Federkonstante c:



Die Position y des Wagens wird ausgehend vom entspannten Zustand der Feder gemessen. Abgesehen von der Federkraft und der von außen vorgegebenen Kraft F wirkt auf den Wagen eine geschwindigkeitsproportionale Reibkraft mit dem Proportionalitätsfaktor k. Fassen Sie den Aufbau als ein System mit der Eingangsgröße u = F und der Ausgangsgröße y auf.

a) Führen Sie einen geeigneten Zustandsvektor ${\bf x}$ ein und ermitteln Sie ein Zustandsraummodell der Form

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x} + \mathbf{b}u, \qquad y = \mathbf{c}^T\mathbf{x} + du.$$

b) Ermitteln Sie die zugehörige Übertragungsfunktion

$$G(s) := \frac{y(s)}{u(s)} \bigg|_{\mathbf{x}_0 = \mathbf{0}}.$$

c) Für welche Werte des positiven reellen Parameters m und der nichtnegativen reellen Parameter c und k ist das System asymptotisch stabil? (Geben Sie eine mathematische Begründung an!)

Aufgabe 2:

Betrachten Sie folgendes lineare zeitinvariante Zustandsraummodell mit dem Zustandsvektor \mathbf{x} und der Eingangsgröße u:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x} + \mathbf{b}u = \begin{bmatrix} -2 & 3\\ 0 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 5\\ 1 \end{bmatrix} u.$$

- a) Ist das System asymptotisch stabil? (Begründen Sie Ihre Antwort!)
- b) Transformieren Sie das System mithilfe einer regulären Zustandstransformation $\mathbf{x} = \mathbf{Pz}$ auf Diagonal form

$$\frac{\mathrm{d}\mathbf{z}}{\mathrm{d}t} = \mathbf{\Lambda}\mathbf{z} + \boldsymbol{\delta}u.$$

(Geben Sie die Matrizen **P** und Λ sowie den Vektor δ als Zahlenwerte an.)

- c) Ermitteln Sie die Transitionsmatrix $\Phi(t)$ des Systems.
- d) Skizzieren Sie für folgende Anfangszustände den Verlauf der Trajektorien des freien Systems, d.h. für $u(t) \equiv 0$, in der x_1 - x_2 -Ebene (mit Angabe des Richtungssinnes für wachsende Zeiten t):

$$\mathbf{x}_0^{(1)} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}, \qquad \mathbf{x}_0^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \qquad \mathbf{x}_0^{(3)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad \mathbf{x}_0^{(4)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Hierbei muss der asymptotische Verlauf der Trajektorien $(t \to \infty)$ erkennbar sein!

e) Skizzieren Sie für die konstante Eingangsgröße $u(t) \equiv 1$ den Verlauf der Trajektorien des Systems für die Anfangszustände

$$\mathbf{x}_0^{(5)} = \begin{bmatrix} 1 & -2 \end{bmatrix}^T, \qquad \mathbf{x}_0^{(6)} = \begin{bmatrix} 2 & -1 \end{bmatrix}^T.$$

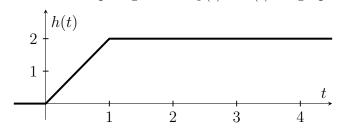
(*Hinweis:* Führen Sie eine Zustandstransformation $\mathbf{v} = \mathbf{x} + \mathbf{f}$ durch, wobei Sie den konstanten Vektor \mathbf{f} so wählen, dass $\frac{d\mathbf{v}}{dt} = \mathbf{A}\mathbf{v}$ gilt.)

Aufgabe 3:

Gegeben sei ein lineares zeitinvariantes System mit der Eingangsgröße u und der Ausgangsgröße y. Im Rahmen eines Experiments wurde als Eingangsgröße ein Einheitssprung

$$u(t) = \sigma(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$$

vorgegeben. Die resultierende Sprungantwort y(t) = h(t) ist graphisch dargestellt:



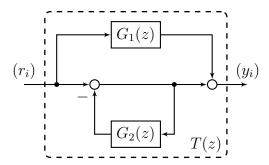
- a) Ermitteln Sie die Gewichtsfunktion g(t) und stellen Sie diese graphisch dar.
- b) Besitzt das System die BIBO-Eigenschaft? (Begründen Sie Ihre Antwort!)
- c) Es wird nun $u(t) = \sigma(t) 2\sigma(t-1)$ vorgegeben. Berechnen Sie die resultierende Ausgangsgröße y(t) und stellen Sie diese graphisch dar.
- d) Existiert ein lineares zeitinvariantes Zustandsraummodell der Form

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x} + \mathbf{b}u, \qquad y = \mathbf{c}^T\mathbf{x} + du$$

welches obige Sprungantwort aufweist? Wenn ja, geben Sie es an. (Begründen Sie Ihre Antwort!)

Aufgabe 4:

Gegeben sei folgende Zusammenschaltung zweier zeitdiskreter linearer zeitinvarianter Systeme mit den Übertragungsfunktion $G_1(z)$ und $G_2(z)$:



a) Ermitteln Sie die Übertragungsfunktion der Zusammenschaltung

$$T(z) = \frac{y(z)}{r(z)}$$

als Funktion von $G_1(z)$ und $G_2(z)$.

Für die Übertragungsfunktionen $G_1(z)$ und $G_2(z)$ gelte nun

$$G_1(z) = \frac{2}{2z+1},$$
 $G_2(z) = \frac{7}{2z+1}.$

b) Zeigen Sie, dass für die Übertragungsfunktion

$$T(z) = \frac{4z^2 + 8z + 17}{4z^2 + 18z + 8}$$

gilt.

- c) Besitzt die Übertragungsfunktion T(z) die BIBO-Eigenschaft? (Begründen Sie Ihre Antwort!)
- d) Geben Sie ein Zustandsraummodell der Form

$$\mathbf{x}_{i+1} = \mathbf{A}_{\mathrm{d}} \mathbf{x}_i + \mathbf{b}_{\mathrm{d}} r_i,$$
 $y_i = \mathbf{c}_{\mathrm{d}}^T \mathbf{x}_i + d_{\mathrm{d}} r_i$

an, welches die Übertragungsfunktion T(z) besitzt.