Schriftliche Prüfung aus Control Systems 1 am 25.06.2025

Name /	Vorname ([n]):
--------	-----------	-----	----

Matrikel-Nummer:

Aufgabe	A1	A2	A3	A4	A5	A6	A7	A8	Summe
erreichbare Punkte	2	2	3	2	2	3	3	3	20
erreichte Punkte									

Aufgabe 1:

Betrachten Sie folgende Zusammenschaltung mehrerer Übertragungssysteme mit der Eingangsgröße r und der Ausgangsgröße y,



wobei $G_1(s)$ die Übertragungsfunktion des LZI Systems

$$\dot{\mathbf{x}} = \begin{bmatrix} 2 & 0 \\ -1 & 4 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}$$

mit der Eingangsgröße u und der Ausgangsgröße y ist.

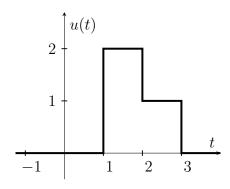
- a) Ermitteln Sie die Übertragungsfunktion $G_1(s) = \frac{\bar{y}(s)}{\bar{u}(s)}$.
- b) Ermitteln Sie die Übertragungsfunktion $G(s) = \frac{\bar{y}(s)}{\bar{r}(s)}$ des Gesamtsystems. Geben Sie G(s) in einer Form ohne Doppel- bzw. Mehrfachbrüche an.
- c) Ist das Gesamtsystem BIBO stabil? (Begründen Sie Ihre Antwort!)

Aufgabe 2:

Gegeben sei ein zeitkontinuierliches, lineares, zeitinvariantes System mit der Eingangsgröße u und der Ausgangsgröße y, das durch die Impulsantwort

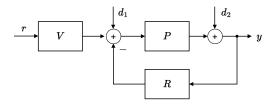
$$g(t) = \left(2e^{-2t} - e^{-4t}\right)\sigma(t)$$

beschrieben wird. Ermitteln Sie den exakten zeitlichen Verlauf der Ausgangsgröße y(t) für die folgende Eingangsgröße:



Aufgabe 3:

Gegeben sei die folgende erweiterte Regelkreisstruktur



mit den Reglerübertragungsfunktionen

$$V(s) = \frac{c(s)}{a(s)}$$
 und $R(s) = \frac{b(s)}{a(s)}$

so wie der Streckenübertragungsfunktion

$$P(s) = \frac{\mu(s)}{\nu(s)}.$$

Die Übertragungsfunktionen sind durch die Polynome a(s), b(s), c(s), $\mu(s)$ und $\nu(s)$ gegeben. Es ist bekannt, dass die Strecke weder integrierendes Verhalten noch differenzierendes Verhalten aufweist.

- a) Berechnen Sie die Übertragungsfunktion $S_1(s) = \frac{\bar{y}(s)}{\bar{d}_1(s)}$, $S_2(s) = \frac{\bar{y}(s)}{\bar{d}_2(s)}$ und $T(s) = \frac{\bar{y}(s)}{\bar{r}(s)}$ als Funktionen der gegebenen Polynome.
- b) Nemen Sie nun an, dass $d_1(t) = d_0$ und $d_2(t) = 17 \sin(3t)$ ist. Leiten Sie mathematisch nachvollziehbar Bedingungen an die Polynome so ab, dass

$$\lim_{t \to \infty} = y(t) = r_0$$

für $r(t) = r_0$ gilt. Hierbei stellen d_0 und r_0 positive Konstanten dar.

Aufgabe 4:

Gegeben sei die Reglerübertragungsfunktion

$$R(s) = \frac{(s+5)}{s(s+2)}.$$

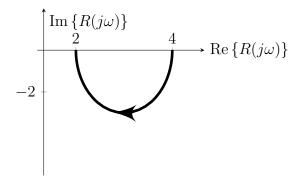
- a) Ermitteln Sie, für eine Abtastzeit $T_d = 2 s$, mit der Methode der Tustin Approximation eine zeitdiskrete Übertragungsfunktion $R_d(z)$ der Reglerübertragungsfunktion.
- b) Geben Sie das zugehörige Regelgesetz zur Ermittlung der Stellfolge (u_k) aus der Regelfehlerfolge (e_k) in Form einer Differenzengleichung an.
- c) In welchen Bereich der z-Ebene wird die linke offene s-Ebene bei Anwendung der Rückwärts-Euler-Integration abgebildet?

Aufgabe 5:

Zum Reglerentwurf mit dem Frequenzkennlinienverfahren wurde als Reglerübertragungsfunktion

$$R(s) = K \frac{1 + \frac{s}{\omega_Z}}{1 + \frac{s}{\omega_N}},$$

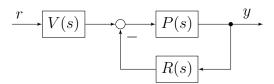
mit den positiven Konstanten K, ω_Z und ω_N , gewählt. Die Ortskurve von R(s) ist dabei wie folgt gegeben:



- a) Ermitteln Sie aus der oben dargestellten Ortskurve, ob ein Lead-Glied oder ein Lag-Glied verwendet wird und ermitteln Sie den Verstärkungsfaktor K.
- b) Ermitteln Sie die Parameter des Lead/Lag-Gliedes wenn die maximale Phasenänderung bei $\omega_m = \sqrt{2} \, \frac{rad}{s}$ liegt.

Aufgabe 6:

Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße y:



Die Übertragungsfunktion der Regelstrecke lautet

$$P(s) = \frac{s - 4}{s^2 + 6s + 4}.$$

a) Untersuchen Sie folgende Führungsübertragungsfunktionen T(s) auf Implemen-

tierbarkeit für die gegebene Streckenübertragungsfunktion P(s):

(i)
$$T(s) = \frac{(s-4)}{s^2 - 5s + 1}$$
 (ii) $T(s) = \frac{(s-4)}{(s+1)(s^2 + 4s + 1)}$ (iii) $T(s) = \frac{s+4}{s^2 + 6s + 1}$

b) Wählen Sie die einzig mögliche implementierbare Führungsübertragungsfunktion T(s) aus Aufgabe a) aus und dimensionieren Sie die beiden Übertragungsfunktionen

$$R(s) = \frac{b(s)}{a(s)}$$
 und $V(s) = \frac{c(s)}{a(s)}$

so, dass der dargestellte Regelkreis die Führungsübertragungsfunktion T(s) besitzt.

Bitte wenden!

Aufgabe 7:

Hinweis zur Bewertung: Es werden pro richtiger Antwort $\frac{1}{4}$ Punkt, pro falscher Antwort $-\frac{1}{4}$ Punkt und pro nicht beantworteter Aussage 0 Punkte vergeben.

a) Kreuzen Sie an ob folgende Aussagen richtig oder falsch sind.

Aussage	richtig	falsch
Jeder P-Regler sollte bei einer praktischen Anwendung um eine		
Anti-Windup-Maßnahme erweitert werden.		
Ein lineares zeitinvariantes System mit regulärer Dynamikma-		
trix besitzt für jede konstante Eingangsgröße genau eine Ruhe-		
lage.		
Bei einem Standardregelkreis kann man		
Führungsübertragungsfunktion und Störübertragungsfunktion		
unabhängig voneinander einstellen.		
Die Dynamikmatrix eines BIBO-stabilen Systems hat immer nur		
Eigenwerte mit negativem Realteil.		
Ein System mit der Übertragungsfunktion $G(s) = s$ ist BIBO-		
stabil.		
Die Zusammenschaltung mehrerer BIBO-stabiler Systeme führt		
stets zu einem BIBO-stabilen Gesamtsystem.		

b) Gegeben ist ein System mit der Übertragungsfunktion

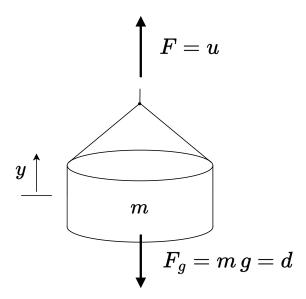
$$G(s) = 10 \frac{1}{s} \frac{s - 10}{1 + \frac{s}{0.1}}.$$

Kreuzen Sie an ob folgende Aussagen richtig oder falsch sind.

Aussage	$\operatorname{richtig}$	falsch
Das System mit der Übertragungsfunktion $G(s)$ liegt in normier-		
ter Form vor.		
Das System mit der Übertragungsfunktion $G(s)$ ist vom einfa-		
chen Typ.		
Das System mit der Übertragungsfunktion $G(s)$ hat integrieren-		
des Verhalten.		
Das System mit der Übertragungsfunktion $G(s)$ ist sprungfähig.		
Das System mit der Übertragungsfunktion $G(s)$ hat		
Polüberschuss 2.		
Auf eine harmonische Eingangsgröße reagiert das System mit		
einer beschränkten Ausgangsgröße.		

Aufgabe 8:

Betrachten Sie folgenden mechanischen Aufbau, bei dem eine unbekannte Masse m an einem Seil befestigt ist. Auf das Seil wirkt eine von einem Motor generierte Kraft F, die den Eingang u, d.h. u=F, des Systems darstellt. Aufgrund der Gravitation erfährt die Masse m eine Gewichtskraft $F_g=m\,g$, die als Störung d betrachtet werden kann d.h. $d=F_g$. Die Position der Masse m wird mit g bezeichnet.



Das System kann beschrieben werden durch

$$\dot{x}_1 = x_2,$$

$$\dot{x}_2 = -m g + u,$$

mit

$$y=x_1$$
.

- a) Bestimmen Sie die Übertragungsfunktion $P(s) = \frac{\bar{y}(s)}{\bar{u}(s)} \bigg|_{d=0}$, wobei $\bar{u}(s)$ als Eingang, $\bar{y}(s)$ als Ausgang und $d = F_g = 0$ als Störung angenommen werden.
- b) Entwerfen Sie für einen Standardregelkreis den Regler R(s) mittels Polvorgabe so, dass die Polstellen des geschlossenen Regelkreises bei -k für k > 0 liegen. Hinweis: $(s + k)^3 = s^3 + 3k s^2 + 3k^2 s + k^3$.
- c) Ermitteln Sie die Störübertragungsfunktion $S(s)=\frac{\bar{y}(s)}{\bar{d}(s)}$ und berechnen Sie den Wert von k so, dass sich bei einer konstanten Störung $d=m\,g=1$ N ein bleibender Regelfehler

$$\lim_{t \to \infty} e(t) = e_{\infty} \le \frac{12}{100} \,\mathrm{m}$$

einstellt.