
1

Federico Municchi, Stefan Radl

Institute of Process and Particle Engineering,
TU Graz

Graz, Austria

An OpenFOAM implementation of the filtered two-fluids model

eulerianFilteredTFM Library Architecture

2

Unclosed terms in the model eqns

Governing equations

Particle phase:

Fluid phase:

3 phenomena to model:
(i) mesoscale,
(ii) frictional, and
(iii) microscale stress

2 phenomena to model:
(i) microscale, and
(ii) mesoscale stress

drag laws accounting
for effect of mesoscale
structures

3

Common structure for closures (stress)

Extended Boussinesq ansatz (as suggested by Cloete [1])
Required:
• Pressure
• Bulk viscosity lq (often disregarded)
• Viscosity mq

• Residual anisotropic stress tensor contribution sq,a (symmetric
tensor)

Unclosed terms in the model eqns

[1] J.H. Cloete, PhD Thesis, NTNU (2017)

4

Base structure: unclosed terms in the main solver

Common structure for closures (drag)

Required:

• Closures for microscopic drag coefficient (available)
• Models for the Heterogeneity factor HD, should be a tensor.

5

Library structure: overall view

fTFM.H

Auxiliary
Equations

Closure
Model

Sub-Model Sub-Model

Sub-Model

Closure
Model

Sub-Model Sub-Model

Sub-Model

Closure
Model

Sub-Model Sub-Model

Sub-Model

• Several closure model objects, each
one with its submodels (like in CFDEM®)

• A separate object container (such that one can
push into this container if necessary) to solve
auxiliary equations (e.g., kinetic theory-based
model for microscopic granular temperature,
filtered granular temperature)

Communication required
between certain models and
auxiliary equation

Dynamic
Parameter

Adjustment

6

Library structure: overall view 1/4

Instructions for users

Markdown-based documentation

Most important closures models:
drag and stress

Folder: /src/eulerian/eulerianFilteredTFM

Additional closures for auxiliary
equations

auxiliary equations to supply
closures with additional data
(optional)

classes for library organization:
these classes hold containers with
closures

Dynamic parameter adjustment (optional)

7

Library structure: overall view 2/4

Folder: /src/eulerian/eulerianFilteredTFM/stressClosures/stressSubClosures

base class

individual closures

8

Library structure: overall view 3/4

Folder: /src/eulerian/eulerianFilteredTFM/interphaseClosures/dragClosures/

base class

individual closures for drag
correction

individual closures for
microscale drag closures

9

Library structure: overall view 4/4

Folder:
/src/eulerian/eulerianFilteredTFM/interphaseClosures/dragClosures/HDragCorrections/

base class

example closures for drag
correction

example closures for drag
correction

10

Library structure: Closure Model classes

Generalities about closures and subClosures

• The main closure classes hold a pointer to the main fTFM class
(i.e., either ‘twoPhaseSystem’ or ‘pair1In2_’, the phase pair). This is
like in CFDEM, where pointers to particleCloud are available

• All main closures classes host containers of their subClosures, and
they build the stress(source) by executing subClosures in sequence
and summation if needed. This is similar to the CFDEM forceModel
and forceSubModels relationship.

• In case closures require additional equations to be solved, then
they tell the library to create them. This is done via the
equationManager_ object (an autoPtr to an instance of
‘AuxEquations’)

• All sub-closure parameters can be defined in the ‘phaseProperty’
dictionary

11

Library structure: Closure Model classes

stressClosure class

• Example object: “stressClosure_” (hold by class “phaseModel”)
• A function returns a fvm::fvVectorMatrix object similar to

divDevReff in turbulence models
• It is in the form
• Parameters are provided by submodels (and summed up)
• Submodels are just calculating the parameters to save memory

and computational time (but sub-model tensors are writeable for
debug and monitoring purposes)

• Parameters are calculated explicitly, i.e. based on the previous
time step

• The stress tensor should be customizable in order to save
computational time (for example, disregarding the anisotropic
contribution)

12

Library structure: Closure Model classes

stressClosure class

stressClosure

Mesoscale Frictional Microscale

Specific
Sub-Closure

Specific
Sub-Closure

Specific
Sub-Closure

the class that holds stress
information (one object for
each phase)

autoPtr to 3 instances of
class ‘StressSubClosure’
(frictional can be empty,
since non-existing for gas
phase)

A specific
‘StressSubClosure’ object is
instantiated in the
constructor of
‘stressClosure’

13

Library structure: Closure Model classes

dragClosure class

• Example object: drag_ (held by class ‘twoPhaseSystem’)
• Does not need to be named named.
• A function returns a tensor field
• It always assumes the drag is calculated in the form
• Parameters are provided by submodels
• Submodels are just calculating the parameters to save memory

and computational time (but sub-model quantities should be
writeable)

• Parameters are calculated explicitly, i.e. based on the previous
time step

14

Library structure: Closure Model classes

dragClosure class

dragClosure

microDragClosure HDragCorrection

Specific
Sub-Closure

Specific
Sub-Closure

the class that holds drag
coupling information (one
object for each
twoPhaseSystem)

autoPtr to object
of type
‘microDragClosure’

A specific ‘microDragClosure’
or ‘HDragCorrection object is
instantiated in the constructor
of ‘dragClosure’

autoPtr to object
of type
‘HDragCorrection’

15

Library structure: Closure Model classes

eqnClosure class

• Example object: tmp (will be pushed back into a container in the

‘AuxEquations’ class)
• It should be named. This name is used to lookup submodels in the

dictionary
• A function returns a fvm::fvScalarMatrix object similar to

divDevReff in turbulence models
• It has no specific form
• Parameters are provided by submodels
• Submodels are just calculating the parameters to save memory

and computational time (but sub-model sources should be
writeable)

• Parameters are calculated explicitly, i.e. based on the previous
time step

• Structure similar to subGridStressModel

16

Library structure: Closure Model classes

eqnClosure class

eqnClosure

subClosures_ (container)

Specific
Sub-Closure(s) for
each term

the class that holds general
closure information (one
object for each auxiliary eqn)

std::vector holding pointers
to EqnSubClosure objects

A specific
‘EqnSubClosure’ object
is instantiated in the
constructor of
‘eqnClosure’

17

Library structure: AuxEquations class

Basic functioning

• Similar to scalarTransportModel, the ‘AuxEquations’ class allows

the definition of multiple equations (differential, i.e., ‘transport’,
and algebraic equations)

• Transport equations are (for example) in the form: D/Dt (f) =
sources, and the method ‘closures[i]->closeEquation’ is used to
add closure terms (which are user-defined).

• Therefore, the main class creates and stores the
scalars/vector/tensor fields, and holds a the equation information
in the struct ‘eqnInfo_’

auxiliaryEquations fvMatrix

algebraic transportEqn

Create equation
objects as defined
by the user

18

Library structure: DynamicParameters class

Basic functioning

• It should filter the solid volume fraction to correct the parameters

in the drag force
• Still to design, but I will just filter the filtered solid fraction variance

to provide better estimation of the solid fraction variance to be
used in the calculation of the heterogeneity factor for some drag
models.

• It can be automatically triggered by the proper heterogeneity
model together with the proper auxiliary equation for the filtered
solid fraction variance.

