Schriftliche Prüfung aus Systemtechnik am 23.10.2008

NACHNAME:

Vorname(n):

Kenn-Matr.Nr.:

Bonuspunkte aus Matlab-Übung:

O Ja

O Nein

1 2 3 4
erreichbare Punkte 6 5 6 4
erreichte Punkte

Gegeben sei folgendes mathematische Modell eines Systems mit der Eingangsgröße u, dem Zustandsvektor \mathbf{x} und der Ausgangsgröße y:

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 0 & 0 & -3 \\ 0 & \alpha - 2 & 0 \\ \alpha & 0 & -(\alpha + 3) \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \mathbf{x}$$

Hierbei sei α ein reeller Parameter mit $\alpha \neq 3$.

- a) Bestimmen Sie die zu obigem mathematischen Modell gehörige Transitionsmatrix $\Phi(t)$.
- b) Berechnen Sie die zu obigem mathematischen Modell gehörige Gewichtsfunktion g(t).
- c) Ermitteln Sie den größtmöglichen Wertebereich für den Parameter α so, dass obiges mathematische Modell asymptotisch stabil ist.
- d) Bestimmen Sie den größtmöglichen Wertebereich für den Parameter α so, dass obiges System die BIBO-Eigenschaft aufweist.

Aufgabe 2:

Gegeben sei das mathematische Modell 2.Ordnung $d\mathbf{x}/dt = \mathbf{A}\mathbf{x}$. In der durch fallende Börsenkurse ausgelösten Hektik gingen leider einige Daten der Dynamikmatrix verloren:

$$\mathbf{A} = \begin{bmatrix} -1 & a_{12} \\ 0 & a_{22} \end{bmatrix}$$

Dafür kennt man einen Eigenwert $s_1 = -1$ und einen Rechts-Eigenvektor $\begin{bmatrix} 1 \\ -1 \end{bmatrix}^T$.

- a) Ermitteln Sie alle Rechts-Eigenvektoren des obigen mathematischen Modells.
- b) Bestimmen Sie a_{12} und a_{22} in Abhängigkeit des zweiten Eigenwerts s_2 .
- c) Skizzieren Sie in der Zustandsebene die Trajektorien (mit Angabe des Richtungssinnes für wachsende Zeiten t) für den Anfangszustand $\mathbf{x}_0^T = \begin{bmatrix} 0 & 3 \end{bmatrix}$, wenn für den zweiten Eigenwert s_2 gilt:

$$s_2^{(1)} = -2, s_2^{(2)} = 0, s_2^{(3)} = 1$$

(Hierbei muss der asymptotische Verlauf der Trajektorien ($t \rightarrow \infty$) erkennbar sein.)

Gegeben sei folgendes lineare, zeitinvariante, zeitdiskrete System mit der Eingangsgröße u_i , dem Zustandsvektor \mathbf{x}_i und der Ausgangsgröße y_i :

$$\mathbf{x}_{i+1} = \begin{bmatrix} -2.5 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x}_i + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u_i$$
$$y_i = \begin{bmatrix} 1 & 2 \end{bmatrix} \mathbf{x}_i$$

- a) Ist das System asymptotisch stabil? (Geben Sie eine mathematische Begründung an!)
- b) Besitzt das System die BIBO-Eigenschaft? (Geben Sie eine mathematische Begründung an!)
- c) Berechnen Sie die zugehörige Gewichtsfolge (g_i) und stellen Sie diese graphisch dar.
- d) Bestimmen Sie die Ausgangsgröße y_i des Systems, wenn der Anfangszustand $\mathbf{x}_0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ beträgt und als Eingangsgröße $u_i = 3\sigma_i$ aufgeschaltet wird.

Aufgabe 4:

Für die Übertragungsfunktionen zweier Systeme gilt:

System 1:
$$G_1(s) = \frac{y_1(s)}{u_1(s)}\Big|_{\mathbf{x}_0 = \mathbf{0}} = \frac{s+1}{s^3 + s^2 + s + 2}$$

System 2:
$$G_2(s) = \frac{y_2(s)}{u_2(s)}\Big|_{\mathbf{x}_0 = \mathbf{0}} = \frac{s+1}{s^3 + 3s^2 + s + 2}$$

- a) Geben Sie ein mögliches Zustandsraummodell für das erste System $G_1(s)$ an.
- b) Berechnen Sie $y_1(t)$ und $y_2(t)$ für hinreichend große Werte von t ($t \square 0$) für die Eingangsgröße:

$$u_1(t) = u_2(t) = 4 + 2\sin\left(t + \frac{\pi}{2}\right)$$

Schriftliche Prüfung aus Systemtechnik am 03. 02. 2009

Name / Vorname(n):

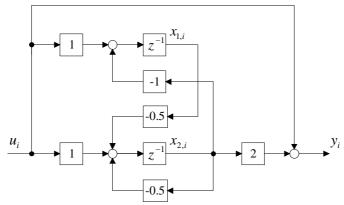
Kennzahl / Matrikel-Nummer:

Bonuspunkte aus den MATLAB-Übungen: O ja O nein

erreichbare Punkte

erreichte Punkte

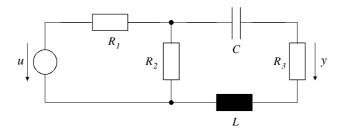
Gegeben sei das Strukturbild eines *zeitdiskreten* Systems mit der Eingangsgröße u_i und der Ausgangsgröße y_i .



- a) Geben Sie ein mathematisches Modell der Form $\mathbf{x}_{i+1} = \mathbf{A}_d \mathbf{x}_i + \mathbf{b}_d u_i$, $y_i = \mathbf{c}_d^T \mathbf{x}_i + d_d u_i$ an.
- b) Berechnen Sie die zeitdiskrete Übertragungsfunktion: $G(z) = \frac{y(z)}{u(z)}\Big|_{\mathbf{x}_0 = 0}$
- c) Ist das System asymptotisch bzw. BIBO-stabil? Geben Sie math. Begründungen an!
- d) Als Anfangszustand wird nun $\mathbf{x}_0 = \begin{bmatrix} 3 & 0 \end{bmatrix}^T$ gewählt. Wie lautet die Ausgangsgröße y_i , wenn für die Eingangsgröße $u_i \equiv 0$ gilt?

Aufgabe 2:

Betrachten Sie folgendes ideale elektrische Netzwerk bestehend aus einer Kapazität C, einer Induktivität L und drei Ohmschen Widerständen R_1 , R_2 und R_3 . Die von der Spannungsquelle gelieferte Spannung wird mit u symbolisiert. Mit y bezeichnen wir die Spannung am Widerstand R_3 . Fassen Sie das Netzwerk als ein System mit der Eingangsgröße u und der Ausgangsgröße y auf. Für die Widerstände gilt dabei $R_1 = R_2 = R_3 = R$.



- a) Führen Sie einen geeigneten Zustandsvektor \mathbf{x} ein und ermitteln Sie ein mathematisches Modell der Form $\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}u$, $y = \mathbf{c}^{\mathrm{T}}\mathbf{x} + du$.
- b) **Berechnen** (!) Sie für eine Eingangsgröße $u(t) = 2 \sigma(t)$ die Grenzwerte $\mathbf{x}_{\infty} = \lim_{t \to \infty} \mathbf{x}(t)$ und $y_{\infty} = \lim_{t \to \infty} y(t)$.

Die Übertragungsfunktion eines Systems mit der Eingangsgröße *u* und der Ausgangsgröße *y* ist gegeben durch:

$$G(s) = \frac{y(s)}{u(s)}\Big|_{\mathbf{x}_0 = 0} = \frac{-s + 6}{(s + 4)(s - 1)}$$

- a) Ermitteln Sie ein mathematisches Modell in Diagonalform: $\frac{d\mathbf{x}}{dt} = \mathbf{A} \mathbf{x} + \mathbf{b} u$, $y = \mathbf{c}^{\mathsf{T}} \mathbf{x} + d u$
- b) Bestimmen Sie die zugehörige Transitionsmatrix $\Phi(t)$.
- c) Skizzieren Sie den Verlauf der Trajektorien (mit Angabe des Richtungssinnes für wachsende Zeiten t) in der $x_1 x_2$ Ebene für folgende Anfangszustände:

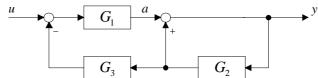
$$\mathbf{x}_0^{(1)} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}, \quad \mathbf{x}_0^{(2)} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}, \quad \mathbf{x}_0^{(3)} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}, \quad \mathbf{x}_0^{(4)} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

Hierbei muss der asymptotische Verlauf der Trajektorien $(t \to \infty)$ erkennbar sein!

d) Verändern sich die Eigenvektoren bei einer regulären Zustandstransformation? Geben Sie eine mathematische Begründung an!

Aufgabe 4:

Gegeben sei folgende Zusammenschaltung von drei Systemen $G_1(s)$, $G_2(s)$ und $G_3(s)$. Fassen Sie diese als ein Gesamtsystem T(s) mit der Eingangsgröße u und der Ausgangsgröße y auf:



Für die Übertragungsfunktionen gilt ($\alpha \ge 0$):

$$G_1(s) = \frac{1}{\left(s+2\right)} \qquad G_2(s) = \frac{s}{\left(s+\alpha\right)\left(s+1\right)} \qquad G_3(s) = \frac{-1}{s}$$

a) Zeigen Sie, dass die Übertragungsfunktion des Gesamtsystems durch

$$T(s) = \frac{y(s)}{u(s)}\Big|_{s=0} = \frac{(s+\alpha)(s+1)}{s^3 + (\alpha+2)s^2 + 3\alpha s + 2\alpha - 1}$$

gegeben ist.

- b) Ermitteln Sie den größtmöglichen Wertebereich des Parameters α , für den das Gesamtsystem T(s) die BIBO-Eigenschaft besitzt.
- c) Berechnen Sie die *eingeschwungene* Antwort der *internen* Größe a(t) $(t \gg 0)$ auf die Eingangsgröße u(t) = -2, wenn $\alpha = 4$ gilt.

Schriftliche Prüfung aus **Systemtechnik** am 13. 03. 2009

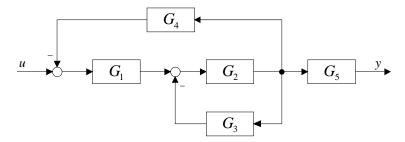
Name / Vorname(n):

Kennzahl / Matrikel-Nummer:

Bonuspunkte aus den MATLAB-Übungen:

O ja O nein

Gegeben sei folgende Zusammenschaltung von fünf Systemen mit den Übertragungsfunktionen $G_i(s)$ (i=1,2,...,5). Fassen Sie diese als ein Gesamtsystem mit der Eingangsgröße u, der Ausgangsgröße y und der Übertragungsfunktion T(s) auf:



Für die Übertragungsfunktionen gilt (α und β sind reelle Parameter, $\alpha \ge 0$):

$$G_1(s) = 4$$
 $G_2(s) = \frac{1}{s}$ $G_3(s) = \beta$ $G_4(s) = \frac{1}{s+\alpha}$ $G_5(s) = \frac{3}{s+3}$

a) Zeigen Sie, dass die Übertragungsfunktion des Gesamtsystems durch

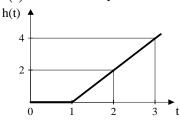
$$T(s) = \frac{y(s)}{u(s)}\bigg|_{x_0=0} = \frac{12(s+\alpha)}{\left\lceil s^2 + (\alpha+\beta)s + 4 + \alpha\beta \right\rceil (s+3)}$$

gegeben ist.

- b) Berechnen Sie den Grenzwert $\lim_{t\to\infty} y(t)$, wenn als Eingangsgröße $u(t) = 6\sigma(t)$ gewählt wird und die Parameter mit $\alpha = 1$ und $\beta = 2$ festgelegt werden.
- c) Berechnen Sie die *eingeschwungene* Antwort y(t) $(t \gg 0)$ auf die Eingangsgröße $u(t) = 6 + \cos\left(t + \frac{\pi}{2}\right)$, wenn $\alpha = 1$ und $\beta = -2$ gilt.

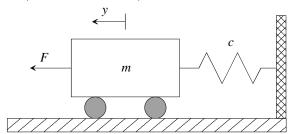
Aufgabe 2:

Gegeben sei die Sprungantwort h(t) eines LZI-Systems:



- a) Besitzt das System die BIBO-Eigenschaft? Geben Sie eine mathematische Begründung an!
- b) Berechnen Sie die Ausgangsgröße y(t), wenn als Eingangsgröße $u(t) = 4\sigma(t) 2\sigma(t-2)$ gewählt wird und $\mathbf{x}_0 = \mathbf{0}$ gilt. Stellen Sie die Funktion y(t) graphisch dar.

Betrachten Sie folgendes mechanische System mit der Masse m und einer Feder, die durch eine lineare Federkennlinie (Federkonstante c) beschrieben wird:



Die Position y der Masse wird ausgehend vom entspannten Zustand der Feder gemessen. Auf die Masse wirken zusätzlich eine äußere Kraft F und eine geschwindigkeitsproportionale Reibkraft (Reibkonstante k). Fassen Sie den mechanischen Aufbau als ein System mit der Eingangsgröße F und der Ausgangsgröße y auf.

- a) Führen Sie einen geeigneten Zustandsvektor \mathbf{x} ein und ermitteln Sie ein mathematisches Modell der Form $\frac{d\mathbf{x}}{dt} = \mathbf{A} \mathbf{x} + \mathbf{b} F$, $y = \mathbf{c}^{\mathrm{T}} \mathbf{x} + d F$.
- b) Bestimmen Sie die zugehörige Übertragungsfunktion G(s).

Aufgabe 4:

Gegeben sei ein mathematisches Modell der Form:

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} -1 \\ -3 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \mathbf{x} + 2 u$$

- a) Ist das Modell asymptotisch bzw. BIBO-stabil? Geben Sie mathematische Begründungen an!
- b) Berechnen Sie die Transitionsmatrix $\Phi(t)$.
- c) Skizzieren Sie für $u(t) \equiv 0$ den Verlauf der Trajektorien (mit Angabe des Richtungssinnes für wachsende Zeiten t) in der $x_1 x_2$ Ebene für folgende Anfangszustände:

$$\mathbf{x}_0^{(1)} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}, \quad \mathbf{x}_0^{(2)} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}, \quad \mathbf{x}_0^{(3)} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}, \quad \mathbf{x}_0^{(4)} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$$

Hierbei muss der asymptotische Verlauf der Trajektorien ($t \to \infty$) erkennbar sein!

Aufgabe 5:

Betrachten Sie das folgende zeitdiskrete LZI-System:

$$\mathbf{x}_{i+1} = \begin{bmatrix} 0.25 & 0.5 \\ -0.5 & -1 \end{bmatrix} \mathbf{x}_i + \begin{bmatrix} -1 \\ 0 \end{bmatrix} u_i \qquad y_i = \begin{bmatrix} 0 & 2 \end{bmatrix} \mathbf{x}_i$$

- a) Zeichnen Sie das dazugehörige Strukturbild.
- b) Ist das System asymptotisch bzw. BIBO-stabil? Geben Sie math. Begründungen an!
- c) Als Anfangszustand wird nun $\mathbf{x}_0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ gewählt. Wie lautet die Ausgangsgröße y_i , wenn für die Eingangsgröße $u_i = \begin{pmatrix} -0.5 \end{pmatrix}^i$ gilt?

Schriftliche Prüfung aus Systemtechnik am 19.6.2009

NACHNAME:

Vorname(n):

Kenn-Matr.Nr.:

Bonuspunkte aus Matlab-Übung:

O Ja

O Nein

1 2 3 4

erreichbare Punkte erreichte Punkte

,

6

4

Gegeben sei die Gewichtsfunktion eines linearen, zeitinvarianten Systems (für $t \ge 0$):

$$g(t) = \frac{1}{t+1}$$

- a) Besitzt das System die BIBO-Eigenschaft? (Geben Sie eine mathematische Begründung an!)
- b) Berechnen Sie die Ausgangsgröße y(t) für die Eingangsgröße $u(t) = \sigma(t) \sigma(t-1)$ und verschwindende Anfangszustände. Stellen Sie die Funktion y(t) graphisch dar.

Hinweis:

$$\int \frac{1}{x} dx = \ln |x| + c$$

Aufgabe 2:

Gegeben sei folgendes mathematische Modell eines homogenen Systems 2.Ordnung mit verschiedenen Eigenwerten, dem Zustandsvektor x und der Ausgangsgröße y:

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} a_1 & -3\\ 1 & -4 \end{bmatrix} \mathbf{x}$$
$$y = \begin{bmatrix} 1 & c_2 \end{bmatrix} \mathbf{x}$$

(a_1 und c_2 seien hierbei reelle Parameter.)

Im Labor stellte man erstaunt fest, dass bei zwei verschiedenen Anfangszuständen $\mathbf{x}(0) = \mathbf{x}_0 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ und $\mathbf{x}_0 = \begin{bmatrix} -2 & -1 \end{bmatrix}^T$ die gleiche Ausgangsfunktion $y(t) = e^{-3t}$ gemessen wurde (für $t \ge 0$).

- a) Bestimmen Sie einen nichttrivialen (also vom Nullvektor verschiedenen) Anfangszustand, mit dem für $t \ge 0$ gilt: $y(t) \equiv 0$. (*Hinweis: Das System ist linear!*)
- b) Ermitteln Sie den Wert von c_2 .
- c) Bestimmen Sie den Wert von a_1 .
- d) Berechnen Sie die zu obigem mathematischen Modell gehörige Transitionsmatrix $\Phi(t)$.
- e) Skizzieren Sie in der Zustandsebene die Trajektorien (mit Angabe des Richtungssinnes für wachsende Zeiten *t*) für folgende Anfangszustände:

$$\mathbf{x}_0^{(1)} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad \mathbf{x}_0^{(2)} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \quad \mathbf{x}_0^{(3)} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

(Hierbei muss der asymptotische Verlauf der Trajektorien ($t \to \infty$) erkennbar sein.)

Die Übertragungsfunktion eines Systems ist gegeben mit:

$$G(s) = \frac{y(s)}{u(s)}\Big|_{\mathbf{x}_0 = \mathbf{0}} = \frac{1}{2s^4 + 2s^3 + (\alpha + 2)s^2 + s + \alpha + \beta}$$

(α und β seien hierbei reelle Parameter.)

- a) Ermitteln Sie den größtmöglichen Wertebereich für die Parameter α und β , für den obiges System die BIBO-Eigenschaft besitzt. Stellen Sie diesen Bereich in der α - β -Ebene graphisch dar.
- b) Für die Parameter gelte nun $\alpha = 0.5$ und $\beta = 0$. Bestimmen Sie die eingeschwungene Antwort y(t) ($t \gg 0$) des Systems auf die Eingangsgröße:

$$u(t) = 2 + 3\sin\left(t + \frac{\pi}{2}\right)$$

Aufgabe 4:

Gegeben sei ein lineares, zeitinvariantes, zeitdiskretes System mit der Eingangsgröße u_i , der Ausgangsgröße y_i und der Gewichtsfolge g_i :

$$g_{i} = \begin{cases} 1 & i = 0 \\ (-2)^{i-1} - (-1)^{i-1} & i \ge 1 \end{cases}$$

- a) Bestimmen Sie die Übertragungsfunktion $G(z) = \frac{y(z)}{u(z)}\Big|_{\mathbf{x}_0 = \mathbf{0}}$ des Systems.
- b) Besitzt das System die BIBO-Eigenschaft? (Begründen Sie Ihre Antwort!)
- c) Ermitteln Sie ein mathematisches Modell der Form

$$\mathbf{x}_{i+1} = \mathbf{A}_d \mathbf{x}_i + \mathbf{b}_d u_i \qquad \qquad y_i = \mathbf{c}_d^T \mathbf{x}_i + d_d u_i$$

und zeichnen Sie das zugehörige Strukturbild.