
Pharmaceutical

Multiphase Reactors

CHE.782

Ass.Prof. Dr. Stefan Radl,
MSc. Federico Municchi
Email: radl@tugraz.at
Institute for Process and
Particle Engineering
Inffeldgasse 13/III
TU Graz

Hands on the
„CPPPO“ library

A – General Information
B – Guide - Verification Cases

Design of Multiphase

Flow Processes

669.266

A part of this teaching material has been
prepared for NanoSim (http://sintef.no/NanoSim/

CPPPO, 4_1_Handson_verification, 2015-11-07, version 0.1

mailto:radl@tugraz.at
http://sintef.no/NanoSim/

A – Gerneral Information

Why verfication/test cases:

• Ensure right implementaion (verification cases)

• Showcases in order to demonstrate software capabilities (test

cases to produce „eye candy“)

• Ensure software backward compability

Where to find:

• Verification cases: „examples/verification/“

• Test cases: „/examples/codeTest“

When to run:

• After compiling the CPPPO core library

• Test cases can be run after compiling the C3PO_CSV stand-alone binary

• Verification cases can be run after compiling the C3PO-OpenFOAM interface

and the solvers in „/applications“

• AFTER reading all *.md files in „doc/“ for general informations regarding

structure and input CPPPO

B – Guide – Verification cases - potentialStokesFilter

Verification case - potentialStokesFilter

Requirements:

• Be sure that the CPPPO-OpenFOAM interface is compiled correctly.

• Ensure that the application in applications/stokesFilter is compiled

correctly.

• Ensure that the application in applications/irrotationalFilter is compiled

correctly.

To check if any solver is compiled just type: which «solver-name»

For example: which stokesFilter

If the prompt returns the file location, then your solver is compiled

B – Guide – Verification cases - potentialStokesFilter

Case structure

OpenFOAM standard

folders and files

./c3po_control

$C3PO_EXAMPLE_DIR/verification/potentialStokesFlow

./octave Additional files

• Contains c3po.input

and the json files

required to run

CPPPO (see ./doc)

• It should always be

named c3po_control

• Contains the

octave/matlab scripts

required to collect and

plot data from cpppo

output

• README.m provides

a brief description of

the case

• Allclean/Allrun.sh

allow to clean and run

the whole case

• runPotential.sh/runSto

kes.sh allow to run just

one of the solvers

B – Guide – Verification cases - potentialStokesFilter

Walk-through (1)

Have a look at ./c3po_control/c3po.input and

./c3po_control/c3po.json

These files contain all the operation and selectors used for

this case as well as the main settings for CPPPO.

You can refer to doc/02_c3poInput.md for a detailed

description.

The file./c3po_control/mesh.json allows to specify the

tolarance for filtering operations and mesh check.

B – Guide – Verification cases - potentialStokesFilter

Walk-through (1) – c3po.input

Declaration of filtering

operations

Declaration of

selectors

Declaration of filters

B – Guide – Verification cases - potentialStokesFilter

Walk-through (1) – c3po.json

Main settings to

control I/O and set

general run

parameters

B – Guide – Verification cases - potentialStokesFilter

Walk-through (1) – c3po.json

Definition of filters

according to their

naming in

c3po.input

B – Guide – Verification cases - potentialStokesFilter

Walk-through (1) – c3po.json

Definition of the

operations to

perform according

to their naming in

c3po.input

B – Guide – Verification cases - potentialStokesFilter

Walk-through (2)

Check ./c3po_control/probeSettings.json

This file allows to define probes (or particles in CPPPO).

Refer to $C3PO_SRC_DIR/doc/20_probesAndParticles.m

Check ./octave

This folder contains two octave/matlab scripts:

• postproc.m.potential: collects and plot the json output from

CPPPO against the analytical solution for the potential

flow.

• postproc.m.stokes: collects and plot the json output from

CPPPO against the analytical solution for the Stokes flow.

B – Guide – Verification cases - potentialStokesFilter

Walk-through (3)

Run the verification case

• Pre-processing operations:

• Run blockMesh

• Run setFields

• Run irrotationalFilter or stokesFilter

• Post-processing operations:

• Type «cd octave»

• Run «octave postproc.m.potential» or «octave postproc.m.stokes»

• Visualize «verification.eps»

Alternatively, you can run the whole case using ./Allrun.sh

Remember to run Allclean before leaving the directory!

B – Guide – Verification cases - potentialStokesFilter

Walk-through (4)

Modify the verification case

• Add a new filter:

• Add a new filter and a new selector in c3po.input, name them as

you like.

• Copy an existing filter in c3po.json and name it accordingly to

your new filter.

• Modify the coordinate system to cartesian and set a filter volume

of 8 following the documentation in doc/14_selector_type.md

• Modify the postproc.m script in /octave to account for the new

filter.

• Run the modified case.

©2015 by Stefan Radl, and other members of the

„Simulation Science“ Group at the Institute of Process

and Particle Engineering, Graz University of Technology.

All rights reserved. No part of the material protected by this

copyright notice may be reproduced or utilized in any form or

by any means, electronically or mechanically, including

photocopying, recording or by any information storage and

retrieval system without written permission from the author.

LIGGGHTS® is a registered trade mark of DCS Computing

GmbH, the producer of the LIGGGHTS® software. CFDEM®

is a registered trade mark of DCS Computing GmbH, the

producer of the CFDEM®coupling software. This offering is not

approved or endorsed by DCS Computing GmbH, the

producer of the LIGGGHTS® and CFDEM® coupling software

and owner of the LIGGGHTS and CFDEM® trade marks.

Impressum & Disclaimer

