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A – Gerneral Information

Why verfication/test cases: 

• Ensure right implementaion (verification cases)

• Showcases in order to demonstrate software capabilities (test 

cases to produce „eye candy“)

• Ensure software backward compability 

Where to find: 

• Verification cases: „examples/verification/“

• Test cases: „/examples/codeTest“

When to run: 

• After compiling the CPPPO core library

• Test cases can be run after compiling the C3PO_CSV stand-alone binary

• Verification cases can be run after compiling the C3PO-OpenFOAM interface 

and the solvers in „/applications“

• AFTER reading all *.md files in „doc/“ for general informations regarding 

structure and input CPPPO
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Verification case - potentialStokesFilter

Requirements:

• Be sure that the CPPPO-OpenFOAM interface is compiled correctly.

• Ensure that the application in applications/stokesFilter is compiled 

correctly.

• Ensure that the application in applications/irrotationalFilter is compiled 

correctly.

To check if any solver is compiled just type: which «solver-name»

For example: which stokesFilter

If the prompt returns the file location, then your solver is compiled
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Case structure

OpenFOAM standard 

folders and files

./c3po_control

$C3PO_EXAMPLE_DIR/verification/potentialStokesFlow

./octave Additional files

• Contains c3po.input 

and the json files 

required to run 

CPPPO  (see ./doc )

• It should always be 

named c3po_control

• Contains the 

octave/matlab scripts 

required to collect and 

plot data from cpppo 

output 

• README.m provides 

a brief description of 

the case

• Allclean/Allrun.sh 

allow to clean and run 

the whole case

• runPotential.sh/runSto

kes.sh allow to run just 

one of the solvers
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Walk-through (1)

Have a look at ./c3po_control/c3po.input and 

./c3po_control/c3po.json 

These files contain all the operation and selectors used for 

this case as well as the main settings for CPPPO.

You can refer to doc/02_c3poInput.md for a detailed 

description.

The file./c3po_control/mesh.json allows to specify the 

tolarance for filtering operations and mesh check.
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Walk-through (1) – c3po.input

Declaration of filtering 

operations

Declaration of 

selectors

Declaration of filters
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Walk-through (1) – c3po.json

Main settings to 

control I/O and set 

general run 

parameters
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Walk-through (1) – c3po.json

Definition of filters 

according to their 

naming in 

c3po.input
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Walk-through (1) – c3po.json

Definition of the 

operations to 

perform according 

to their naming in 

c3po.input
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Walk-through (2)

Check ./c3po_control/probeSettings.json

This file allows to define probes (or particles in CPPPO). 

Refer to $C3PO_SRC_DIR/doc/20_probesAndParticles.m

Check ./octave

This folder contains two octave/matlab scripts:

• postproc.m.potential: collects and plot the json output from 

CPPPO against the analytical solution for the potential 

flow.

• postproc.m.stokes: collects and plot the json output from 

CPPPO against the analytical solution for the Stokes flow.
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Walk-through (3)

Run the verification case

• Pre-processing operations:

• Run blockMesh

• Run setFields

• Run irrotationalFilter  or stokesFilter

• Post-processing operations:

• Type «cd octave»

• Run «octave postproc.m.potential» or «octave postproc.m.stokes»

• Visualize «verification.eps»

Alternatively, you can run the whole case using ./Allrun.sh

Remember to run Allclean before leaving the directory!
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Walk-through (4)

Modify the verification case

• Add a new filter:

• Add a new filter and a new selector in c3po.input, name them as 

you like.

• Copy an existing filter in c3po.json and name it accordingly to 

your new filter.

• Modify the coordinate system to cartesian and set a filter volume 

of 8 following the documentation in doc/14_selector_type.md

• Modify the postproc.m script in /octave to account for the new 

filter.

• Run the modified case.
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