Schriftliche Prüfung aus **Signaltransformationen**Teil: Dourdoumas am 13.10.2022

Name / Vorname(n):

Matrikel-Nummer:

1 2 3
erreichbare Punkte 5 2,5 2,5
erreichte Punkte

Gegeben seien die gekoppelten Differentialgleichungen

$$\frac{\mathrm{d}x_1}{\mathrm{d}t} - x_2 = 0$$

$$\frac{\mathrm{d}x_2}{\mathrm{d}t} + 2x_2 + x_1 = 4u$$

mit den Anfangswerten $x_1(0)$, $x_2(0)$ und der Eingangsfunktion u(t).

- a) Bestimmen Sie auf *mathematisch nachvollziehbare Weise* die Laplace-Transformierten $\bar{x}_1(s)$ und $\bar{x}_2(s)$ in Abhängigkeit der Anfangswerte $x_1(0)$ und $x_2(0)$ sowie der Laplace-Transformierten $\bar{u}(s)$.
- b) Als Eingangsfunktion dient nun $u(t) = K(\sigma(t) e^{-3t})$ mit der reellen Konstante K und der Sprungfunktion $\sigma(t)$. Wählen Sie K durch Anwendung des Endwertsatzes so, sodass $\lim_{t\to\infty} x_1(t) = 2$ gilt. Begründen Sie, warum dieser Grenzwert existiert!
- c) Ermitteln Sie für $x_1(0) = x_2(0) = 0$ durch Anwendung der Laplace-Transformation die Lösung $x_1(t)$.

Aufgabe 2:

Die z-Transformierte der Folge (f) sei gegeben als

$$\bar{f}(z) = \frac{3az^3}{bz^5(z^2 - (c+1)z + c)},$$

mit reellen Konstanten $a \neq 0$, $b \neq 0$ und c. Ermitteln Sie *notwendige und hinreichende* Bedingungen für die Existenz des Grenzwertes $f_{\infty} = \lim_{i \to \infty} f_i$ und berechnen Sie diesen.

Aufgabe 3:

Gegeben sei die lineare Rekursionsgleichung

$$x_{i+1} = 0.5x_i + \sigma_{i-3}$$
 $i = 0, 1, 2, ...$

Hierbei ist σ_i die diskrete Sprungfunktion.

- a) Ermitteln Sie auf *mathematisch nachvollziehbare Weise* die Lösung x_i in Abhängigkeit des Anfangswertes x_0 mithilfe der z-Transformation.
- b) Berechnen Sie den Grenzwert $x_{\infty} = \lim_{i \to \infty} x_i$, falls dieser existiert. Begründen Sie ihre Antwort!

_

Schriftliche Prüfung in SIGNALTRANSFORMATIONEN am 13. Dezember 2022

Teil: "Dourdoumas"

Name / Vorname(n):

Kennzahl / Matrikel-Nummer:

1 2 3 4

erreichbare Punkte 3 2 2 3

erreichte Punkte

BEGRÜNDEN SIE IHRE ANTWORTEN

AUFGABE 1:

Gegeben sei die Differentialgleichung

$$\frac{dx}{dt} = -2x + u$$

mit dem Anfangswert x(0) = 2 und $u(t) = \sigma(t-1)e^{t-1}$. Hierbei ist $\sigma(t)$ die Sprungfunktion.

- a) Ermitteln Sie die LAPLACE-Transformierte $\overline{x}(s)$ und daraus die Lösung x(t) in mathematisch nachvollziehbarer Weise.
- b) Ermitteln Sie die stationäre Lösung $x_{st}(t)$, falls diese existiert. Begründen Sie Ihre Antwort.

AUFGABE 2:

Betrachten Sie die Rekursionsgleichung

$$x_{i+1} = 2x_i - 3\sigma_i$$
 $i = 0, 1, 2, ...$

mit dem Anfangswert $x_0 = 2$ und der diskreten Sprungfunktion σ_i . Ermitteln Sie durch Anwendung der z-Transformation den Wert x_6 .

AUFGABE 3:

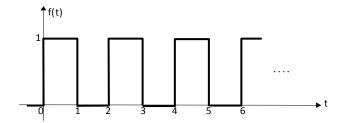
Gegeben sei die z-Transformierte der Folge (f):

$$\overline{f}(z) = \frac{z^4 - 81}{z^4 - 3z^3}$$

- a) Ermitteln Sie die Folge (f) in mathematisch nachvollziehbarer Weise.
- b) Skizzieren Sie die Werte f_i der Folge (f) für $0 \le i \le 11$.

AUFGABE 4:

Betrachten Sie die Funktion f(t) gemäß nachfolgender Abbildung.



Ermitteln Sie in *mathematisch nachvollziehbarer Weise* die LAPLACE-Transformierte der Funktion $g(t) := \sigma(t-1) f(t-1)$.

Schriftliche Prüfung aus **Signaltransformationen**Teil: Dourdoumas am 17.01.2022

Name / Vorname(n):

Matrikel-Nummer:

Gegeben seien die gekoppelten Differentialgleichungen

$$\frac{\mathrm{d}x_1}{\mathrm{d}t} = x_2$$
$$\frac{\mathrm{d}x_2}{\mathrm{d}t} = u$$

mit den Anfangswerten $x_1(0) = 0$, $x_2(0) = 0$ und der Eingangsfunktion $u(t) = \sin^2(t)$.

- a) Bestimmen Sie auf *mathematisch nachvollziehbare Weise* die Laplace-Transformierte der Eingangsgröße $\bar{u}(s)$.
- b) Bestimmen Sie auf *mathematisch nachvollziehbare Weise* die LAPLACE-Transformierten $\bar{x}_1(s)$ und $\bar{x}_2(s)$.
- c) Ermitteln Sie durch Anwendung des Grenzwertsatzes den Grenzwert $\lim_{t\to\infty} x_1(t)$, falls dieser existiert. Begründen Sie Ihre Antwort.
- d) Ermitteln Sie mit Hilfe der Laplace-Transformation die Originalfunktion $x_1(t)$.

Aufgabe 2:

Gegeben sei die lineare Rekursionsgleichung

$$x_{i+1} = 0.25x_i + u_i$$
 $i = 0, 1, 2, ...$

mit dem Anfangswert x_0 und der Eingangsgröße $u_i = (-0.5)^i$.

- a) Stellen Sie die Folge u_i für i = 0, 1, 2, 3 graphisch dar.
- b) Ermitteln Sie auf *mathematisch nachvollziehbare Weise* die Lösung x_i in Abhängigkeit des Anfangswertes x_0 mithilfe der z-Transformation.
- c) Berechnen Sie den Grenzwert $\lim_{i\to\infty} x_i$, falls dieser existiert. Begründen Sie ihre Antwort!
- d) Nun seien der Anfangszustand $x_0 = 0$ und die Eingangsgröße $u_i = 3(-0.5)^{i-2}\sigma_{i-2}$, wobei σ_i die diskrete Sprungfunktion ist. Ermitteln Sie die Lösung x_i für diese Wahl des Anfangszustandes und der Eingangsgröße.

Aufgabe 3:

Wodurch unterscheidet sich die stationäre Lösung einer skalaren linearen Differentialgleichung mit konstanten Koeffizienten vom Endwert der Lösung für $t \to \infty$? Diskutieren Sie kurz die Unterschiede.

Schriftliche Prüfung aus **Signaltransformationen**Teil: IRT am 29.03.2023

Name / Vorname(n):

Matrikel-Nummer:

Gegeben seien die gekoppelten Differentialgleichungen

$$\frac{\mathrm{d}x_1}{\mathrm{d}t} - x_2 = -2x_1$$

$$\frac{\mathrm{d}x_2}{\mathrm{d}t} + x_1 = u$$

mit den Anfangswerten $x_1(0)$, $x_2(0)$ und der Eingangsfunktion u(t).

- a) Bestimmen Sie auf *mathematisch nachvollziehbare Weise* die Laplace-Transformierten $\bar{x}_1(s)$ und $\bar{x}_2(s)$ in Abhängigkeit der Anfangswerte $x_1(0)$ und $x_2(0)$ sowie der Laplace-Transformierten $\bar{u}(s)$.
- b) Als Eingangsfunktion dient nun $u(t) = t\sigma(t)$ mit der Sprungfunktion $\sigma(t)$. Ermitteln Sie für $x_1(0) = x_2(0) = 0$ die Lösung $x_1(t)$ durch Anwendung der Laplace-Transformation.

Aufgabe 2:

a) Ermitteln Sie auf *mathematisch nachvollziehbare Weise* die Originalfunktion x(t) der Laplace-Transformierten

$$\bar{x}(s) = \frac{5}{s(s^2 + 2s + 5)}.$$

- b) Bestimmen Sie die stationäre Lösung $x_{st}(t)$, sofern diese existiert. Begründen Sie Ihre Antwort!
- c) Bestimmen Sie den Grenzwert $x_{\infty} = \lim_{t \to \infty} x(t)$, sofern dieser existiert. Begründen Sie Ihre Antwort!

Aufgabe 3:

Gegeben sei die z-Transformierte $\bar{f}(z)$ der Folge (f):

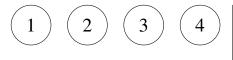
$$\bar{f}(z) = \frac{z}{(-2z^2 + a_1z + a_0)(z-1)},$$

mit den reellen Konstanten a_0 und a_1 . Geben Sie notwendige und hinreichende Bedingungen für a_0 und a_1 an, so dass der Grenzwert $f_{\infty} := \lim_{i \to \infty} f_i$ existiert und bestimmen Sie diesen.

Schriftliche Prüfung aus **Signaltransformationen**Teil: IRT am 10.5.2023

Name / Vorname(n):

Matrikel-Nummer:



erreichbare Punkte

1,5

3,5

erreichte Punkte

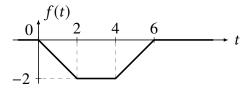
Gegeben sei die Laplace-Transformierte

$$\bar{x}(s) = \frac{x_0}{s+1} + \frac{1}{2} \frac{s}{(s+1)(s^2+1)}$$
.

- a) Ermitteln Sie mathematisch nachvollziehbar die zugehörige Originalfunktion x(t).
- b) Bestimmen Sie die stationäre Lösung $x_{st}(t)$.
- c) Wählen Sie nun x_0 so, daß $x(t) \equiv x_{st}(t)$ für alle $t \ge 0$.

Aufgabe 2:

Bestimmen Sie die Laplace-Tranformierte $\bar{f}(s)$ der nachfolgend dargestellten Funktion f(t).



Aufgabe 3:

Gegeben sei die Differentialgleichung

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -4x + u\,,$$

mit dem Anfangswert $x(t = 0) = x_0$ und der Eingangsfunktion $u(t) = ye^{-\alpha t}$ (y, \alpha konstant).

- a) Ermitteln Sie auf *mathematisch nachvollziehbare Weise* die zugehörige LAPLACE-Transformierte $\bar{x}(s)$.
- b) Ermitteln Sie ausgehend von $\bar{x}(s)$ die Lösung x(t) (*Hinweis*: Unterscheiden Sie die Fälle $\alpha \neq 4$ und $\alpha = 4$).
- c) Stellen Sie den Verlauf von x(t) für $\alpha = 4$, $\gamma = -2$, $x_0 = 0$ graphisch dar (qualitativ).

Aufgabe 4:

a) Zeigen Sie auf *mathematisch nachvollziehbare Weise*, daß die *z*-Transformierte der Folge (f) mit den Elementen $f_i = -i + \frac{1}{3}i^2$ (mit i = 0, 1, 2, ...) gegeben ist durch

$$\bar{f}(z) = -\frac{2}{3} \frac{z(z-2)}{(z-1)^3}$$
.

b) Ermitteln Sie den Grenzwert $f_{\infty} := \lim_{i \to \infty} f_i$, so dieser existiert. Begründen Sie Ihre Antwort mithilfe des Grenzwertsatzes der z-Transformation!

Schriftliche Prüfung aus **Signaltransformationen**Teil: IRT am 06.07.2023

Name / Vorname(n):

Matrikel-Nummer:

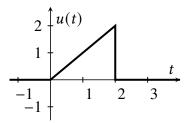
Bestimmen Sie für die unten angegebenen Laplace-Transformierten $\bar{f}_1(s)$ und $\bar{f}_2(s)$ auf mathematisch nachvollziehbare Weise die Grenzwerte der jeweiligen Originalfunktionen für $t \to \infty$, d.h. $\lim_{t \to \infty} f(t)$, falls diese existieren.

a)
$$\bar{f}_1(s) = \frac{s-2}{s^3 - 2s - 4}$$
.

b)
$$\bar{f}_2(s) = \frac{1}{s^4 - 3s + 1}$$
.

Aufgabe 2:

Ermitteln Sie die Laplace-Transformierte $\bar{u}(s)$ der graphisch gegebenen Funktion u(t):



Aufgabe 3:

Gegeben sei die Differenzengleichung (rekursive Relation)

$$x_{i+1} + ax_i = u_i$$
, $i = 0, 1, 2, ...$

mit $u_i = \sigma_i + b^i$. Hierbei bezeichnet σ_i die diskrete Sprungfunktion; a und b sind reelle Konstanten. Bestimmen Sie auf mathematisch nachvollziehbare Weise

- a) die z-Transformierte $\tilde{u}(z)$ der Eingangsfolge (u) mit den Elementen u_i ,
- b) die z-Transformierte $\tilde{x}(z)$ der Folge (x) mit den Elementen x_i .

Es sei nun b = 1 und $x_0 = 0$.

- c) Bestimmen Sie auf *mathematisch nachvollziehbare Weise* die Lösung x_i unter Anwendung der z-Transformation.
- d) Geben Sie *notwendige und hinreichende* Bedingungen für a an, sodass der Grenzwert $\lim_{i\to\infty} x_i$ existiert und berechnen Sie diesen.

Aufgabe 4:

Gegeben sei folgende Differentialgleichung zweiter Ordnung

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 4\frac{\mathrm{d}y}{\mathrm{d}t} + 3y = 0,$$

mit den Anfangswerten y(0) = 0 und $\frac{dy}{dt}(0) = 4$. Berechnen Sie die Lösung y(t) mit Hilfe der Laplace Transformation.