Schriftliche Prüfung aus **Signaltransformationen**Teil: Dourdoumas am 28. Oktober 2021

Name / Vorname(n):

Kennzahl / Matrikel-Nummer:

(1) (2)

erreichbare Punkte 5 5

BEGRÜNDEN SIE IHRE ANTWORTEN!

AUFGABE 1

Betrachten Sie die Differentialgleichungen

$$\begin{pmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 1+\alpha & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \end{pmatrix} u$$

mit dem reellen Parameter α , den Anfangswerten $x_1(0)$, $x_2(0)$ und der Eingangsfunktion u(t).

- Bestimmen Sie in mathematisch nachvollziehbarer Weise die LAPLACE-Transformierte $\overline{x}_1(s)$ und $\overline{x}_2(s)$ in Abhängigkeit des Parameters α , der Anfangswerte $x_1(0)$ und $x_2(0)$ sowie der LAPLACE-Transformierten $\overline{u}(s)$.
- Für die Anfangswerte gilt nun $x_1(0) = x_2(0) = 0$ und der Parameter α beträgt $\alpha = 1$. Als Eingangsfunktion u(t) dient die Funktion $u(t) = \cos^2(0.5t)$. Ermitteln Sie mit Hilfe der LAPLACE-Transformation in *mathematisch nachvollziehbarer Weise* die zugehörige Lösung $x_1(t)$ sowie die stationäre Lösung $x_1(t)$, *falls* diese existiert.

AUFGABE 2

Betrachten Sie die Folgen (f) bzw. (h) mit den Elementen f_i bzw. h_i und den zugehörigen z-Transformierten

$$\overline{f}(z) = \frac{1+z^5}{z^4+z^5}$$
 bzw. $\overline{h}(z) = \frac{-1+z^5}{-z^4+z^5}$.

- Welche Beziehung besteht zwischen den Elementen der Folgen (f) und (h)? Ermitteln Sie in mathematisch nachvollziehbarer Weise die Originalfolgen (f) und (h).
- Ermitteln Sie die z-Transformierte der Folge (g) = (f) (h) mit den Elementen g_i .
- Skizzieren Sie die Folge (g) für $0 \le i \le 9$.
- Ermitteln Sie durch Anwendung des Endwertsatzes der z-Transformation die Grenzwerte $f_{\infty} \coloneqq \lim_{i \to \infty} f_i$ und $h_{\infty} \coloneqq \lim_{i \to \infty} h_i$, falls diese existieren.

Schriftliche Prüfung in **Signaltransformationen** (Teil: Dourdoumas) am 2. Dezember 2021

Name / Vorname(n):

Kennzahl / Matrikel-Nummer:

1 2 3

erreichbare Punkte

3

BEGRÜNDEN SIE IHRE ANTWORTEN!

Aufgabe 1:

Gegeben ist die Funktion $f(t) = e^{-3t} \sin(t - \frac{\pi}{3})$.

- a) Bestimmen Sie in mathematisch nachvollziehbarer Weise die LAPLACE-Transformierte $\overline{f}(s)$.
- b) Die Funktion g(t) wird durch zweimalige Differentiation der Funktion f(t) nach dem Argument t gebildet: $g(t) = \frac{d^2 f}{dt^2}$. Bestimmen Sie in mathematisch nachvollziehbarer Weise die zugehörige LAPLACE-Transformierte $\overline{g}(s)$.

Aufgabe 2:

Gegeben ist die z-Transformierte $\overline{f}(z)$ der Folge (f) mit den Elementen f_i (i = 0,1,2,...):

$$\overline{f}(z) = \frac{-z^2 + 3z}{(z-1)^3}$$

- 1. Ermitteln Sie in *mathematisch nachvollziehbarer* Weise die Folge (f). <u>Hinweis</u>: Betrachten Sie Folgen der Form $h_i = i^m \cdot d_i$ mit m = 0, 1, 2, ... und i = 0, 1, 2, ...
- 2. Ermitteln Sie in mathematisch nachvollziehbarer Weise die z-Transformierte der Folge (g) mit den Elementen $g_i = (0.35)^i \cdot f_i$ mit (i = 0,1,2,...) und berechnen Sie mit Hilfe des Grenzwertsatzes der z-Transformation den Grenzwert $g_{\infty} := \lim_{i \to \infty} g_i$, falls dieser existiert.

Aufgabe 3:

Gegeben sei die LAPLACE-Transformierte

$$\overline{f}(s) = \frac{s^2 + (4 - \beta)s + 4(1 - \beta)}{\beta(s^3 + 4s^2 + 4s)}$$

einer Funktion f(t). Hierbei ist β ein reeller Parameter.

- 1. Ermitteln Sie in *mathematisch nachvollziehbarer* Weise mit Hilfe des Grenzwertsatzes der LAPLACE-Transformation den Grenzwert $\lim_{t\to\infty} f(t)$, *falls* dieser existiert.
- 2. Legen Sie den Parameter β fest, so dass $\lim_{t\to\infty} f(t) = 2$ gilt und ermitteln Sie in mathematisch nachvollziehbarer Weise die Originalfunktion f(t).

Schriftliche Prüfung aus **Signaltransformationen**Teil: Dourdoumas am 3.2.2022

Name / Vorname(n):

Kennzahl / Matrikel-Nummer:

 $\bigcirc 1 \bigcirc 2 \bigcirc 3$

erreichbare Punkte 4 2

BEGRÜNDEN SIE IHRE ANTWORTEN

AUFGABE 1

Betrachten Sie die lineare Rekursionsgleichung

$$x_{i+2} - 0.5x_{i+1} - 0.5x_i = u_i$$
 (*i* = 0,1,2,...)

mit den Anfangswerten x_0 und x_1 sowie $u_i = (0.5 + Ki)2^{-i}$. Hierbei ist K eine Konstante. Ermitteln Sie in *mathematisch nachvollziehbarer Weise*

- a) die z-Transformierte $\bar{x}(z)$ in Abhängigkeit von x_0 , x_1 und K.
- b) die Lösung x_i ausgehend von der z-Transformierten $\bar{x}(z)$ für die Werte $K=0, x_0=1$ und $x_1=1$ sowie
- c) den Grenzwert $x_{\infty} := \lim_{i \to \infty} x_i$ falls dieser existiert.

AUFGABE 2

Gegeben sei die z-Transformierte $\bar{f}(z)$ einer Folge (f) mit den Elementen f_i :

$$\bar{f}(z) = \frac{z}{5[3z^2 + az + b][z^2 - 1.6z + 0.6]}$$

Hierbei sind a und b reelle Konstanten.

Ermitteln Sie in *mathematisch nachvollziehbarer Weise* notwendige *und* hinreichende Bedingungen für die Konstanten a und b, damit der Grenzwert $f_{\infty} := \lim_{i \to \infty} f_i$ existiert und berechnen Sie diesen.

AUFGABE 3

Betrachten Sie die lineare Differentialgleichung

$$\frac{dx}{dt} = -3x + u$$

mit dem Anfangswert $x(t = 0) = x_0$ und der Eingangsfunktion $u(t) = \sigma(t - 3)(t - 3)e^{2(t - 3)}$. Hierbei wird mit $\sigma(t)$ die Sprungfunktion symbolisiert.

Ermitteln Sie mit Hilfe der LAPLACE-Transformation in mathematisch nachvollziehbarer Weise

- a) die LAPLACE Transformierte $\bar{x}(s)$ der Lösung x(t),
- b) die Lösung x(t) sowie
- c) die stationäre Lösung falls diese existiert.

Schriftliche Prüfung in **Signaltransformationen**Teil: "Dourdoumas" am 23.3.2022

Name / Vorname(n):

Kennzahl / Matrikel-Nummer:

1 2 3

erreichbare Punkte 5 3

!! Begründen Sie Ihre Antworten mathematisch !!

AUFGABE 1: Gegeben ist ein System von Differentialgleichungen:

$$\frac{dx_1}{dt} = -x_2 - 3x_1 - 2u$$
$$\frac{dx_2}{dt} = 2x_1$$

mit den Anfangswerten $x_1(0)$, $x_2(0)$ und der Eingangsgröße $u(t) = \sigma(t-3)(0,6+e^{-t+3})$. Hierbei symbolisiert $\sigma(t)$ die Sprungfunktion.

- a) Stellen Sie die Funktion u(t) graphisch dar.
- b) Ermitteln Sie die LAPLACE-Transformierten $\overline{x}_1(s)$ und $\overline{x}_2(s)$.
- c) Bestimmen Sie mit Hilfe des Grenzwertsatzes der LAPLACE-Transformation die Grenzwerte $\lim_{t\to\infty} x_1(t)$ und $\lim_{t\to\infty} x_2(t)$, sofern diese existieren. Geben Sie eine mathematische Begründung für Ihre Antwort an!
- d) Ermitteln Sie im Fall verschwindender Anfangswerte $x_1(0) = x_2(0) = 0$ durch Anwendung der LAPLACE-Transformation die Originalfunktion $x_1(t)$.

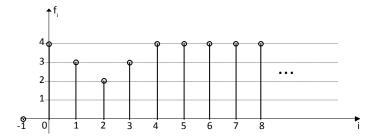
AUFGABE 2: Betrachten Sie die Rekursionsgleichung

$$x_{i+1} = 0.7x_i + 2u_i$$
 ($i = 0,1,2,...$)

mit dem Anfangswert $x_0 = 2$ und der Eingangsgröße $u_i = (-0.3)^{-i}$.

- a) Ermitteln Sie durch Anwendung der z-Transformation die Lösung x_i .
- b) Berechnen Sie mit Hilfe des Grenzwertsatzes der z-Transformation den Grenzwert $\lim_{i\to\infty} x_i$, sofern dieser existiert. Begründen Sie Ihre Antwort mathematisch.

AUFGABE 3: Betrachten Sie eine Folge (f) mit Elementen f_i gemäß nachfolgender Abbildung



Beweisen Sie, dass die z-Transformierte $\overline{f}(z)$ der Folge (f) durch

$$\overline{f}(z) = \frac{1+z-z^2-z^3+4z^4}{-z^3+z^4}$$

gegeben ist.

Schriftliche Prüfung aus **Signaltransformationen**Teil: Dourdoumas am 27.4.2022

Name / Vorname(n):

Kennzahl / Matrikel-Nummer:

10 Graz, mistrat für Regelungs- und Automatisferungsteelink

!!! BEGRÜNDEN SIE IHRE ANTWORTEN !!!

Aufgabe 1:

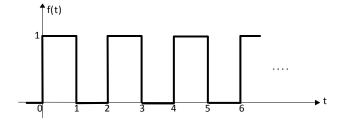
Gegeben sei die Rekursionsgleichung

$$x_{i+1} = 2x_i - 5\sigma_{i-2}$$
 $i = 0, 1, 2, ...$

mit dem Anfangswert x_0 und der diskreten Sprungfunktion σ_i . Ermitteln Sie durch Anwendung der z-Transformation die zugehörige Lösung x_i .

Aufgabe 2:

Betrachten Sie eine Funktion f(t) gemäß nachfolgender Abbildung



- a) Ermitteln Sie in *mathematisch nachvollziehbarer Weise* die LAPLACE-Transformierte der Funktion g(t) := f(2t).
- b) Ermitteln Sie den Grenzwert $\lim_{t\to\infty}g(t)$, falls dieser existiert. Begründen Sie Ihre Antwort!

Aufgabe 3:

Gegeben sei die z-Transformierte einer Folge (f):

$$\overline{f}(z) = \frac{162 - 2z^4}{3z^4 - z^5} + 1$$

- a) Berechnen Sie in *mathematisch nachvollziehbarer Weise* die Folge (f).
- b) Skizzieren Sie die Elemente f_i der Folge (f) für $0 \le i \le 10$.

Aufgabe 4:

Betrachten Sie die Differentialgleichung

$$\frac{dx}{dt} = -\alpha x + u$$

mit dem Anfangswert $x(t=0) = x_0$ und der Eingangsfunktion $u(t) = \sigma(t-2)e^{t-2}$. Hierbei ist α ist eine positive Konstante, $\sigma(t)$ symbolisiert die Sprungfunktion.

- a) Skizieren Sie die Funktion u(t).
- b) Ermitteln Sie in mathematisch nachvollziehbarer Weise die LAPLACE Transformierte $\overline{x}(s)$.
- c) Ermitteln Sie daraus in mathematisch nachvollziehbarer Weise die Lösung x(t) sowie die stationäre Lösung $x_{st}(t)$, falls diese existiert.

Schriftliche Prüfung in "**Signaltransformationen"** Teil: Dourdoumas am 7. Juli 2022

Name / Vorname(n):				
Kennzahl / Matrikel-Nummer:				
AUFGABE	1	2	3	
Erreichbare Punkte	4	4	2	
Erreichte Punkte				

BEGRÜNDEN SIE MATHEMATISCH IHRE ANTWORTEN!

Aufgabe 1 (4 Punkte):

Gegeben sei folgendes System von Differentialgleichungen

$$\frac{dx_1}{dt} = 4x_1 + 4x_2 + 2u$$
$$\frac{dx_2}{dt} = x_1 + x_2$$

mit den Anfangswerten $x_1(0) = 0$, $x_2(0) = 1$ und der Eingangsfunktion $u(t) = e^{5t}$.

- a) Bestimmen Sie die zugehörigen LAPLACE-Transformierten $\overline{x}_1(s)$ sowie $\overline{x}_2(s)$ und ermitteln Sie daraus die Originalfunktion $x_2(t)$.
- b) Bestimmen Sie die Grenzwert $\lim_{t\to\infty} x_2(t)$, falls dieser existiert.

Aufgabe 2 (4 Punkte):

Gegeben sei die lineare Rekursionsgleichung

$$x_{i+1} = 3x_i - u_i$$
 ($i = 0, 1, 2, ...$)

mit dem Anfangswert $x_0 = 1$ und der Eingangsgröße $u_i = \sin^2(i\frac{\pi}{2})$.

- a) Bestimmen Sie in *mathematisch nachvollziehbarer* Weise die z-Transformierte $\overline{x}(z)$ der Folge (x) und ermitteln Sie daraus die Lösung x_i .
- b) Wie lautet die Lösung x_i für den Fall $x_0 = 1$ und $u_i = \sigma_{i-2} \cdot \sin^2\left(i\frac{\pi}{2} \pi\right)$? Hierbei ist σ_i die diskrete Sprungfunktion. (<u>Hinweis</u>: Zur Beantwortung dieser Frage sind keine längere Rechnungen nötig)

Aufgabe 3 (2 Punkte):

Bestimmen Sie in mathematisch nachvollziehbarer Weise für die z-Transformierten

$$\overline{f}(z) = \frac{2z+2}{2z^3 - z^2 - z}$$
 bzw. $\overline{g}(z) = \frac{1+z^2 + 2z}{(z-1)(z^2 + 1.5z + 0.5)}$

jeweils den Grenzwert der Originalfolge

$$\lim_{i\to\infty} f_i \quad \text{bzw.} \quad \lim_{i\to\infty} g_i,$$

falls dieser existiert.