Schriftliche Prüfung aus **Signaltransformationen**Teil: Dourdoumas am 13. 11. 2009

Name / Vorname(n):

Kennzahl / Matrikel-Nummer:

1 2 3

erreichbare Punkte

4

Überprüfen Sie die Richtigkeit folgender Relation mittels der LAPLACE-Transformation:

$$\frac{d}{dt}\left(A\sin(\omega t) + Be^{-\alpha t}\right) \equiv \omega A\cos(\omega t) - \alpha Be^{-\alpha t}.$$

Aufgabe 2:

Gegeben sei die Differentialgleichung

$$\frac{dx}{dt} = -2x + u$$

mit dem Anfangswert $x(t=0) = \frac{3}{8}$ und der Eingangsgröße $u(t) = \cos^2 t$.

a) Zeigen Sie, dass die LAPLACE – Transformierte der $station \ddot{a}ren$ Lösung $x_{stat}(t)$ durch

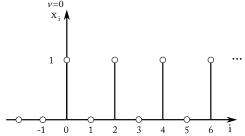
$$X(s) = \frac{1}{8} \left(\frac{s}{(s^2 + 4)} + \frac{2}{(s^2 + 4)} \right) + \frac{1}{4s}$$

gegeben ist.

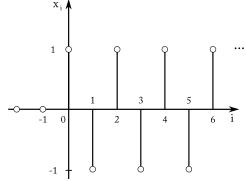
b) Ermitteln Sie die *stationäre* Lösung $x_{stat}(t)$.

Aufgabe 3:

Gegeben sei das folgende Signal $x_i = \sum_{v=0}^{\infty} \delta_{i-vk}$ mit k=2:



- a) Berechnen Sie auf mathematisch nachvollziehbare Weise die zugehörige z-Transformierte.
- b) Ermitteln Sie die z-Transformierte für Signale der Form $x_i = \sum_{\nu=0}^{\infty} \delta_{i-\nu k}$. Hierbei sei k eine beliebige nichtnegative ganze Zahl.
- c) Stellen Sie folgendes Signal als Überlagerung obiger Signale im z-Bereich dar.



Schriftliche Prüfung aus **Signaltransformationen**Teil: Dourdoumas am 17. 12. 2009

Name / Vorname(n):

Kennzahl / Matrikel-Nummer:

erreichbare Punkte 4 5

Die Position x_i eines simplen Roboters genüge der folgenden rekursiven Relation:

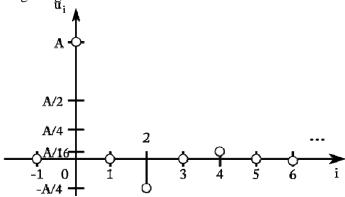
$$x_{i+1} = x_i + u_i, \quad i = 0, 1, \dots$$

Das Steuersignal u_i besitzt die Form

$$u_i = \alpha^i A \cos(i\varphi) .$$

Hierbei sind α , A und φ reelle Parameter.

Das Signal wurde wie folgt aufgezeichnet:



- a) Entnehmen Sie der Skizze die Werte der Parameter α und φ .
- b) Ermitteln Sie die z-Transformierte U(z) des Steuersignals.
- c) Zeigen Sie, dass die z-Transformierte der Position x_i durch

$$X(z) = A \frac{z^2}{(z-1)(z^2 + \alpha^2)}$$

gegeben ist, wenn die Anfangsposition $x_0 = 0$ ist.

d) Der Roboter erreichte nach hinreichend langer Zeit die Position $\lim_{i\to\infty} x_i = 10$. Bestimmen Sie mit Hilfe des Grenzwertsatzes der z-Transformation den Wert von A.

Aufgabe 2:

a) Bestimmen Sie die LAPLACE-Inverse x(t) von

$$X(s) = \frac{7s^2 + 5\alpha s + 18}{(s + \alpha)(s^2 + 9)}$$

- b) Berechnen Sie die stationären Lösungen $x_{stat}(t)$ in Abhängigkeit vom reellen Parameter α .
- c) Es sei nun folgende Funktion $x_2(t)$ gegeben:

$$x_2(t) = 2e^{-\alpha(t-\tau)} + 5\cos(3(t-\tau)),$$

wobei τ ein reeller Parameter ist. Ermitteln Sie die zugehörige LAPLACE-Transformierte.

d) Der Student D. weiß, dass der Grenzwert

$$\lim_{t\to\infty}t^ne^{-\alpha t}, \qquad \alpha>0, n=1,2$$

existiert, aber er kann ihn nicht berechnen. Ermitteln Sie für die beiden Fälle n = 1 und n = 2 den jeweiligen Grenzwert mit Hilfe der LAPLACE-Transformation.

Schriftliche Prüfung aus **Signaltransformationen**Teil: Dourdoumas am 28. 01. 2010

Name / Vorname(n):

Kennzahl / Matrikel-Nummer:

 $\bigcirc 1 \bigcirc 2$

erreichbare Punkte 6 6

Die Dynamik eines Luftkissenfahrzeuges wird durch folgende Differentialgleichungen beschrieben:

$$\frac{dx_1}{dt} = x_2, x_1(t=0) =: x_{1,0}$$

$$\frac{dx_2}{dt} = u, x_2(t=0) =: x_{2,0}$$

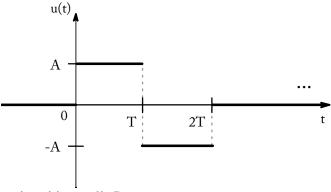
$$\frac{dx_2}{dt} = u,$$
 $x_2(t=0) =: x_{2,0}$

Dabei symbolisiert x_1 die Position des Luftkissenfahrzeuges und x_2 dessen Geschwindigkeit. Als uwird die auf das Fahrzeug wirkende Beschleunigung bezeichnet.

a) Bestimmen Sie die LAPLACE-Transformierten $X_1(s)$ und $X_2(s)$ von $x_1(t)$ bzw. $x_2(t)$ in Abhängigkeit von U(s), der LAPLACE-Transformierten von u(t).

Das Luftkissenfahrzeug befindet sich zum Zeitpunkt t = 0 an der Stelle $x_{1,0} = 0$ und in Ruhe, also $x_{2.0} = 0$.

Die Beschleunigung u(t) entspreche nun einer stückweise konstanten Funktion der folgenden Form:



Hierbei seien A und T zwei positive reelle Parameter.

b) Bestimmen Sie die LAPLACE-Transformierte U(s). Zeigen Sie, dass die LAPLACE-Transformierte $X_1(s)$ als

$$X_1(s) = A \frac{\left(1 - e^{-sT}\right)^2}{s^3}$$

angeschrieben werden kann.

c) Berechnen Sie mit Hilfe des Grenzwertsatzes der LAPLACE-Transformation die konstante Endposition $x_{1,\infty}$ mit

$$x_{1,\infty} := \lim_{t \to \infty} x_1(t) .$$

Hinweis: Benützen Sie die Regel von de l'Hôpital.

Aufgabe 2:

a) Zeigen Sie mit Hilfe der Formel von EULER, dass die z-Transformierte des Signals

$$x_i = a^i \cos\left(\frac{i\pi}{2}\right), \qquad i = 0, 1, 2, \dots$$

durch

$$X(z) = \frac{z^2}{z^2 + a^2}$$

gegeben ist ist. Hierbei sei a ein beliebiger reeller Parameter.

b) Gegeben sei nun die z-Transformierte

$$X(z) = \frac{z^2 + 2z}{(z - 0.5)(z^2 + 1)}.$$

Berechnen Sie die zugehörige inverse z-Transformierte x_i .

Schriftliche Prüfung aus **Signaltransformationen**Teil: Dourdoumas am 05. 03. 2010

Name / Vorname(n):

Kennzahl / Matrikel-Nummer:

(1) (2)

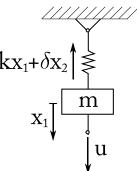
erreichbare Punkte 8 3

Ein Feder-Masse - System wird durch folgende Differentialgleichungen beschrieben:

$$\frac{dx_1}{dt} = x_2, x_1(t=0) = 0$$

$$\frac{dx_2}{dt} = -kx_1 - \delta x_2 + u, x_2(t=0) = 0$$

Dabei symbolisiert x_1 die Position der Masse m und x_2 deren Geschwindigkeit; k und δ seien positive reelle Parameter. Als u wird die auf die Masse wirkende normierte Beschleunigung bezeichnet.



- a) Bestimmen Sie die LAPLACE-Transformierten $X_1(s)$ und $X_2(s)$ von $x_1(t)$ bzw. $x_2(t)$ in Abhängigkeit von U(s), der LAPLACE-Transformierten von u(t).
- b) Es sei nun $u = \sigma(t)$. Zeigen Sie, dass die LAPLACE-Transformierte $X_1(s)$ als

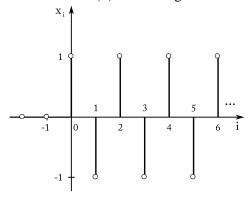
$$X_1(s) = \frac{1}{s(s^2 + \delta s + k)}$$

angegeben werden kann.

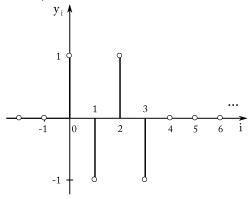
- c) Bestimmen Sie den Grenzwert $x_{1,stat} := \lim_{t \to \infty} x_1(t)$ mittels des Grenzwertsatzes der LAPLACE-Transformation für den Fall $\delta > 0$.
- d) Berechnen Sie den Verlauf der Position $x_1(t)$ für den sogenannten aperiodischen Grenzfall k=1, $\delta=2$.

Aufgabe 2:

a) Ermitteln Sie die z-Transformierte X(z) des im folgenden Bild gezeigten Signals x_i :



b) Stellen Sie die z-Transformierte Y(z) des folgenden abgeschnittenen Signals y_i als Überlagerung zweier Signale x_i dar:



Schriftliche Prüfung aus **Signaltransformationen**Teil: Dourdoumas am 05. 07. 2010

Name / Vorname(n):

erreichte Punkte

Kennzahl / Matrikel-Nummer:

Gegeben sei folgende Differenzengleichung

$$x_{i+1} = -0.5x_i - u_i$$
, $i = 0, 1, 2, ...$

mit dem Anfangswert x_0 und der Eingangsgröße

$$u_i = \cos(i\omega T + \varphi)$$
.

Hierbei sind ω , T und φ reelle Parameter.

a) Zeigen Sie, dass die z-Transformierte der Eingangsgröße u_i durch $U(z) = \frac{z^2 \cos \varphi - z \cos(\omega T - \varphi)}{z^2 - 2z \cos(\omega T) + 1}$ angegeben werden kann.

b) Für die Parameter der Eingangsgröße
$$u_i$$
 gelte nun $\omega T = \frac{\pi}{2}$ und $\varphi = \frac{\pi}{2}$.

Zeigen Sie, dass für hinreichend große Werte
$$i$$
 die stationäre Lösung von x_i durch die Funktion $x_{stat_i} = \frac{2}{5} \left[\sin \left(i \frac{\pi}{2} \right) - 2 \cos \left(i \frac{\pi}{2} \right) \right]$ gegeben ist.

c) Wählen Sie den Anfangswert x_0 derart, dass bei Aufgabe b)

$$x_i = x_{stati}$$

für *alle* Werte von i = 0, 1, 2, ... gilt.

Aufgabe 2:

Bestimmen Sie die LAPLACE - Transformierte F(s) von

$$f(t) = t \cdot \sin(\omega t)$$
.

Aufgabe 3:

a) Bestimmen Sie die LAPLACE - Inverse x(t) von

$$X(s) = \frac{2s+1}{s(s+5)} \cdot e^{-sT}.$$

b) Bestimmen Sie den Grenzwert $\lim_{t\to\infty} x(t)$.