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Preface

PREFACE

This book contains the scientific contributions to the
4" Tnternational Brain-Computer Interface Workshop
and Training Course 2008, held in Graz, Austria.
From the very beginning about 17 years ago, a growing
number of research groups around the world started
to develop and investigate Brain-Computer Interfaces
(BCIs). To date, alternative approaches or pro-
totypes, using different types of electrophysiological
brain signals or metabolical changes in the brain,
training/control paradigms or operating modes, are
available and to be evaluated in practical use.
Exemplarily, the use of a self-paced BCI, which analy-
ses the brain signals sample by sample and therefore,
produces a decision sample by sample is mandatory
for a real world application. The challenge here is to
define a system which deals not only with the inten-
tional control (e.g., motor imagery-related brain pat-
terns), but also to handle the non-control state. With
such a system users gain full control over timing and
speed of communication.

Improvements in the emerging field of BCI research
and development depend largely on cooperation be-
tween scientists and research groups of different fields.
The interdisciplinary co-operation among neuroscien-
tists, engineers, psychologists, and rehabilitation spe-
cialists is a necessary requisite. But also constructive
collaboration and exchange of experiences and infor-
mation between the involved research groups as well
as creating the right community of young scientists are
essential for a field like this. And finally, the work with
user groups and clinics helps BCI researchers to refine
and fine tune their systems for the “real” application
to disabled persons.

After the positive responses to the previous BCI meet-
ings, we were encouraged to organize a fourth meeting
in Graz. In this 4*" International Brain-Computer In-
terface Workshop and Training Course 2008 we offer a
separate Training Course (especially dedicated to new
researchers in the field), and the Workshop — the sci-
entific part of the meeting.

This issue is devoted to the scientific contributions of
the participants. The submitted papers were peer-
reviewed with the help of external reviewers. We want
to acknowledge the work of the following colleagues
who contributed with their expertise and knowledge:

Brendan Z. Allison
Peter Desain

Benjamin Blankertz
John Q. Gan
Rolando Grave Kurtulus Izzetoglu
Andrea Kiibler Donatella Mattia
Dennis J. McFarland Klaus-Robert Miiller
Muhammad Naeem Gerwin Schalk
Reinhold Scherer Michael Tangermann
Carmen Vidaurre Selina Wriessnegger

The contributions cover a wide range of topics, includ-
ing methods of signal processing and feature extrac-
tion, new methods of classification, different types of
presenting feedback, and software/hardware develop-
ment.

We are grateful that outstanding experts in the field,
namely Fernando H. Lopes da Silva (University of Am-
sterdam), Andrea Kiibler (University of Roehampton),
and José del R. Milldn (IDIAP, Switzerland) were able
to accept our invitation to present keynote addresses
at the Workshop.

We gratefully acknowledge the support of the Graz
University of Technology for providing the facilities
and thank the staff of the Institute of Knowledge Dis-
covery, BCI Lab, for their dedicated assistance.

We hope that the content and scope of our program
contributes to a successful and constructive 4*" In-
ternational Brain-Computer Interface Workshop and
Training Course 2008!

The Editorial Board

Participants of the 34 International Brain-Computer Interface Workshop and Training Course 2006.
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Session-to-session P300 BCI performance correlation with
baseline frequency spectra for a user with ALS
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Abstract

Brain-computer interfaces (BCIs) provide a non-muscular communication channel for pa-
tients with late-stage motoneuron disease (e.g. amyotrophic lateral sclerosis (ALS)). The
performance of BCI users, in particular of patients, can vary substantially from session to
session. This could be due to technical problems caused by non-laboratory field conditions,
but may also be due to fluctuations of physiological parameters that could be evident in the
electroencephalogram (EEG) of the user. We analyzed visual P300 BCI sessions from one ALS
patient over the course of two years to determine correlations between BCI performance and
spectral components of the EEG. Classification performance in individual runs was compared
to power in the base frequencies of the EEG, i.e. the Delta, Theta, Alpha and Beta bands.
Our results show low to moderate but significant correlations of spectral power in the high
alpha and low beta band, at parietal-occipital electrode positions during baseline recording
before each training, and with performance in subsequent training. In order to confirm alpha
and beta band power as predictors of P300-BCI performance more patient data will be ana-
lyzed in a future study. The ultimate goal of this endeavour is to find a set of physiological
and psychological predictors of performance, possible explanations for variance in signal clas-
sification, and reasons for failure of classification. Moreover, physiological parameters may
eventually serve as reliable predictors of BCI performance on a session to session basis.

1 Introduction

Brain-computer interface (BCI) systems provide a means of communication for locked-in state
(LIS) patients or serve as an aid in motor restoration after paralysis [1]. Various BCI paradigms
based on components of the electroencephalogram (EEG), such as slow cortical potentials (SCPs),
sensorimotor rhythms (SMR) and event-related potentials (ERPs), have been used extensively
with patients in the LIS [2]. In our laboratory, most of the patients using a BCI were diagnosed
with amyotrophic lateral sclerosis (ALS). Three of these patients have been trained continuously
on a weekly basis over the last two years with a BCI based on the P300 event-related potential
(ERP) [3]. In this type of BCI, the user focuses on a single cell of a matrix on a computer screen
usually containing 6 x 6 symbols. The rows and columns flash randomly. Whenever the cell the
user is attending to lights up, due to one of the random flashes, a P300 is elicited. Depending on
the application, this system is used for various tasks, such as surfing the internet, but is primarily
used for spelling, i.e. communication [4, 5].

Despite the success of using a P300 BCI with patients, experience has shown that there is
considerable variance in the performance on a session-to-session basis. If technical reasons for such
a fluctuation can be ruled out, physiological factors may be the cause of such fluctuations. These
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can affect the latency and amplitude of the P300, which in turn have an impact on the performance
of the classifier used in the BCI system. Previous studies, which analyzed the relationship between
background EEG and P300 amplitude, have shown a positive correlation between the two [6, 7].
The strongest correlations were observed in the delta, theta and lower alpha bands.

In an effort to find predictors of performance in a P300-BCI, the current study investigates
whether EEG spectra extracted from the baseline periods of each BCI session are correlated to
performance in the subsequent training session. The ultimate goal is to find reliable physiological
predictors of BCI performance, to explain the session-to-session variance in performance and
reasons for classification failures.

2 Methods

We used data from one ALS patient who participated in previous BCI studies for this pilot
analysis. Baseline periods were extracted from the recordings and transformed into frequency
domain. A new classifier was trained on the epochs when the matrix was flashing and applied to
the data to obtain hit-rates for individual runs. Correlation coefficients between the spectra and
the classification rate were then calculated over all runs.

2.1 Dataset

Data from only one patient (female, age 39, ALS diagnosed 12 years ago, sporadic, spinal, not
ventilated or tube-fed) was used in this pilot analysis. We chose this patient because she used
the BCI system most regularly of all our patients. Training has started in May 2006 and is still
continuing. All data were recorded using either a g.tec g.MOBIlab (8 channels) or g.USBamp
(16 channels) amplifier. An 8 channel subset of the 16 channel sessions was used to render the
electrode locations identical. The 8 electrodes were placed according to the international 10-20
system (Fz, Cz, Pz, P3, P4, Oz, Po7, Po8). Ground and reference were positioned at the mastoids
(Al and A2). The sampling frequency was set to 256 Hz. High and low pass filtering was applied
offline during the analysis. EEG recording and stimulation was performed using the P300 speller
modules contained in the BCI2000 software [8]. In total 197 runs were used in the analysis, in
which 1200 letters were spelled (6.1 letters per run). Either 6 x 6 (15 runs) or 7 x 7 (182 runs)
matrices were used. On average 6.5 flashes of each row and column were presented to the patient
per selection of a single letter. This results in 92547 non-target epochs and 15600 target epochs.
Mean duration of a flash was 67.3 ms, mean interstimulus interval 118.7 ms and mean intersequence
interval 7.46s. A sequence consisted of either 12 or 14 flashes (one flash per row and per column).
The intersequence intervals result in a total of 149 min of baseline EEG which are on average 45.5s
per run.

2.2 Classification

Using stepwise linear discriminant analysis (SWLDA) data was classified on a run-by-run basis,
with a run being a whole word spelled by the user. This analysis is based on Fisher’s linear
discriminant (FLD), but performs an additional feature reduction that progressively selects the
most discriminant features and eliminates the least predictive ones. This method was also used
in [3] and proved its feasibility for this type of analysis. Despite its simplicity this algorithm was
shown to be competitive against more elaborate methods [9]. The classifier was retrained for the
classification of each run on a leave-one-run-out basis. Meaning that the run to be classified was
excluded from contributing to the classifier. Five stimulus repetitions (i.e. five flashes of each
row and column of the matrix) were averaged to obtain the ERPs. The low number of flashes
was chosen to avoid ceiling effects caused by the classification accuracy. Before classification the
signals were high-pass filtered at 1 Hz and low-pass filtered at 20 Hz.
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Figure 1: Overview of correlations between spectral power in dB at frequencies in Hz and classifi-
cation accuracy of individual runs in %. All eight channels used for classification of the data are
shown. All graphs showing p-values are scaled from 0 to 0.05 to allow a quick assessment of which
frequency bands are significant. The graphs showing Spearman’s p are scaled from —0.2 to 0.2.

2.3 Analysis

Pre- and post-sequence intervals from the BCI training sessions were used to obtain EEG signals
to calculate the baseline spectra. No additional filtering was applied. Power spectra were obtained
in dB using Welch’s method [10]. Spearman’s p was calculated between the spectra and the clas-
sification accuracies. p-values for Spearman’s p were calculated using permutation distributions.
All calculations were carried out in Matlab 7.5.

3 Results

Figure 1 shows correlations of the power in frequencies from zero to 30 Hz and their significance
for all eight channels that were analyzed. The analysis is restricted to the frequency bands delta
(2-4Hz), theta (4-8Hz), alphal (8-10.5Hz), alpha2 (10.5-13 Hz), betal (13-20Hz), and beta2
(20-30Hz). All significant correlations were negative.

The correlations increase from frontal to occipital channels. Correlations in central and frontal
channels were weak with p-values close to or above 0.05. Po7, Po8 and Oz all show significant
correlations from 15-20Hz. Po7 is also the channel with the single highest correlation value
(p=—0.25, p=0.00 at 18 Hz). For an overview see Table 1.

In Figure 2 accuracy per run and spectral power for channel Po7 are plotted on a scale from
zero to one. The inverse relationship between power and accuracy is clearly visible in the first 75
runs. In later runs the relationship becomes less clear. This might be due to the fluctuations in
the 18 Hz band and classification accuracy.

To further illustrate the correlation of performance with the 18 Hz band, on channel Po7, we
split the runs in two groups. The first group contained those runs with power in the 18 Hz band
below the median value over all runs (5.25dB), the second group those with 18 Hz power above
the median. Figure 3 shows that the accuracy for those runs with 18 Hz power below the median

10
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Electrode/Band delta theta alphal alpha2 betal beta2

Fz *

Cz

P3 * * *

P4 * * * * *
Po7 * * * * *
Po8 * * * ES %
Pz * * * *
Oz * * * * % *

Table 1: Overview of significant frequency bands for all electrodes (p < 0.05). The bands and
electrodes with more significant correlations (p < 0.005) are emphasized by using bold print.

Po7 —+— Accuracy in %

Power at 18 Hz
15 on Po7

9th degree fitted
to power

9th degree fitted
to accuracy

Figure 2: Mean power spectrum at 18 Hz versus accuracy in percent on channel Po7. The spectra
are represented as power in dB (scaled from zero to one) per run. The accuracy is represented
as classification result in % correct (also scaled from zero to one) per run. Two polynomials are
fitted to the data to make the inverse relationship between power and accuracy clearer.

have a higher mean classification accuracy (80.0% correct with 5 flashes) then those runs with
high 18 Hz power (73.4%).

4 Discussion

Our data show a negative correlation between performance with a P300 BCI and power in the
baseline frequency spectra. This correlation is strongest on the parietal-occipital channels (Po7,
Po8 and Oz) in the 15 to 20 Hz band. This is contradictory to the findings in [6, 7] where positive
correlations between P300 amplitude (which should have a positive influence on classification) and
baseline spectra were reported for an auditory oddball task. Bearing in mind that using a BCI
comprises a cognitively more demanding task than an auditory oddball, the two results might not
be directly comparable. Generally, large desynchronization of the EEG is associated with cognitive
processing caused by frequency changes and phase shifts of the involved neural networks [11]. In
contrast large scale synchronization of the EEG, in particular in the alpha band, reflects neural
networks oscillating at the same phase and frequency. This is considered to be a sign of mental
inactivity. Alpha and beta activity were also found to be connected to attention and cognitive

11
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Figure 3: Distribution of classification accuracy above and below mean power at 18 Hz on electrode
Po7. Mean accuracies for low power are at 80.0 %, for high power at 73.4 %. Each box has a line
at the lower quartile (bottom line), median (middle line) and upper quartile values (top line). The
whiskers extending from the boxes show the range of the rest of the data. If data lies beyond the
reach of the whiskers (1.5 times interquartile range) it is marked with a plus symbol.

processing, respectively, though whether a synchronization or desynchronization could be observed
was dependent on the task [12]. Beta suppression was found e. g. when subjects performed reading
and arithmetic tasks [13]. Therefore, the negative correlation between power and accuracy could
be an indicator of the cortical resources being recruited for the BCI task. This would indicate that
the mental states, affecting the baseline spectra and BCI performance, are directly connected.

An alternative explanation would be that strong oscillations in the baseline frequencies have
a negative influence on the classifier that we used without being directly related to the BCI task.
If this were the case frequency filtering of the data with a low-pass at e.g. 8 Hz and above 1 Hz
should remove the oscillations that interfere most with classification. Re-classification of the data
showed, however, that the mean classification accuracy at 5 sequences decreases from 76.7 % to
71.0%. This supports the hypothesis of a direct correlation between baseline spectral power and
BCI performance. Nonetheless, further analysis with different classifiers and frequency bands is
needed.

5 Conclusion

These findings could either be used to adapt a classifier to be invariant to base frequency changes
or to recognize physiological states of the BCI user that cause bad performance. Both might
reduce frustration of the user in subsequent sessions.

In the future, this should be repeated with more data from different patients. Additionally, a
comparison with healthy subjects could reveal whether the effects found in this study were specific
for ALS patients. Finally, the analysis method could be adapted to find non-linear relationships.
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Abstract

In this paper we report on the results of the validation of a general procedure for foot
motor imagery classification. The proposed methods use a spatial filter in the form of a
single Laplacian derivation at electrode position Cz. Ongoing electroencephalogram (EEG) is
described with band power features from 6 to 36 Hz using time segments of one second. A pair
of support vector machines (SVM) is trained to detect event-related desynchronization and the
post-imagery beta synchronization individually from any other brain activity. A simulation
of an asynchronous Brain-Computer Interface (BCI) is used to validate the method using
the true positive rate (TPR) and false positive rate (FPR) as performance measurements.
Both SVM are trained to predict the posterior probability of the motor imagery event-related
patterns. With this information and the assumption of independence, both probabilities are
combined. The results of three subjects show a maximum TPR of 0.53, 0.73 and 0.93 (for a
fixed FPR <0.10). Each performance is individually examined and analyzed.

1 Introduction

Execution of limb movement and the imagination of the same movement results not only in a
desynchronization (event-related desynchronization, ERD) of the sensorimotor rhythms, but also
in a beta rebound (beta event-related synchronization, beta ERS) after the termination of the
motor task [1, 2, 3]. This means that two different physiological phenomena (ERD and beta ERS)
are characteristic for a motor task. Both phenomena have a time span of 1.5 to 2 seconds when the
motor task is short-lasting (e. g., brisk motor imagery). Of special interest is the midcentral region
with the foot representation area and the supplementary motor area close to the vertex. It has
been reported that not only foot movement but also hand movement involves the supplementary
motor area and reveals a midcentral beta rebound [4].

Here we investigate whether foot motor imagery (MI) can be detected in the ongoing EEG
with a simulation of an asynchronous Brain-Computer Interface (BCI) when both phenomena
(ERD/ERS) are used for classification. Furthermore, a general procedure for the classifier setup
(training and testing) is proposed and validated.

2 Methods

2.1 Data description

Recordings from three healthy subjects (S1, S2 and S3) were collected during cue-based MI. Each
subject performed three runs of 30 trials each. All runs were conducted on the same day with
several minutes in between. In the paradigm, a cross was presented at ¢ = 0s; then at ¢ = 25, an
arrow pointing downwards was displayed as a cue and the subject was asked to imagine a brisk
movement (dorsiflexion) of both feet. The duration of MI was about one second. At ¢t = 3.25s
the cue and at t = 6s the cross disappeared. At the end of the trial (¢ = 7.5s) a random
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Figure 1: Labeling procedure and period definition. Event-related synchronization followed by
an event-related desynchronization (average power from MI data from subject S3). The inten-
tional control periods (ICP, shown at the bottom) are defined from the information related to the
paradigm timing.

inter-trial interval between 0 and 1s was presented. Sixteen Ag/AgCl electrodes placed over
the sensorimotor area were used to record monopolar EEG signals (Guger Technologies, Graz,
Austria) with a sampling frequency of 250 Hz. Reference and ground electrodes were located at
the left and right mastoid, respectively. From this data one small Laplacian derivation [5] at the
electrode position Cz was computed using orthogonal neighbor electrodes (anterior, posterior and
both lateral). Further details about the data collection can be found in [6].

2.2 Feature extraction

Each trial was analyzed using time segments of 1s in length with an overlap of 500 ms from ¢t = —1s
to t = 9s relative to the start of a trial (cue was presented at ¢t = 25s). The spectral description of
each segment was computed by means of logarithmic band power: (i) band-pass filtering (62 order
FIR), (ii) squaring the value of each sample, (iii) averaging all samples within the time segment
and (iv) applying the logarithm. A feature vector of twenty nine features (frequency components
from 6 to 36 Hz with a length of 2Hz and an overlap of 1Hz) was used for the full description of
band power in EEG during MI.

Only the information related to MI (ERD or ERS) was labeled as class 1. All patterns were
labeled twice for the classification of either ERD or ERS against all other brain activity. The
ERD patterns during MI from ¢ = 2.5s to t = 3.5s were labeled as class 1, all others patterns
were labeled as class 0. In a similar way, ERS patterns after MI (t = 4s to t = 5s) were labeled
as class 1. Figure 1 shows the labeling procedure for each trial.

The period where patterns are labeled as class 1 is from now on referred to as intentional
control period (ICP). As a consequence, the rest of the time is referred to as non-intentional
control period (NICP). Because ERD and post-movement ERS share slightly different frequency
components [6] and only the latter coincides with the excitability level of motor cortex neurons,
ERD and ERS can be described as mutually exclusive.

2.3 Pattern recognition

Two classifiers were trained for individual detection of ERD or ERS within their respective ICP.
Support vector machines (SVM) with Gaussian kernels were used for this task. One (training) run
was used to train a SVM with a specific combination of parameters (the performance of the SVM
depends on the regularization parameter C' and the width of the kernel ). The performance of
this classifier was estimated using a 10-fold cross validation. A test was made with the patterns

15



4th Int. BCI Workshop & Training Course 2008

from a second (testing) run and the values of true positive rate (TPR) and false positive rate
(FPR) were stored. Following this step, a new set of parameters {C, o} was tested with the same
approach.

After testing several combinations, the parameters C' and o, associated with the best perfor-
mance (smallest FPR and highest TPR), were selected to train a new SVM with the data from
the training run. The SVM model was also trained for posterior class probability estimation [7, 8].
The trained SVMs were used to compute the ERD and ERS posterior probability of the patterns
obtained from a validation run (a third run not used to train/test the classifier). This run was
described using the same number of logarithmic band power features for time segments of 1sin a
simulation of an online asynchronous system.

2.4 Evaluation

The output of each classifiers was additionally post-processed with three simple parameters: (i)
a threshold, (ii) a dwell time dwell time and (iii) a refractory period refractory period [9]. The
dwell time and refractory period values were set at 62 samples (248 ms) and 500 samples (2s),
respectively. The threshold was selected from a receiver-operator characteristics curve analysis.
For evaluation the ICP was extended to two seconds, from ¢t = 2.5s to 4.5s for ERD and from
t = 3.5s to 5.5s for ERS. This was done since the ERD or ERS patterns may be presented at any
time after the cue.

The values of TPR and FPR were computed by event detection. An event was detected every
time that a consecutive number of samples equal to the number of samples during the dwell time
exceed the threshold. After this, all events were suppressed during the refractory period. If the
event was detected during the new ICP definition (relative to the cue) a true positive was counted
in other case the event counted as a false positive.

2.4.1 Combination of MI related information

Information about ERD and ERS were combined to enhance the accuracy and minimize false
negatives, under the following assumptions:

1. ERD is present in all MI tasks
2. If an ERS is present, it is always after an ERD
3. Classifications of ERD and ERS are independent of each other

Following this the joint probability can be computed as the product of the independent event
probabilities: P(ERD, ERS) = P(ERD) - P(ERS), where P(ERD) and P(ERS) are the estimated
probabilities for each event. This combination was called the [[-rule. The physiological evidence
behind the [][-rule make it impossible that both events occur at the same time thus the P(ERD)
is delayed by 1s to match the ICP for ERS and then computing their product.

3 Results

Table 1 shows the performance from the three subjects. All results were obtained as the highest
TPR value achieved for a FPR < 0.10.

In Figure 2 the time-frequency maps from all three MI runs are shown together with a few
examples of single trial EEG and the average probability for each classifier.

Time-frequency maps were computed for each subject using the data from all three MI runs.

4 Discussion

All subjects presented an acceptable performance for at least one of the validation runs. Subject
S1 attained a maximum TPR of 0.60 (FPR < 0.08) for runs #2 and #3. Subject S2 achieved
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P(ERD) P(ERS) [[-rule
TPR FPR TPR FPR TPR FPR
#1033 009 040 006 037 007
S1 #2017 008 050 009 0.60 0.07
#3007 005 057 009 0.60 0.08
#1 043 006 020 007 027 007
S2 #2050 0.09 007 007 0.53 0.6
#3017 008 023 009 027 008
#1 010 008 043 005 053 007
S3 #2063 006 053 008 0.70 0.6
#3060 009 070 008 0.70 0.06

Table 1: Performance for the different classification approaches based on P(ERD), P(ERS) and
the J]-rule. The highest individual performance (TPR > 0.50) is highlighted with a bold face.
RUN indicates the number of the run used for validation.
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Figure 2: Visualization of ERD, ERS and their average probability. Top: ERD/ERS maps show
the significant changes in power relative to a reference period (gray box from ¢t = 0.5s tot = 1.5s).
Middle: Examples of single trial EEG. Bottom: The average posterior probability for class 1 is
plotted for ERD (solid line), ERS (dotted line) and the []-rule (bold line). Their respective ICP
for validation is shown at the very bottom. In all cases the cue appearance is presented with a
vertical solid line (at ¢ = 2s) and ERS is marked with dotted lines/circles.
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P(ERD) P(ERS) [[-rule
D RUN" 1pr FPR TPR FPR TPR FPR
#1033 009 037 007 0.50 0.08
SI #2030 009 0.50 009 0.57 0.07
#3013 000 0.50 009 0.73 0.09
#1  0.57 005 023 004 0.50 005
S2  #2  0.73 008 013 008 0.53 0.08
#3023 009 033 009 043 0.09
#1013 009 0.93 007 0.93 005
S3  #2 0.77 008 0.57 009 0.73 0.07
#3047 0.0 0.90 009 0.83 0.6

Table 2: Performance measurements after adaptation of ICP. From the probability curves, the
detection ICP values for P(ERD), P(ERS) and []-rule based classifiers were changed to: (S1)
ERD from t = 2s to t = 4s, ERS from ¢t = 3s to t = 5s; (S2) ERD from t = 2s to t = 5s, ERS
from t = 2s tot =5s and (S3) ERD from ¢t = 2.5s to ¢t = 5s, ERS from t = 3s to ¢t = 5.5s. In all
cases the ICP for []-rule and ERS have the same ICP.

a top performance of 0.53 (FPR = 0.06) just for run #2. The best subject was S3 achieving a
maximum of 0.70 (in validations with run #2 and #3, FPR 0.06). In all cases the maximum
performance was reached with the use of the [[-rule. The difference between this rule and the
best individual performance was between —0.03 and 0.10 (except S2 run#1).

The ERD/ERS patterns shown in Figure 2 are useful for understanding the differences in the
individual performances. The best subject (S3) shows a large ERS pattern centered around 20 Hz
after t = 4s. The single trials show bursts related to power increase around the same time point.
For the other subjects (S1 and S2), the ERS forms a smaller and more widespread pattern around
25Hz at t = 4s. Although the ERS is small for subject S1, the highest intensity is localized in
a small area. Subject S2 shows an ERS pattern with several local maxima. Additionally, bursts
in single trial EEG from the same subject are not easily identifiable. A closer look on the single
trials revealed that not all of them presented neither ERD nor ERS, which is directly responsible
for a bad training set and a small number of true intentional control events, e.g., S2 where runs
#1 and #2 are similar while run #3.

ERD patterns are present in the maps from subjects S1 and S3; however, their localization just
after the cue and outside the ICP for ERD makes their discrimination capabilities hard to express.
If an ERD pattern is present between t = 2s and ¢t = 2.5s, the feature vector that describes that
pattern will be labeled as class 0. It can be seen that the ERD is very short lasting for S3,
but it is present until ¢ = 3.5s for S1. The existence of patterns describing ERD (or perhaps
ERS) inside and outside the ICP is misleading for the classifier (optimization of the SVM). In
Figure 2 the average posterior probability estimation for each subject is shown. Noteworthily,
both individual classifiers have almost the same output for subject S2, which indicates that both
SVM are describing the same phenomenon, most likely ERS, since almost no ERD is present in
subject S2’s map.

Several points can be ascertained from the average probabilities: (i) ERD and ERS can be
discriminated one from each other and both from any other brain-state, (ii) posterior probability
value is changing shortly before and after the actual event definition (either ERD or ERS), (iii) the
[[-rule improves classification when both events are correctly described and detected; however,
its classification value will be as good as the best individual event. Poor performance due to the
definition of the ICP for validation was confirmed by changing its localization. New ICP intervals
were selected from the probability averages in Figure 2. The results are presented in Table 2. All
subjects and all runs (except S2 run #3) show TPR values over 0.5 for the classification based on
the []-rule.
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5 Conclusions

The methods described in this paper have shown to be appropriate to describe the ERD/ERS
patterns and differentiate them from no MI patterns. All subjects showed acceptable performance
when the detection interval was individually chosen. Generalization of the method was proven
while all classifiers were trained in the same manner with predefined parameters from task-related
and physiological knowledge. Combination of ERD and ERS by the []-rule succeed in preserving
the classification accuracy of an ERD/ERS based asynchronous BCI. Tests were made with feature
selection showing no difference with the use of the complete feature set.

Acknowledgments: This work was supported by EU project PRESENCCIA (IST-2006-27731),
the “Steiermérkische Landesregierung” project GZ: A3-16 B 74-05/1 and the Austrian “Allgemeine
Unfallversicherung AUVA”.
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Abstract

This paper presents a method to recover task-related sources from a multi-class Brain-
Computer Interface (BCI) based on motor imagery. Our method gathers two common ap-
proaches to tackle the multi-class problem: 1) the supervised approach of Common Spatial
Pattern (CSP) to discriminate between different tasks; 2) the criterion of statistical indepen-
dence of non-stationary sources used in Independent Component Analysis (ICA). We show
that the resulting spatial filters have to be adapted to each subject and that the combined use
of intra-trial and inter-class energy variations of brain sources yield an increase of classification
rates for four among eight subjects.

1 Introduction

The ultimate goal of Brain-Computer Interfaces (BCIs) is to provide disabled people suffering from
severe motor diseases with a tool to restore communication and movement [1]. A typical example
of a BCI is based on movement imagery, which results in somatotopic brain signal variations in
specific frequency bands [2].

On the one hand, Independent Component Analysis (ICA) has been widely used for analyzing
and cleaning brain signals in electroencephalography (EEG). This approach, initiated in the early
90’s by Jutten and Hérault [3], aims at tackling the Blind Source Separation (BSS) problem (nei-
ther the mixing matrix nor the sources are known) by assuming mutual statistical independence
between sources. Such models have proved useful to increase classification rates of BCIs [4, 5], but
do not use a priori information about the tasks, namely the labels of tasks during the training step.
Different separation principles can be used to tackle the BSS problem. They depend on the sta-
tistical properties of sources, and on how statistical independence is evaluated. When sources are
assumed to be independent and identically distributed (iid), non-gaussianity of sources is required,
which involves higher order statistics or mutual information. The non-gaussianity assumption case
can be relaxed, yielding other families of algorithms based on second order statistics and requiring
coloration or time-varying energy [6].

On the other hand, the goal-oriented approach of Common Spatial Pattern (CSP) has been
introduced in [7]. The idea of CSP is to find the linear combination optimizing the ratio between
within-class scatter and the mixture scatter matrices. From a methodological point of view, it is
nothing but an exact joint diagonalization of two matrices, hence very similar to Approximate Joint
Diagonalization (AJD). This approach proved useful to discriminate two motor imagery tasks but
suffers from a lack of generalization to multi-class problems. A one-versus-rest (OVR) approach
is often used to generalize the approach to multi-class discrimination problems. Following ideas
from [8], an extension to multi-class problems has been proposed in [9, 10]. These approach were
based on AJD of sample covariances matrices.

Extending the work of [9, 10], this paper presents an approach to use intra-trial energy vari-
ations of sources and inter-class diversity. Our method is compared to CSP and the approach
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proposed in [9]. The quality of separation is assessed by classification rates in a 8-subject 4-class
motor imagery experiment (left hand, right hand, foot and tongue). The remainder of this paper
is organized as follows: in Section 2, we present the experimental paradigm, Section 3 provides
the reader with the detailed description of our method; finally we present and discuss results.

2 Subjects and experimental paradigm

In this study, the EEG data of eight subjects (three females and five males with a mean age of 23.8
years and a standard deviation of 2.5 years, [4, 5]), recorded during a cue-based four-class motor
imagery task, was analyzed. Two sessions on different days were recorded for each subject, each
session consisting of six runs separated by short (a couple of minutes) breaks. One run consisted
of 48 trials (12 for each of the four possible classes), yielding a total of 288 trials per session.

As mentioned above, the paradigm consisted of four different tasks, namely the imagination
of movement (motor imagery) of the left hand, right hand, foot, and tongue, respectively. At the
beginning of each trial (¢ = 0s), a fixation cross appeared on the black screen. In addition, a short
acoustic warning tone was presented at this time instant. After two seconds (at ¢ = 25), a cue in
the form of an arrow pointing either to the left, right, down or up (corresponding to one of the
four classes left hand, right hand, foot or tongue) appeared for 1.25s, prompting the subjects to
perform the target motor imagery task. No feedback (neither visual nor acoustic) was provided.
The subjects were asked to carry out the mental imagination until the fixation cross disappeared
from the screen at ¢t = 6s. A short break followed, lasting at least 1.5s. After that, the next trial
started. The paradigm is illustrated in Figure 1 (a).

Training Step Test Step

Band-pass filter Band-pass filter
8-30 Hz 8-30 Hz

Spatial Filter
Computation (ICA)

‘ Linear Projection ‘ Perepeens >{ Linear Projection

Source Selection ==+ i
] ‘ Features ‘ ‘ Features
ixation cross Motor . Break compuitations compuitations
f T T ‘ﬁ—>

0 1 2 3 4 5 6 7 8 t(s) ‘Classiﬁer trajning} """"""" ’{ Classification ‘

Beep

(a) Experimental paradigm (b) Method Overview

Figure 1: (a): Timing scheme of the BCI paradigm and electrode setup of the 22 channels. (b)
Method overview.

22 Ag/AgCl electrodes (with inter-electrode distances of 3.5 cm) were used to record the EEG,
the setup is depicted in Figure 1. Monopolar derivations were used throughout all recordings,
where the left mastoid served as reference and the right mastoid as ground. The signals were
sampled at 250 Hz and bandpass-filtered between 0.5 and 100 Hz. An additional 50 Hz notch filter
was enabled to suppress power line noise.

Although a visual inspection of the raw EEG data was performed by an expert, no trials
were removed from the subsequent analysis in this study in order to evaluate the robustness and
sensitivity to outliers and artifacts of each model. Three EOG channels and one ECG channel
were also used to measure electrophysiological activity of the subjects.
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3 Methods

We begin by stating the notations. x € RY represents EEG data, recorded at N electrodes at each
time ¢. In this work, we aim at finding a linear transformation of the data s = W7z to increase
the classification rate. The following section presents different methods for finding W, based on
different criteria. Intentions of the users are called classes and indexed k € [1...4].

Figure 1 (b) shows an overview of the whole processing stage during the training and the
test step. The spatial filter computation is done according to the different methods described
below. The training step is used to fix some of the parameters of the method whereas the test step
consists in applying the procedure to unseen data with previously fixed parameters. The dashed
lines represent information, which is shared between learning and test steps.

3.1 Method 1: Common Spatial Patterns

The idea of Common Spatial Patterns (CSP) [7] for two-class problems is to find the more dis-
criminative spatial filters v € R", which optimizes the Rayleigh quotient

T
{min max}iv Caalem1v
’ T
v Cm|k:1,211

where C,,|x—; is the covariance matrix of the data belonging to class ¢;. This optimization problem
can be solved by a generalized eigenvalue decomposition method. An advantage of this technique
is that spatial filters are ranked according to their discriminative power, thus allowing to select
specific features dimension L. Computations are also exact and fast. Although this method is
optimal for two-class problems, extensions to multi-class paradigms is not straight-forward. We
use in the following a One-Versus-Rest CSP to generalize to multi-class problems.

3.2 Multi-class independent common spatial patterns

Whereas some algorithms try to maximize independence, e. g. using non-gaussianity of the sources
without considering time structure, another way to separate source components is to consider
simple time structures within the data. The goal of our work is to study the performance of some
simple time structures. We thus look for some kind of non-stationarity in the data.

The general framework is that we are trying to recover sources s(t) related to each task by
assuming the simplest source separation model for linear mixtures of sensor measurements x(t):

x(t) = As(t) (1)

where A is the mixing matrix and s are the sources. The separation principle given by Pham and
Cardoso in [6] aiming at exploiting slow-varying variances of sources yields the joint diagonalization
of covariance matrices.

The observation interval is partitioned into @ parts: 7,, with ¢ € [1...Q]. For each time
interval, we define the covariance matrix:

Coo(Ty) = Erer,(z(t)z(t)T)

Then, the estimation of the separation matrix B = A~! is done by approximately jointly diago-
nalizing the set

S ={Cea(Ty)lg e [1...QJ}.

This joint diagonalization may be performed for example by the Pham’s algorithm [6]

A priori knowledge about the performed tasks during training is included by considering only
task-specific covariance matrices. This makes our approach close to CSPs but with the advantage
of inherently being a multi-class approach.
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3.2.1 Model-based source separation for spatial filtering

In the following, Ej(-) will denote the average across all trials related to class k. Cy,(t € [t1,t2], k)
will denote the set of covariance matrices for every trial of one session of a subject for task k
computed with EEG in the time domain between ¢; and ts.

Different kinds of diversities are to be considered in the following models:

1. Inter-class diversity (ICD): sources related to motor imagery have a varying energy among
classes. We exploit the fact that a source active for one mental task is active with a different
energy (or not active at all) for another mental task. This kind of diversity is exploited by
considering task-specific covariance structures, it is used by CSP to find discriminative linear
transforms of sensors.

2. Time-varying energy (TVE): as motor tasks are known to be a succession of activations in
different brain areas, it can be assumed that sources related to a mental task realization can
be active with different energies across the task. Joint diagonalization covariance matrices
computed using successive time windows will help recovering sources [6].

We want to stress the differences between these approach based on source-separation and the
approach based on CSP. First of all, whereas CSP tries to find the quasi-optimal linear com-
bination that optimizes the Rayleigh quotient given above, our methods try to incorporate the
best physiological spatial diversity. These approaches not only estimates the most discriminating
sources but also allow to recover some independent neurophysiological brain waves (according to
the spatial diversity considered). Lastly we highlight the fact that the types of diversity mentioned
here are sufficient conditions that can be provided to the joint diagonalization algorithm.

3.2.2 Method 2: Exploiting inter-class diversity

This first model uses ICD and was shown to outperform the classical CSP [9]. We recall that
this kind of diversity is exploited by considering task-specific covariance structures. For each trial
of one specific task, we compute the covariance matrix of the EEG from t = 2.5s to t = 7.5s.
Then we average across every trials of one specific task. As this is done for every mental task, the
procedure leads to a joint diagonalization of 4 covariance matrices (one for each task):

S = {En(Cou(t € [25,7.5,k)) | kell...4}

3.2.3 Method 3: Exploiting inter-class diversity and time-varying energy

This second model aims at exploiting the idea that sources are active with different energies
between different tasks and/or that the energy of a source is time-varying inside one task. This
information is used by partitioning the previous interval to 4 subintervals, [2.5,7.5] = U 7.
Thus the diagonalization set consists of 16 covariance matrices:

S ={En(Cou(t € T;,k)) | i€[l.4,ke[l... 4}

3.3 Global procedure

In order to test the generalization ability of each method, a cross-validation procedure is used. For
each subject and each session, we have 72 trials for each of the four classes. We permute the 72
trials of each class to obtain four randomly ordered sets of labeled trials. We then select the first 7
trials of the four randomly ordered sets. They constitute the first test set of the cross-validation,
the remaining trials constitute the first training set of the cross-validation. The second test set
will be the 7 next trials of each class. One cross-validation is completed when the ten successive
test sets and their associated training sets have been considered.

For each test and training sets, we apply the procedure as illustrated in Figure 1(b). We
first consider the band-pass filtered signals corresponding to the training set to find the optimal
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spatial filters according to each methods. In the case of CSP, the best potential spatial filters
are naturally ranked in the method, we only keep the first and last spatial filter of each of the
one-versus-rest CSP, thus resulting in 8 spatial filters. In the case of method 2 and 3, the potential
components are not ranked, we thus select relevant sources using the same method as [9], based
on an approximation of the mutual information between the label and the sources. In order to
achieve a fair comparison between the three methods, we also select the 8 best ranked sources and
their associated spatial filters. Thus at the end of step one in Figure 1, we have 8 sources for each
method. They correspond to the linear projections of the data onto the source space, depicting
the same time courses as the EEG measurements.

The next step consists in computing the features related to each trial of the training set. In
line with neurophysiological considerations, we computed the energy of each sources in the p and
0 band. This estimation is made by computing the Discrete Wavelet Transform of each sources.
Thus the number of total features to be classified is 16 for each method. The features are gathered
in a 65 x 16 matrix to train a LDA [5]. Parameters of the LDA are conserved for the test step.

Lastly, as depicted in Figure 1, the procedure is applied on the test set using the selected
spatial filters to project the data, the same method to compute features for each trial. The LDA
is used to classify features gathered in a 7 x 16 matrix.

This procedure is in fact applied 100 times, which corresponds to 10 cross-validations, a cross-
validation consisting of 10 disjoint test sets.

4 Results

The mean classification accuracies across subjects and sessions are not significantly different:
70.7%, 70.7 % and 70.6 % for respectively the CSP, ICD and ICD and TVE. Furthermore, we found
a strong inter-subject variability. Overall, performances of our methods are satisfying considering
the difficulty of the task. Our methods differ from the one employed in [5] because they did not
select features according to some qualitative criterion. A slight increase of classification rates is
thus not surprising. The best result was achieved with Infomax and was about 65 %. Moreover,
Infomax was used in a completely blind manner and did not use any a priori information about the
performed task to achieve the separation. Results obtained in [4] outperforms the results presented
here (ranging from 65 to 75 %) but used a numerically demanding feature selection (sequential
forward selection) to range about 1300 features from the feature extraction step.

High variability of classification rates across subjects (ranging from 40 to 80 %) leads us to
consider subject-specific results. Table 1 presents results for each subject and each session. The
classification rate (percentage and standard deviation) is considered in the second column of the
table. All pairwise t-test comparing the three models for each subject separately using the cross-
validations as observation units reveals that the best model outperforms the other two (p < 0.5)
for five out of eight subjects (S2, S4, S5, S6, ST7).

Correct (%) (Std Dev) Best Model Correct (%) (Std Dev) Best Model
ST 80.6 (0.9) ICD, TVE S5 82.1 (7.3) CSP
S2 53.9 (2.2) ICD, TVE  S6 62.8 (5.6) Csp
s3 86.4 (1.5) ICD S7 43.3 (2.6) ICD, TVE
S4 84.5 (2.2) CSP S8 86.0 (3.5) ICD, TVE

Table 1: Classification rates for each subject (S1 to S8) given by the best model.

4.1 Discussion

Different a priori information were considered in this paper, namely we used Inter-Class Diversity
and Time-Varying Energy. First of all, we showed in Section 3 that finding multi-class spatial
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filters can benefit from the use of simple a priori knowledge. It was quite obvious that using a
priori knowledge about the tasks performed would improve classification rates. But improvements
due to a priori knowledge about time-varying energy was quite surprising. This result supports
the hypothesis that different sources appears during the performance of the tasks and that their
time course is not constant. Time interval partitioning was very simple and we think that some
refined partitioning of intervals could result in significant improvements of the classification rates.

We pointed out a disadvantage of such a refined framework by showing that none of the pre-
sented methods could be considered as best for every subjects. Unsurprisingly, the design of
optimal spatial filters have to cope with inherent difficulties of studying brains and real subjects:
methods have to be subject-dependent to yield optimal results. This consideration has to be tack-
led to make such signal processing algorithm available for daily life use: an automatic procedure
should be designed to select subject-specific methods.

5 Conclusion

In summary, we presented here an efficient framework for increasing classification rates of multi-
class BCI paradigms. Our framework is well grounded on the Pham’s theoretical work about joint
approximate diagonalization and provides natural a priori knowledge that can be used to gather
advantages of both Independent Component Analysis and Common Spatial Patterns.
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Abstract

About one third of the BCI subjects cannot communicate via BCI, a phenomenon that
is known as BCI illiteracy. New investigations aiming to an early prediction of illiteracy
would be very helpful to understand this phenomenon and to avoid hard BCI training for
many subjects. In this paper, the first application on to electroencephalogram (EEG) of a
newly developed machine learning tool, Relevant Dimension Estimation (RDE), is presented.
Detecting the label relevant information present in a data set, RDE estimates the intrinsic
noise and the complexity of the learning problem. Applied to EEG data collected during motor
imagery paradigms, RDE is able to deliver interesting insights into the illiteracy phenomenon.
In particular RDE can demonstrate that illiteracy is mostly not due to the non-stationarity
or high dimensionality present in the data, but rather due to a high intrinsic noise in the label
related information. Moreover, in this paper is shown how to detect individual BCl-illiterate
subjects in a very reliable way, based on a combination of the several features extracted by
RDE.

1 Introduction

Rehabilitation and communication for amyotrophic lateral sclerosis (ALS) patients are the most
important motivations and long term goals for Brain Computer Interfaces (BCI), a research area
which has enjoyed a growing interest in the last decade. In contrast, most BCI studies are per-
formed on healthy subjects and work on improving existing algorithms for the classification of
mental states using electroencephalogram (EEG). Actually, about one third of the BCI-users is
still not able to communicate with the machines. Even a healthy subject could become very frus-
trated during an experiment, when he realizes that he is a so called “BCl-illiterate”, and very
few patients are willing to experience this situation. BCI medical applications could find larger
acceptance, if the ratio of BClI-illiterate users could be minimized to a very small percentage. A
robust prediction of BCI illiteracy would also help to avoid false hopes and to reduce the efforts
needed to train a patient for communication by BCI. For this purpose, new methods for EEG
data set exploration and new features describing EEG data sets are needed in order to be used as
predictors for BCI illiteracy.

Relevant Dimension Estimation (RDE) is an algorithm proposed in [1] which makes use of
kernel PCA (Principal Component Analysis) in the feature space together with label information
in order to assess the actual class related information contained in a data set. In particular,
RDE estimates two properties: (1) the dimension of the subspace in kernel space containing the
relevant information, and (2) the noise contained in the labels. Both numbers allow to measure
the interaction between the data set and a chosen kernel, and in particular to give an accurate
image of the problem complexity of the amount of noise contained in a learning problem.
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Setting Name Band [Hz] | Time [ms] | Channels | Feature
calib-power-all 0.5-45 750-4000 | all band power
calib-power-sel sel sel sel band power
calib-power-cenCh 0.5-45 750-4000 | C* band power
calib-power-cenCh-alpha | 8-13 750-4000 | C* band power
calib-CSP-feat sel sel sel CSP features

Table 1: Preprocessing parameter settings.

In this study, a first application of RDE on EEG. Using Gaussian kernels of different widths,
the dimensionality of the data set and the amount of noise is estimated at different scales. Our
hypothesis is that a data set from an illiterate subject is intrinsically high dimensional and therefore
not well classifiable with features generated by the Common Spatial Patterns (CSP) method. To
test this hypothesis, features extracted by RDE are compared with the CSP features in terms of
classification performance.

2 Experimental setup

A dataset of 48 BCI sessions from 40 healthy subjects has been investigated. Data was recording
with the Berlin BCI (BBCI) during classical motor imagery BCI experiments (see e.g. [2, 3]). In
the calibration session, the subjects were asked to perform 200-300 trials of motor imagery for the
left or right hand and for the foot. T'wo classes were then chosen for the feedback session, depending
on the offline classification performance of a linear classifier that processed CSP features [4]. In
the feedback session, targets and feedback of the classifier output were given visually.

3 Methods

3.1 Preprocessing

Within this study, several preprocessing parameter settings have been used. The preprocessing
steps for each setting are as follows: (1) low pass filtering at 100 Hz, (2) cutting continuous EEG in
epochs in a specific time interval after the stimulus presentation, (3) optional channel selection, (4)
rejecting bad trials and channels by variance based artifact rejection, (5) selecting trials belonging
to the 2 classes already chosen for the online feedback, (6) filtering in a setting specific frequency
band and (7) calculating band power.

Preprocessing settings differentiate in steps 2, 3, 6 and 7, see the overview in Table 1. In the
Channel column, “all” means that all channels after step 2 are used in calculating the features,
i.e. step 3 was ignored. On the contrary, “sel” means that a further channel selection has been
applied. In particular, the channel subset was determined by a heuristic that at the day of the
experiment in order to maximize CSP performance. The same convention for “sel” is valid for the
second and third columns. Finally, C* means that all central channels (according to the 10-20
EEG system) were used.

3.2 RDE

RDE has been applied on each data set. A Gaussian RBF (radial basis function) kernel has been
chosen. Two parameters had to be selected: the kernel width and the dimension, i.e. the number
of leading kernel PCA components. The range for the kernel width v was between 1072 and 107.
The range for the dimension d was [2, N/2] where N is the number of trials available. For each
kernel width ~, the kernel matrix K (v) and the sorted eigenvectors E(-y) have been calculated. In
order to estimate the kernel width and the dimension of each data set, both methods indicated
in [1] have been used. The first method finds the kernel width  and the dimension d which
minimize the negative log-likelihood function L(7, d) defined as
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with o= ZZ:; s;  and oF = — i%_; s; (2)

In the above equation, s; = ul'Y are the contributions to labels of the kernel PCA components
and u; are the eigenvectors of E(v).

Within the second method, the label predictions are calculated for each parameter combination
using the projections on the label of the kernel PCA components S(d,~y) = E?Zl u;ul’. The best
kernel width v and the dimension d are then chosen minimizing the leave-one-out cross-validation
error as computed in [5].

3.3 Noise estimation

The noise present in a data set is calculated by RDE as the mean squared error over the label
predictions obtained using the estimated best number of kernel components and the best kernel
width:

N
1
Noise = — V)2
olse = — ;Zl(SYl Y:) (3)

The variance of the negative log-likelihoods over all kernel widths and kernel PCA dimensions
has also been calculated as a feature, in order to capture the intrinsic noise. The smoothness of
the log-likelihood function has also been calculated as the distance of the function from a smooth
surface modelled by a fifth degree polynomial fitting the original function scaled between 0 and 1.

4 Results

4.1 Subject specific analysis

In Figure 1, the negative log-likelihood functions calculated as in Equation 1 for three different
preprocessing settings (1, 2, and 3 described in Table 1) are shown. Results from a subject with
very good BCI performance (calibration error = 3.20) are visualized in the top row, while results
from a subject with bad BCI performance, probably illiterate (calibration error = 34.10) are
visualized in the bottom row. An evident difference can be seen between the functions resulting
for the two subjects, even with the first preprocessing, where no subject depending frequency
band, channels and time interval selection has been applied.

Looking at the negative log-likelihood functions it can be hypothesized that the first method
described in Section 3.2 will fail in searching the best kernel width and dimensionality, due to
the extremely noisy function and many local minima. In fact, the results obtained looking at
the minimum of the function 1 revealed to be not robust against small changing in preprocessing
settings, especially for subjects with bad BCI performance. For this reason, the second method has
been chosen to estimate robustly the best kernel width and the best dimension. Still, the negative
log-likelihood function as shown in Figure 1 is extremely informative regarding the noise in feature
space present in a data set and it is independent from the method chosen for parameter selection.
The log-likelihood function for bad subjects is not just much less smooth, but its range is also much
smaller than for good subjects. For this reason, as described in Section 3.3, the smoothness and
the variance of the log-likelihood function have been calculated as additional features indicating
the noise in the data set.

No significant improvement can be seen with other preprocessing settings, even with the subject
specific parameter selections, as shown in the center column of Figure 1. Applying RDE on CSP
features, which consist at most on 6 channels, the feature space becomes particularly free of noise
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Figure 1: Negative log-likelihood function for all kernel widths and dimensions. Top: good per-
forming BCI subject (CSP calibration error = 3.20). Bottom: bad performing BCI subject (CSP
calibration error = 34.10). From left to right, three different preprocessing settings: calib-power-
allCh, calib-power-selCh, calib-CSPfeat.
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Figure 2: Negative log-likelihood function for the best kernel width. Preprocessing settings: calib-
power-selCh. Left: good BCI subject. Right: bad BCI subject.

and low dimensional, so that the log-likelihood function is very smooth as shown on the right side
of Figure 1. On the contrary, the surface extension is still much less for BCI subjects with poor
performance, so that the variance is in fact a good feature to analyze.

In Figure 2, the negative log-likelihood function for the best kernel width is shown. The
contributions of each kernel PCA component calculated as shown in Section 3.2 are visualized on
the background. Also in this case, a strong difference between the two subjects can be observed. In
particular, when less noise is present, the first kernel PCA components are much more informative,
so that one can ideally separate the model in two components as in Equation 2, the first one
containing the relevant information essential for label prediction and the second one containing
mainly noise. In noisy data set as the second one, no structure can be seen in the contributions,
since the noise is distributed over all components.

4.2 Group analysis

In order to simply confirm how much RDE features correlate with subject performance, we inves-
tigated the correlation between the features extracted by RDE with the simplest preprocessing
setting calib-power-allCh and the CSP performance on the same calibration data set, i.e. the CSP
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Figure 3: Correlation between RDE and CSP offline performance. Setting: calib-power-allCh.

offline error. The results are shown in Figure 3: for each subject, in each subplot, a RDE feature is
plotted against the CSP offline error. Correlation and significance values are written in the titles.
Already with the simplest setting, strong correlation with subject performance can be observed
for all features and it becomes even stronger for the calib-power-selCh setting, not shown because
of lack of space. Subjects with CSP offline classification error greater then 30 % are represented
by circles, while crosses are used for the others. The two groups are divided by a vertical line.
In particular, the subjects with worst performance are pretty close and can be grouped as points
having the following properties: (1) high RDE noise, (2) small RDE dimensionality, (3) small
kernel width, (4) small variance of the negative log-likelihood function, (5) small smoothness of
the negative log-likelihood function.

A bigger challenge is to gain additional information about a subject using RDE, and try to
predict from the calibration data his future online performance. For this reason, we investigated
the correlation between RDE features for the calib-power-selCh setting and the CSP online error
obtained from the feedback data. Results are shown in Figure 4 where the same conventions as in
Figure 3 apply. Also, the correlation between CSP offline error and CSP online error is shown on
the last subplot. Even if the correlation between CSP offline error and CSP online error is slightly
better then for the RDE features, subjects with poor performance (CSP online error >= 30 %)
can still be better characterized by (1) high RDE noise, (2) small RDE kernel width, (3) small
RDE dimension, without using the CSP algorithm.

5 Discussion

In contrast to the hypothesis about the high dimensionality of BCI illiterate data sets, the RDE
chooses very few kernel components for the feature subspace containing the label relevant infor-
mation. This happens because the noise in the data set is so high that the relevant information
is distributed over all components, as revealed by the structure of the projections in Figure 2.
In fact, the high noise prevents RDE from choosing more components and forces RDE to choose
a small kernel width. As explained in [1], particularly noisy free data set could also have very
high dimensionality and very large kernel width, exactly at the opposite of BCI illiterates. This
also means that illiteracy is not due to the non-stationarity present in the data, but rather due
to a high intrinsic noise in the label information, meaning that the class membership cannot be
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Figure 4: Correlation between RDE and CSP online performance. Setting: calib-power-selCh.

predicted well from the features over all whole range of possible scales. Finally, some subjects,
not included in the illiterate group, exhibit a not so high noise, relative high dimension and kernel
width would probably benefit from more training examples.

6 Conclusion

This study was motivated by the necessity to find new features that can predict the BCI perfor-
mance of a subject with focus on an early illiteracy detection. For this reason, the RDE algorithm
has been applied on EEG data for the first time. The results show how RDE can be used on labeled
data to understand the structure of the information contained in the data. In particular, RDE
can be used to easily recognize illiterate subjects. It has been shown that the interaction among
the three RDE parameters is valuable in order to understand whether a poor BCI classification
performance is due to the intrinsic noise present in the data or due to a lack of training examples.
Finally, the hypothesis of too high dimensionality of BCI illiterate data sets has been rejected.
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MU 987/3-1.
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Abstract

Character identification on a P300 Speller is treated as a pattern recognition problem.
SVM were used to detect ERP when character to spell were intensified. The input char-
acteristics to SVM were the projections on an estimated signal subspace. This Subspace
was estimated via eigendecomposition of correlation matrix, from a set of epochs containing
ERP. ROC area for single trial ERP detection is 0.73 4+ 0.07, and accuracy index of character
identification were measure, as function of trials number.

1 Introduction

The P300 Speller is a BCI based on the correct identification of context update, as has been
initially described by Farwell and Donchin [1] and now extended and adapted by many others [2].
This BCI presents to the user a character/symbol matrix, whose columns and rows are randomly
intensified. In performing the BCI task, the subject must keep count of the number of times that
a target character is intensified; this produces the context update and an event-related potential
(ERP) is elicited. To identify the character, the BCI system must correctly detect the presence
of the ERP, once for a column and once for a row intensification, which occur along a single trial
of the task. The row and column identities give the coordinates of the target character. Several
number of trials are necessary to correctly identify the character, and therefore a method that
reduces required trials is desirable.

EEG recording epochs throughout the realization of a character identification task can be
considered as a combination of two uncorrelated signals, an ERP, s, and uncorrelated, zero mean
additive noise n [3, 4], both expressed as column vectors of M samples (one vector equals one
epoch). Thus, the correlation matrix estimates for the intensification epochs will have the form [5]:

R, =E{zz'} = E{(s +n)(s+n)'} = R, + R, (1)

where Ry is the correlation matrix estimate for the ERP, and R, is the noise correlation matrix
estimate. Forming tpe data matriz Z = [z; ...zy] where each column is an EEG epoch, R, can
be estimated using R, ~ ZZ’, which is symmetric, and so the eigendecomposition

EA=R.E (2)

can be computed. With the eigendecomposition, a set of orthogonal eigenvectors (columns of E)
and associated eigenvalues (diagonal of A) are obtained. The set of eigenvectors conforms a basis
that spans a space where each observation z resides [5].

E contains the vectors that describe the ERP (E,) and those that describe noise (E;), so
E is a set of two subspaces, i.e. E = [E, E;|. To perform subspace decomposition of the EEG
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signals, it is necessary to identify which vectors correspond to each subspace. Eigenvalues are
associated to the power that each eigenvector contributes to build Z; specifically, noise eigenvalues
under ideal white noise conditions have the same value (02, the noise variance). If eigenvalues
are sorted in ascending order, \; < ... \p... < Ay , there exists an inflection point k£ at which
both subspaces are divided. The Akaike information criterion finds this inflection point based
exclusively on eigenvalues [6], by computing the minimum k* of

AIC(K) = —2Nko(k) + 2(M + 1 — k)(M + 1+ k) (3)

where N corresponds to the number of signal vectors in Z, M is the number of samples per vector
z;, and ¢(k) is the likelihood function:

k=1 \1/k
$(k) = log (%) (@)
=0 k

Given k* as the minimum of equation (3), eigenvectors from 1 to k* correspond to the noise
subspace, I, and those from k* +1 to N are the eigenvectors that span signal subspace E;. With
the identified subspaces, signal z can be modelled as:

zZ = s+nmn
= E0+Ep (5)

where 0 and ¢ are coeflicients that weigh each subspace vector. Since both subspaces were obtained
via eigendecomposition, the inner products with vectors in Fy gives

E'z = E.E0+E.E,p (6)
I10+0¢p=20

It follows that the projections @ are features that can be used as inputs for a pattern recognition
process that identifies ERP vs. no-ERP epochs.

Some researchers have described the P300 Speller as the succession of different processes. In this
perspective, five different waves are elicited by the oddball paradigm: P100, N100, P200, N200 and
P300. Except for N200 and P300, the rest of the waves are related to activation of primary sensory
areas [7]. Some authors have associated these waves to different sensory processes, P100 and N100
to the visual estimulation, P200 to attention, and P300 to context update [8]. These waves could
serve as auxiliary information for the detection of P300, since their conjunction conforms the
complete ERP, even when in some subjects elicitation of all these waves is not clearly observable.
Based on these observations, three different time windows can be used to detect the presence of
all these waves, one for P100 and N100, a second one for P200 and N200, and finally one more
for the P300 wave. Proposed observation windows are 0-200ms, 100-300 ms and 250-600ms; a
wider window in the P300 case is due to its more variable latency [7].

In order to achieve the detection of an ERP, and thus perform the identification of characters,
a subspace estimation is carried out for each analysis window during the training phase. Then,
for each epoch and window, a vector of ¢ characteristics was obtained; a feature vector for each z
is formed by concatenation of these three sets of coefficients. As described above, the number of
features in each set is determined by the Akaike criterion. Finally, since more than one channel
can be used to record EEG activity which might be useful for detection, feature vectors can be
further expanded by gathering features from each channel for every epoch. The dimension of the
complete feature vector is given by
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D= Nu. (7)

where C' is the number of channel considered for the detection; ¢ and w are the channel and window
indexes respectively; and NV, . is the number of eigenvectors that conforms the signal subspace
based on the Akaike criterion.

2 Methods

2.1 Data

Data were recorded from six healthy subjects performing the P300 speller test; for all the subjects
involved this was their first contact with the BCI. Recordings were made with a g.tec USB amplifier
(g.tec, Graz, Austria) using the BCI2000 platform [2], at a sampling frequency of 256 Hz, using
band pass filter from 0.1 to 30 Hz, and a notch filter between 40 and 60 Hz. All subjects spell from
2 to 4 words, with a mean number of spelled characters of 12. Intensification and inter stimulus
time were 125 ms and 62.5 ms, respectively. All recordings were directed, so each subject spell one
word from a predefined list. Before analysis an offline processing were made, data were filtered
with a low pass digital filter (FIR order 151) at 12Hz, and normalized in amplitude between 1
and -1. Post-stimulus windows were obtained and labeled as described before.

2.2 Analysis

EEG channels to be included in the analysis were selected according to their SNR, and correlation
index along full-word recordings; this means that those channels (up to a maximum of four) that
had larger SNR and a high correlation index were selected. i.e. those channel that present the
most similar behavior through different word recordings, were possible channel to be used for
classification, and from that selection those with larger SNR were finally used. The classification
model used was a support vector machine (SVM) with a gaussian kernel, as implemented in the
LIBSVM library [9].

Three different analysis were performed: first, to determine which combination of channels gets
better classification indexes; second, to optimize classifier hyper-parameters (kernel v and cost);
and third, to evaluate accuracy on an offline P300 speller test.

Channel Combination. First analysis consisted on the utilization of 30 signals with ERP of
one recording to estimate subspaces; unseen epochs from the two classes (with/without ERP)
were used in an equiprobable mix to extract features. Through 10-way cross-validation, optimal
classifiers were obtained for individual channels, and combinations of two to four channels, as
described. The best combination, determined by ROC analysis and classification accuracy, was
selected for tuning in the second analysis.

Optimization. In the second analysis, one recording was used to estimate subspaces, and the
others recordings were used to map ROC area and accuracy index along various values of « and
cost, to search for the combination with the best indexes. If more than two recordings were
available, the analysis was carried out using the different combinations between registers. As
result of this, cost and v values with best classification indexes were chosen to perform an offline
P300 Speller test.

Offline P300 test. Once a channel combination and SVM hyper-parameters were determined,
offline testing was performed. As for the second analysis, one recording was used to perform
estimation of subspaces, and to train the SVM. The SVM training was made taking an equiprobable
mix of epochs. With the trained SVM and the estimated subspaces, the remaining recordings are
processed by the classifier. For each epoch that corresponds to intensification of one column or
one row, class probability is calculated as function of SVM classification. A posteriori probability
estimates for each column and row are computed as follows:
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Ple) = ®(f(z.))  Ple) €[0,1] (8)

where e indicates the intensification index ([1,...,12] columns from 1 to 6 and rows from 7 to

12); ®(-) is a mapping function from SVM output to posterior probability [9, 10] classification

function, and f(z.) means feature vector from post processed EEG recording at e-th stimulus.

The posterior probability is accumulative trial by trial, so at end the correct character has a larger

probability than the others. A column is selected as argmax{P(e)}, e € [1,...,6] and equivalently
e

the row is selected over e € [7,...,12]. ROC areas were measured as a function of trial number.

2.3 Results

Channels used for analysis varied depending on each subject. Except for one case, the channels that
reflected best subject’s activity involved at least one channel from the occipital region, together
with central channels. Number of best channel combinations varied from 2 to 4. Globally, channels
used were from FP1, FP2, Cz, C4, Pz, O1, Oz and O2.

2 4 6 8 10 12 14 2 4 6 8 10 12 14

(a) accuracy (b) ROC area

Figure 1: Mean accuracy and mean ROC area for the 6 subjects.

Figure 1 shows progression of accuracy and ROC area, as function of trial number. These
figures show mean value and standard deviation across the six subjects. It is noted that subjects
E and F made the test twice. Detailed progression by subject could be observed in Figure 2.

3 Discussion

Figures 1 and 2 show that classification vary depending on subject. It is important to note that
all subjects made the test for their first time ever, so they were not trained and had no previous
knowledge about it. Subjects spell around 12 characters each, and since one record was taken
to estimate subspaces and train the SVM, then accuracy and ROC area are estimated over the
detection of eight characters on average, so a mistake in detection has a significant impact on the
indexes. ROC area is an unbiased index for classification, for this the number of events has a
minor impact than for accuracy. The ROC area in single trial was around 0.7, and it increased
as a function of number of trials. Contrary to accuracy, ROC area had less variation between
subjects.
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Figure 2: Accuracy and ROC area for the 6 subjects. Each subject is indicated by a capital letter.
For subjects E and F, two curves are shown, each one corresponds to different session (“+” for
first, and “«” for second).

Due to the small number of characters, the SVM was trained with few patterns, while it is
known that an increase in the number of training patterns would increase classification efficiency.
Results show that even with this limited number of patterns, the subspace decomposition presented
here has good efficiency in terms of accuracy and ROC area.

For subjects E and F, who made the test twice (in different days), an effect of increment of
their respective indexes is observed, possibly due to a mild training process of these subjects. This
situation hints that indexes could increase if subjects spell more characters, apart from reducing
overall variance. Spelling more characters gives more epochs to improve classifier training, subjects
get used to the BCI, and the impact of mistakes over accuracy index will reduce.

Results show that the proposed method is able to be included as a classification process for an
online P300 Speller. Improvements from other classification methods are that few epochs (around
240) are needed to obtain good results, and the SVM could be re-trained with new patterns in a
fast, efficient way. The ROC area index shows that the detection of ERP based on subspace features
has good single-trial results, 0.7 on average, which naturally increases with accumulated trials. It
is expected that the inclusion of language models [11] would improve the system performance.
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4 Conclusion

The evaluation of the proposed feature extraction method has demonstrated its viability to be
used in an online speller test. Around 240 epochs (half of them with ERP) were utilized for SVM
training, and even with this small set, adequate results have been reached. Accuracy index in
character detection is 45 427 % and ROC area of 0.73 £ 0.07 for ERP identification in single trial.

Subject training could increase classification indexes; if this occurs, then the number of trials for
a correct identification could be reduced more. For the best subjects in this study, around 5 trials
were enough to obtain 90 % of correct identification. Taking into account that all the subjects
used the P300 Speller for their first time, this is a promising indicator. Training improvement
could be observed in subjects E and F for whom single trial indexes increase evidently from one
session to the next.

Acknowledgments: The authors acknowledge the support of the National Council of Science
and Technology (CONACyT) through scholarship 193307 for Mr. Bojorges-Valdez, and the con-
tribution of the Universidad Nacional de Entre Rios (UNER, Argentina) in hosting the speller
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Abstract

The P300 data provided by the Wardsworth centre for the BCI competition 1T and III
have been used as a benchmark to assess the performance of many differing methods of P300
classification. In this paper the use of the discrete wavelet transform and the Fisher linear
discriminant to classify data set IIb from the BCI competition II is presented. The wavelet
chosen was coif3 since it closely resembles the desired wave shape and also produced good
results in extracting the necessary features. The performance of the proposed method is equal
to the winning one presented on the BCI competition II website, utilising the same channels
but using a feature vector of almost a fifth of the size and requiring no parameter tuning.
Furthermore the proposed method is considerably quicker and computationally inexpensive.

1 Introduction

The P3 or P300 BCI paradigm is a synchronous BCI paradigm named so due to the positive
deflection of the EEG at the central electrodes around 300 ms post stimulus. The P300 or P3 is an
attention based event related potential and can be caused by visual, auditory and somatosensory
stimuli. The user is able to interact with the interface by paying attention to certain stimuli while
ignoring others [1, 2]. The protocol used to collect the data for data set IIb is the one originally
used by Farwell and Donchin [2], where the user was presented with a matrix of symbols and each
row and column would flash randomly. The user would only pay attention and mentally record
the row or column flashes that happened to contain the symbol they desired to select.

The Fisher Linear Discriminant (FLD), or Fisher’s LDA, is a linear classifier which aims to
separate the data representing two classes through hyperplanes by maximising the difference in
the projected class means while reducing the variance of the projected data [3]. The linear nature
of the classifier offers some advantages and disadvantages. The main advantages of the FLD are its
simplicity and speed of execution. Its disadvantages are the lack of a regularisation parameter and
its linearity. Despite these drawbacks, FLD and similar variants have been successfully applied to
a number of BCI problems [4, 5]. The FLD function used in this work was the one provided by
the statistical pattern recognition toolbox for Matlab [6].

A wavelet is a limited duration waveform with an average value of zero [7]. There are a
multitude of wavelets with varying properties and suitability for certain tasks. It is very important
to select the most suitable wavelet for analysing the intended signal. One way of selecting an
appropriate wavelet is to observe the desired wave shape and chose one that closely matches its
shape [8] (Figure 1). All the wavelet methods used to complete this work are available in the
Matlab wavelet toolbox [9].
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Figure 1: Left: Coif3 wavelet. Right: Grand average of the target (solid line) and non-target
(dashed line) responses.

2 Methods

2.1 Signal processing

The data as provided by the BCI competition IT website was sampled at 240 Hz at 64 electrode
sites [10]. The data were later lowpass filtered at 30 Hz and highpass filtered at 0.1 Hz using a 8!
order Butterworth filter. The channels chosen were: Fz, Cz, Pz, Oz, C3, C4, P3, P4, PO7, POS,
due to their successful use with the BCI competition IT and other P300 data sets [11, 12, 13]. The
data was then downsampled to 60 Hz.

2.2 BCI paradigm

The subject was presented with a 6 X 6 matrix containing a total of 36 symbols. Each row and
column of the matrix is highlighted in random order and once within a trial. For a letter to be
selected the user must select one column and one row. So within a trial 2 out of the 12 row/column
intensification’s should contain an increased amplitude P300.

2.3 Data

The data provided contained 42 training symbols and 31 test symbols, each composed of 15 trials.
Out of the 42 available training samples only 39 were used, since the last set of training data
contained an error in the event cue information. The error was not evident in the EEG but in
the matrices containing the event cue onset, offset times and type (StimulusCode, StimulusType,
Flashing). It is conceivable that the erroneous cue may cause subsequent event cues to be reported
at incorrect time points. Fault tolerance and prevention of such errors in an on-line system should
not lie with the preprocessing and classification software, but with the software carrying out the
recording from the EEG device. Therefore a solution for this type of fault is considered beyond
the scope of this work.

2.4 DWT processing and FLD training

After the data had been preprocessed a period of 700 ms post stimulus was selected from each
of the 10 chosen channels. This meant that each epoch was represented by a 10 x 42 sample
matrix. Each 42 sample vector was then decomposed using single level wavelet decomposition,
resulting in an approximation and detail vector. The approximation vector was chosen and the
detail discarded. Wavelet used was coif3. This resulted in the epoch being represented by a 10 x 21
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Figure 2: FLD4+DWT Column/row/character accuracy across trials.

matrix. The matrix was then reshaped to make a 210 element vector. This 210 element vector
would be the input to the FLD classifier. At each trial only two out of the 12 epochs should contain
a target P300. Unfortunately this means that the data is unbalanced (there are more negative
samples than positive). This is often solved in two ways, either by subsampling or oversampling.
Although subsampling has been used successfully by a previous entrant [11] the method favoured
here is oversampling due to the inclusion of all the data available. Before the data is classified it is
normalised to zero mean and unit variance. The classifier is then trained to distinguish into which
of the two classes the epoch belongs to. These two classes are whether a P300 exists or whether
it does not.

2.5 Test data classification

At each epoch the 210 element feature vector is the input to the FLD and the predicted class the
output (1 for P300 present 2 for P300 not present). The data is usually too noisy for the classifier
to be able to correctly identify the chosen row/column from one trial alone. Multiple trials are
combined by summing the discriminant function values for each row and column at each trial.
The discriminant values are positive for the presence of P300 and negative for the absence. After
the set number of trials the row and column with the largest values are the ones selected.

3 Results

This method achieved an 88.4 % correct classification rate for distinguishing between the presence
or absence of the P300 in the epoch. It was also able to achieve 100 % classification of the test set
after only 5 trials per symbol spelt (Figure 2). For a lower number of trials, the error increases.

4 Discussion

The P300 BCI paradigm provides some of the highest achievable information transfer rates using
non-invasive BCI. The results achieved using the FLD and DWT combination are as good as
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Figure 3: FLD4+DWT vs. SVM character classification accuracy (SVM results taken from Kaper
et. al [11]).

the results presented by the winner of the BCI competition II data set IIb, when comparing the
number of trials required to achieve 100 % classification [14, 11] (Figure 3). Also Rakotomamonjy
et. al [15], using the same 10 channels used in this study, achieve the same result (5 trials for 100 %
accuracy), at a much greater computational cost. It is also important to emphasise the following
points about the present study:

1. The feature vector was 210 samples long.
2. The same 10 channels are used as in Kaper et. al [11].

No channel selection method was used.

- W

The classifier used was very simple and fast.

5. The classifier required no parameter tuning.

6. Only one classifier was used to classify whole test set.

7. Only 2 trials were needed to achieve 80 % character recognition (Figures 2 and 3).

Although no time estimates for the parameter tuning and training time were provided by
Kaper et. al [11], using the same methods and libraries on a Q6600 at 2.4 Ghz took over 10
hours. It can be envisioned that due to the channel selection procedure and the multiple SVMs
the method proposed by Rakotomamonjy et. al [15] would take even longer. In comparison the
method presented here on a Q6600 at 2.4 Ghz took 6 minutes. Furthermore the time required to
classify data using the FLD+DWT method is quicker than the SVM methods mentioned by Kaper
et. al and Rakotomamonjy et. al [11, 15]. This makes the FLD4+DWT method ideal for online
BCT since it would allow the person to have a classifier ready in under 10 minutes (dependant
on the amount of data provided for training and processing power of computer). Although the
classification rate presented here is very high, it could possibly be further improved by replacing
the FLD with an SVM or other classifiers and carrying out a channel selection method. How
much improvement can be gleaned by using such computationally intensive methods would have
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to be seen. Also the fast execution and training of the FLD lends itself well to be used in an
ensemble. The wavelet chosen has proven to be a good candidate for P300 preprocessing, but it
may not be the best one. Possibly the one proposed by E. Glassman [16] or the matched Meyer
ERP wavelet [8] may provide even better results.

On a final note, when observing the accuracy rates of the correct columns and rows one
notices that on average the rows classification is much worse than that of the columns. In fact,
if the row classification was as high as that of the columns, it is perfectly conceivable that 100 %
classification could be achieved in less than 5 trials. The reason for the greater accuracy for the
column classification may be due to the subject or possibly an inherent shortcoming of the Farwell
and Donchin paradigm.

5 Conclusion

This paper has shown that the use of DWT preprocessing in EEG classification can lead to state of
the art results even when combined with a simple linear classifiers such as the FLD. Furthermore
the simplicity and speed of the method makes it highly suitable for online BCI applications. The
use of wavelets in BCI is only beginning to be explored and although it is doubtful it will be a
silver bullet for BCI it will be a very useful preprocessing tool not only for EEG data but possibly
ECoG and intracortical recordings too.
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Abstract

More and more effort is done in BCI research to improve its usability for patients, with
respect to its communication speed and transmission accuracy. In this contribution, we ex-
periment with BCI speller based on P300 evoked potential. More precisely, the typical form of
event-related potential (ERP) inspires us to devise classification methods based on the simi-
larity /dissimilarity in the time domain between single trials and one or several estimated ERP
templates derived from subject recordings. The reliable estimation of template is difficult in
a single trial due to the low signal-to-noise ratio (SNR) of electroencephalographic (EEG)
signals. We first explicitly estimate the template using several averaging techniques: point-
to-point averaging, cross-correlation alignment and dynamic time warping. Then we inexplic-
itly estimate several ERP templates using learning vector quantization algorithm combined
with an extreme learning machine. Finally classification is realized based on the similar-
ity /dissimilarity between the single trials and the template. Simulation is carried out using
a BCI competition IIT data set acquired with the P300 speller paradigm. The experiments
show that template-based classifiers can also obtain high accuracy.

1 Introduction

Brain-computer interface (BCI) system is a potentially powerful new communication and control
option for those with severe motor disabilities. BCI system translates brain activity into commands
for a computer or other devices. Electroencephalography (EEG) is the most studied potential non-
invasive interface mainly due to its fine temporal resolution, ease of use, portability and low set-
up cost. Unfortunately, non-invasive implants produce a noisy signal because the skull dampens
signals. Another substantial barrier to use EEG as a brain-computer interface is the extensive
training required before users can work the technology.

Oddball paradigms are used by brain-computer interfaces to generate event-related potential
(ERP) on targets selected by the user. The well-known P300 speller is based on this principle [1].
The main problem is to be able to detect ERP in a noisy electroencephalographic signal recorded
on human scalp. Literature proposes a set of methods to detect ERPs based on averaging. Linear
or nonlinear alignment is used to deal with the variable latencies in ERPs. A good alignment
allows to obtain a better averaged ERP response, named “ERP template” here, and then to be
able to detect ERP faster.

Section 2 of this paper presents a set of methods of template-based classifiers. Section 3 presents
the results of these techniques on a well-known third BCI2000 competition data set acquired from
a P300 speller. In section 4, we conduct the conclusion and give recommendation for future works.

2 Methods

Methods design for ERP detection use features extracted from the responses in the time domain.
To extract features from the frequency domain after any transformation is difficult in this situation
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because ERPs are short-time events with a local peak. Here, we discuss two types of methods
using one or several templates estimated explicitly and inexplicitly in the time domain respectively.

2.1 Classifiers based on ERP template

In oddball paradigm, one deviant rare stimulus is presented to subjects amongst a train of standard
ones. Only the deviant stimulus induces an ERP. The most common evoked potential used in BCI
is the P300. Its main characteristic is a positif latency that occurs around 300 ms after the stimulus
presentation. This leads us to derive a set of classifiers. All of them first explicitly estimate one
ERP template by averaging the ERP responses in the time domain, and then use the distance
between the response and the ERP template as the discriminant criterion.

Point-to-point averaging (P2P) classifier: P2P classifier discriminates the ERP responses
from non-ERP responses in a straightforward way: first it estimates one ERP template by simply
averaging the measurements of ERP responses point-to-point, and then calculates the Euclidean
distance between responses and the ERP template. For the P300 speller, the ERP response
corresponds with the one producing the minimum distance within a set of column or row responses.
Then the other responses are considered as non-ERP responses.

P2P classifier is simple for implementation. However the latency of the components of ERP
varies with the external factors (such as target-to-target interval). Simply averaging the measure-
ments point-to-point could blur the component. We then seek the solution of alignment before
averaging. Such alignment includes linear alignment (such as, cross-correlation alignment) and
nonlinear alignment (such as, dynamic time warping).

Cross-correlation averaging (CC) classifier: Linear alignments can be done by shifting the
measurements before the point-to-point averaging. One of the well-known linear alignments is
cross-correlation. The best shift of one sequence in order to align it to the other ones is given by
the one producing the highest correlation [2, 3]. CC classifier first searches the best shift for pairs
of ERP responses before averaging them point-to-point to obtain one template. Then it calculates
the cross-correlation between the testing response and the ERP template. The predicted ERP
response corresponds with the one giving the maximum correlation value with the template. Such
scheme accommodates variable linear latency. However, if one looks the ERP measurements more
closely, it is found that the latency of the ERP component is nonlinear. In this case, the nonlinear
alignment methods are better than the linear ones for template estimation.

Dynamic time warping averaging (DTW) classifier: Dynamic Time warping distance is
widely used in speech domain. It is able to deal with compression/expansion by comparing the
distance of each point of the first sequence to every point of the second one using the information
of the amplitude and/or the first derivative of amplitude of the signals [4]. Hence, DTW classifier
first finds out the best nonlinear alignment path giving the closest distance, and then averages the
ERP responses according to the alignment path to obtain one ERP template [5, 6, 7]. Finally, it
recognizes the ERP responses as the one producing the minimum DTW distance.

2.2 Methods with several templates of ERP and non-ERP

On one hand, considering the complexity of ERP responses, one template could be insufficient
to capture the variability of ERP components. On the other hand, one would like to introduce
non-ERP templates into decision making process done by the classifiers. Clustering methods can
produce several templates. The aim of clustering methods is to split a set of patterns into clusters
as homogeneous as possible, i.e., patterns are gathered by similarity. A classical rule to assign a
new pattern to a cluster is based on distances between the input pattern and templates. LVQ is
the most famous algorithm in this category.
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learning vector quantization (LVQ): The first version of the learning vector quantization
algorithm proposed by Kohonen [8] is a supervised clustering method designed for classification.
Input weights (IW) of connections linking inputs to each neuron is a vector m with the same
dimension than input xz. Each neuron is assigned to a class according to the pre-defined layer
weights (LW). A classic competitive step is used to determine which neuron is the closest one
to the current input with the formula: ¢ = arg min;{||z — m;||}, and only the winner neuron is
updated according to the following rules:

me(t+1) = me(t) + a(t)[z(t) — me(t)] if  and m, belong to the same class

me(t+ 1) = me(t) — a(t)[z(t) — me(t)] if  and m, belong to different classes

« is the learning rate. To apply this algorithm, one needs to decide the value of learning rate
and the number of neurons assigned to each class. Further considering the multichannel recording
of EEG measurements, if one simply merges features from each channel, the dimension of IW
increases with the number of channels, and it thus causes memory problem in simulation. We
then consider multichannel LVQ.

Multichannel learning vector quantization (mLVQ): For multichannel LVQs, one LVQ
model is created for each channel, and trained according to the above rules to update IWs. Thus,
there are several ERP and non-ERP templates generated for each channels. In order to combine
the templates in an optimal way, we further introduce an update scheme for LWs: LW = (—||X —
IW||)IT, where X is the input matrix and T is the target matrix. The symbol t represents the
pseudo-inverse operator. Such a solution of LW is known as minimum norm least square solution.
It is originally found being used in extreme learning machine (ELM) in [9].

3 Results

3.1 Wadsworth BCI data set

The results presented here are based on the P300 speller data set from the BCI competition
III [10]!. The data set contains training and testing EEG data from two subjects. There are 85
letters for training and 100 letters for testing. For each letter, the recording consists of 15 epochs,
and within each epoch, there are 12 flashings. For each epoch, a random permutation is chosen to
highlight rows and columns. There is a 6 x 6 grid in this application containing 26 letters, 9 digits
and one dash character. We are interested in the measurement window starting from the onset
of the flashing and till one second, which consists of 240 samples at a sampling rate of 240 Hz.
In case the row/column is highlighted exactly where the target letter is located, we got the ERP
response; otherwise the non-ERP response.

3.2 Experimental results
3.2.1 ERP templates

Figure 1 shows the comparison between the ERP templates estimated by P2P averaging, CC
and DTW alignment averaging, respectively. Templates are built using the first 128 trials of the
training set of subject A. Indeed, the algorithms using CC and DTW prefer to pair trials in a
binary tree structure. The latency of the P300 component in the estimated templates by CC and
DTW alignment averaging methods is different from P2P averaging. This is the effect of aligning
the component in the time domain before averaging. And we found that the template estimated
by DTW was smoother than by cross-correlation.

IThe data set is available at: http://ida.first.fraunhofer.de/projects/bci/competition_iii/.
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Figure 1: Comparison of ERP templates (red solid curves) and averaged background EEG activi-
ties (black dot curves) for responses recorded on channel Cz using training data from subject A.
From top to bottom, templates are estimated by point-to-point averaging, cross-correlation and
dynamic time warping alignment averaging, respectively.

3.2.2 Classifier comparison

Simulation is carried out to compare the performance of the template-based classifiers using P2P,
CC, DTW and LVQ. The result of linear discriminant analysis (LDA) is also provided for its
simplicity and good performance in the application of BCIs. Table 1 shows the testing accuracy
for subjects A and B. The results are based on the raw measurements from channel Cz (i.e., no
pre-processing is involved). We used the full training set to estimate the ERP templates for P2P,
CC and DTW; while for LVQ and LDA, they are used to estimate the parameters of the models.
The full testing set is used to evaluate the performance of the classifiers. From the table, we can
see that LVQ and LDA achieve similar performance and are better than the classifiers using P2P,
CC, and DTW.

Table 2 shows the testing accuracy for subjects A and B based on measurements of all channels.
Due to limit of memory and the large size of the input data, one needs to re-sample the signals.
Thus, for Table 2, we first smooth the signal using a moving averaging filter with window size of
13, and then re-sample it with a down-sampling factor of 13. Further, multichannel version of LVQ
is used here. We find that the performance of mLV(Q and LDA are similar again and both increase
as more channels are used for classification; while the performance of the explicit template-based
classifiers using P2P, CC and DTW is bad.

From the above simulation results, we found that the performance of classifiers (such as LVQ),
which take account of both ERP and non-ERP templates is better than those (such as P2P,
CC, and DTW) which use only one ERP template. The optimization of the combination of the
templates from different channels through assigning different weights is even more critical for
improving the accuracy.

4 Conclusion and further work

BCI applications based on P300 ERP detection, such as the P3speller, need statistical or machine
learning techniques with temporal features. ;From a recording point of view, ERPs are graphic-
elements. They have a specific waveform clearly different from EEG background activity. Thus,
efficient modeling of the waveform can help to detect ERPs. Averaging techniques and clustering
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Method
Subject Epoch | P2P CC DTW LVQ LDA
05 % 8% 15% 1T% 18%
A 10 5% 26% 28% 28% 30%
15 3%  21% 39% 43% 41%
05 2% 6% 6 % 8% 15%
B 10 5% 9%  10% 13% 19%
15 3% 16% 15% 21% 26%

Table 1: Experimental results based on channel Cz for subjects A and B. The percentage of correct
classified letters contained in the testing set is shown regarding using the first 5 epochs, 10 epochs
and all epochs.

Method
Subject Epoch | P2P CC DTW mILVQ LDA
05 9% T% 7% 47%  45%
A 10 3% 6% 12% % 8%
15 14% 7% 1% 87% 88%
05 3% 2% 4% 2% 76%
B 10 3% 3% 3% 91%  92%
15 4% 4% 3% 96% 96%

Table 2: Experimental results based on all channels for subjects A and B. The percentage of
correct classified letters contained in the testing set is shown regarding using the first 5 epochs,
10 epochs and all epochs.

methods allow extracting one or several ERP templates. Averaging techniques using point-to-
point averaging, cross-correlation and dynamic time warping are not efficient. They produce
only one ERP template and suffer from two difficulties: first, responses are too noisy to easily
distinguish ERP from non-ERP responses; second, according to the previous remark, they do not
take into account the specificities of non-ERP responses to catch small differences between noisy
ERP and non-ERP responses. The first difficulty exists for any classification method. But, our
method mLVQ obtains similar results as LDA which is a reference technique for the P3Speller. It
is because mLV(Q takes into account the second remark. Thus, template-based classifiers can also
obtain good results. Moreover, this approach can extract knowledge about the ERP waveform of
patients.

In this article, we also evaluated the promising dynamic time warping distance. This kind
of similarity measure is widely used in speech domain and align efficiently two sequences even if
they differ each other from compression and/or dilatation on some segments. However, from our
opinion, DTW suffers from the low SNR. The real EEG signals used in our simulation are too
noisy. Many artificial peaks appear in the recording and thus it is difficult to obtain a strong
alignment. In order to mitigate this difficulty, one may reduce the window of investigation to
[250 ms, 650 ms| and constrain the window size of permitted distortion to short time. It should
help to focus the attention on the critical zone.

In practice, it is also very interesting to reduce the number of channels in order to equip the
patient with a compact system with only several necessary electrodes. Thus, channel selection will
be investigated in a further work.
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Abstract

Stimulus tagging is an important technique for investigating the functional operation of the
brain. In this paper we propose the novel noise tagging method as an alternative to the more
commonly used frequency tagging technique. Noise tagging is based on spread-spectrum signal
processing techniques and has a number of theoretical advantages over frequency tagging in
terms of noise robustness and temporal resolution. However, it is unclear how the brain
will respond to this unpredictable aperiodic stimulus type. We present preliminary EEG
experiments using auditory noise tagging which show that an attenuated version of the noise
tag is detectable in EEG signals. Further, this signal is sufficient to identify; i) which noise
tag was used, ii) the time lag (&~ 50ms) of the neural processing, and iii) to which tag the
subject was selectively attending. The last result in particular provides encouraging evidence
that noise tagging can be used as the basis for a selective attention BCI-system.

1 Introduction

Stimulus tagging is a commonly used technique where stimuli are modulated such that the modu-
lation can be detected in neural activity recordings. For example, visual images can be modulated
by changing their brightness. This modulation is expected to be processed alongside the stimulus
in the brain. Hence, the modulation tags (or watermarks) the stimulus, allowing it to be tracked as
it is processed in different brain regions at different time lags. Thus stimulus tagging is very useful
for basic physiological research. It is also very useful for BCI purposes as selective attention [1]
increases the neural response to the selected stimulus, and hence the strength of that tag.

There are two main types of stimulus tag, steady state [2] tags where the modulation occurs
more rapidly than the subject can perceive, and transient tags which happen infrequently and
evoke a transient response. Transient effects are widely used in the oddball-type BClIs, such as
P300 visual spellers [3].

Steady state stimulus tags have a number of advantages from a BCI perspective. Firstly, their
high speed means they can potentially give high timing accuracy. Secondly, as they are perceived
by the subject as a continuous modulation they can be presented for many modulation cycles,
allowing a long integration time which increases the signal-to-noise-ratio such that even very weak
responses can be detected.

1.1 Frequency tagging

The most common form of steady state tagging [2] is the frequency tag. Here the stimulus is mod-
ulated with a simple repeating modulation, such as a sine wave. A commonly used frequency tag is
the Steady State Visual Evoked Potential (SSVEP) [1] which is generated by varying the brightness
of a visual stimulus in a sinusoidal fashion, a similar approach using a low frequency amplitude
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modulation of a higher frequency carrier is the Auditory Steady State Response (ASSR) [4, 5, 6].
Frequency tagging has the advantage that the modulator is concentrated into a very narrow fre-
quency band which is easy to detect using a simple spectral decomposition. Further, because
different frequencies are uncorrelated, multiple tags can be used simultaneously and detected with
little or no interference [7].

Despite its advantages, frequency tagging has two potential disadvantages. Firstly, the narrow-
band nature of the tag leaves it susceptible to interference where a noise source near the tagging
frequency can mask the tag. Secondly, the short period of the stimulus may cause aliasing when
time lags longer than the repetition period become indistinguishable from shorter lags'.

1.2 Noise tagging

Inspired by the spread spectrum [8] techniques used extensively in wireless communication we
propose to use a novel alternative steady state stimulus tagging technique, called noise tagging.
The main idea is to spread the tagging signals’ power over a wide range of frequencies instead
of focusing it all in a narrow band. This spreading has the advantage that losing one particular
part of the signal spectrum has little effect on signal detectability. In fact the reduction in signal
detect-ability is roughly linear with the fraction of the signal spectrum lost. Such interference
robustness is important for BCI/neuro-scientific applications where parts of the signal are likely
to be lost due to either external (or neural) noise effects or simply because they are filtered out
during cognitive processing. By using spread spectrum techniques we maximize the chance that
some signal always remains in the recorded activity. Note, this also means the tag is robust to
inter-subject variations in stimulus response.

Noise tagging has the additional advantage that the tagging signal has a much longer period,
~ 1.5s in our experiment. This is much longer than the neural processing lags that are likely to
occur so temporal aliasing is no longer a problem.

The particular spread spectrum technique we use is Direct Sequence [9] spread spectrum. In
this method a random “spreading code” is multiplied with the signal to spread its power over
a wide band. In theory, a purely random process can be used to generate the spreading code.
However, this can cause problems if the generated tag happens to repeat (i. e. be highly correlated
with) itself at some point — re-introducing the temporal aliasing problem. Further, if one wishes to
use more than 1 noise tag at the same time, it is hard to guarantee that they will be uncorrelated.
Luckily, these problems have been solved in the telecommunications literature using specially
designed Pseudo-random number generators. In our work we use a particular form of these codes,
i.e. Golden codes [10], to ensure our noise tags are maximally uncorrelated in time with themselves
(i. e. have low auto-correlation) and each other (i.e. have low cross-correlation). Thus we ensure
the noise tags:

1. Minimize interference with other noise tags, so multiple tags can be used at the same time,
e.g. in a selective parallel attention BCI.

2. Minimize temporal aliasing, so we can accurately determine neuronal processing lags.

A Golden code is produced by XOR-ing together to individual maximal pseudo-random codes.
A maximal pseudo-random code can be easily made by appropriately choosing which stages of a
shift-register to XOR feed-back into its input, as shown in Figure 1 lower or upper blocks, such
that it shifts through all 2 — 1 possible states. A golden-code is produced when two appropriately
chosen maximal codes are XOR-d together with an appropriate delay. A nice property of this
approach is that every delay produced a different golden code.

As one cannot just look at the power in a single spectral band, detecting spread-spectrum tags
is a little more complex than for frequency tagging. However, if one makes the strong assumption
that the brain response is an attenuated, time-lagged version of the stimulus then the noise-tag
can be detected using a simple correlation approach. That is by “sliding” the tagging signal over

1Using 2 tags with different can frequencies allows one to resolve this ambiguity
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0-31 bit shift

Figure 1: Block diagram of the generation of a golden common code.

the brain data to find the time lag where they are maximally correlated?. Note, if we believe
the brain is responding to some more complex linear transformation of the tag (such as its first
derivative) then more advanced techniques can be used?. For example in [11] Desain shows how
estimating the impulse-response to the first-derivative of the tag gives impressive results.

2 Experiments

To test the effectiveness of the noise-tagging approach we are conducting a series of EEG based
auditory selective attention experiments. The aim of these experiments is to test if the noise tag
is detectable in the EEG, to compare its performance with that of a pure frequency tagging, and
to see if selective attention to noise tagged stimuli can be used as the basis for a BCI. In detail
the experimental design is:

e a saw-tooth tone of either 512 Hz or 768 Hz is used as a carrier?.
e tags are applied to these carriers using binary amplitude modulation, where for the 0bits
the amplitude is reduced to 20 % of its original value

e 2 frequency tags are used for comparison with the noise tag: a) 512Hz carrier with 42 Hz
amplitude modulation and b) 768 Hz carrier with 64 Hz modulator

e 2 noise tags, called A and B, were used with a 128 bits per second modulation rate. Both
were 255 bits long. The A tag used the 512 Hz carrier and the B tag 768 Hz

e each epoch was 2 seconds long, i.e. contained 1 noise tag
e two tasks are used:

— Serial Selective Attention — where tags (and carriers) are presented one at a time
to both ears in random order and the subject selectively attends (by counting) to one
of the tags.

— Parallel Selective Attention — where two tags (and carriers) are presented simulta-
neously, one to each ear, (512 Hz left and 768 Hz right). The subject selectively attends
by counting randomly generated reduced amplitude (deviant) tags on either the left or
right side.

An example of the tags used and their spectrum is shown in Figure 2.

The experiments took place in an acoustically and electrically isolated room, with EEG
recorded in a 256 electrode Biosemi active electrode system sampled at 2048 Hz (though for anal-
ysis this was downsampled to 512 Hz).

2In fact, mathematically this is exactly what the Fourier analysis is doing behind the scenes.

30ne advantage of the frequency tagging scheme is that a simple correlation analysis can detect any linear
transformation of the signal in the output.

4Note, 2 carriers are necessary so the subject can perceive the difference between the different noise tags.
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Figure 2: Example auditory tags used in the experiment. The left hand plots show the time-courses
of the amplitude modulation sequences. The right hand plots show the spectral distributions of
the corresponding tag, demonstrating the spread-spectrum nature of the noise tags.

We first examined the purely perceptual response to the different tags by analyzing attended
and unattended tasks together for the serial selective attention task. This type of analysis gives us
an indication of how strongly the tag is transmitted by the brain, and hence how useful it would
be for low-level neurological investigations, but not how useful it is for a BCI. The transmission
strength was estimated by simply computing the correlation between the tag and the EEG signal
(band-passed between 30-80Hz) on a channel-by-channel basis for all possible time lags. The
results of this analysis are presented in Figure 3 for the frequency tags and Figure 4 for the noise
tags. These results show that for both tag types which tag was used (i.e. 42 or 64Hz, A or B
code) can be easily identified from the EEG signal using this simple correlation method, though
for the frequency tag is effect is about 2x stronger. The aliasing introduced by the short period
of the frequency tag is also apparent. The noise tag does not suffer from this problem allowing
the neural processing lag to be easily identified (50 ms in this case). Further, which of the two
noise tags was used can also be seen easily. Additionally, it appears that the frontal electrodes (#
120-170) have a significantly reduced response with a different phase. The reduced amplitude is
because these electrodes are furthest from the auditory cortices. The phase difference implies an
additional time-lag before the signal is processed by the higher-level functions in the frontal lobes.

Next we re-analyzed the data to look for selective attentional effects, which can be used as the
basis of a BCI. The approach taken was to compute the correlation between the EEG and each
possible tag, and then use these correlations as inputs for a linear regularized Logistic Regression
classifier. Exactly the same analysis technique was used for the pure-perceptual, serial and parallel
selective attention task. The results of this analysis are presented in Table 1. These results
demonstrate that there is indeed a useful attentional modulation effect for the noise-tagging which
can be identified with the correlation approach. It also appears that frequency tagging, in addition
to generating a larger perceptual signal than noise tagging, also generates a larger attentional
modulation signal. Of course, with a more sophisticated signal analysis technique, such as the
impulse response learning function of [11], we may be able to significantly improve the classification
performance of the noise-tag.

3 Conclusion

Stimulus tagging is an important technique for investigating the operation of the brain. In this
paper we proposed the novel method of noise tagging as an alternative to the more commonly
used frequency tagging technique. Noise tagging is based upon spread-spectrum ideas and has a
number of theoretical advantages over frequency tagging in terms of improved noise robustness
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Figure 3: Correlation analysis for the frequency tagged perceptual task. For clarity only .5s
around the stimulus onset at time zero are shown. Left Plots: correlation of the 64 Hz tag with
the EEG, for each channel and time averaged over 64 Hz tagged epochs (top row), resp. for over
the 42Hz tagged epochs (middle row), and for each time averaged for all channels and for the
different sub-sets of epochs (bottom row). Right Plots: same as left hand plots with A and B
reversed.
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Figure 4: Correlation analysis for the noise-tagged perceptual task. Plot layout is the same as in
Figure 3 but for the 2 noise tags.
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Frequency Tagging (%) Noise Tagging (%)
Subject | Perceptual | Serial | Parallel | Perceptual | Serial | Parallel
it 98 65 70 89 63 60
mk 85 48 64 58 52 54
km 98 - 59 73 58 55

Table 1: Selective Attention Single Trail Percentage Correct Classification Performance for the
two types of stimulus tag (frequency and noise) and different types of modulation (Perceptual,
Serial and Parallel) studied. Trials were 2 seconds long and performance was estimated using a
10-fold randomized cross-validation.

and temporal resolution. However, it is unclear how the brain will respond to this novel stimulus
type. Our preliminary EEG experiments using auditory noise tagging show than an attenuated
version of the noise tag is detectable in EEG. Further this signal is sufficient to identify the noise
tag used, the time lag for the neural processing, and which noise-tag the subject was selectively
attending in both parallel and serial tagging experiments. The last result in particular provides
encouraging evidence that noise tagging can be used as the basis for a selective attention BCI. We
are currently conducting further EEG experiments to test this possibility.
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Abstract

Common spatial pattern (CSP) is a widely used method in movement related potentials
analysis for Brain-computer interface. In this paper, a non-linear variant of CSP is introduced
by kernel method, to deal with the data with complicated distributions. A large scale kernel
CSP algorithm (LSKCSP) is proposed to overcome the difficulty of large memory demand in
the training phase of brain-computer interface application. Experiment shows that LSKCSP
algorithm is effective for large dataset training and could obtain competitive results with CSP.

1 Introduction

The common spatial pattern (CSP) [1] is a supervised spatial filter and is proved very useful for
detecting the spatial and spectral differences between two types of electrophysiological signals [2, 3].
Nowadays CSP is successfully applied in the field of brain-computer interfaces (BCI) [4], for
recognizing movement related potentials (MRP) such as ERD/ERS [5, 6, 7, 8] and slow cortical
potentials (SCP) [9]. Generally speaking, like principal component analysis (PCA) and Fisher
discriminant analysis (FDA), CSP is also a general purposed statistical method, which can be
expected helpful to a specific kind of pattern recognition tasks. However, as we know, linear
methods have their intrinsic limitation that they always make the hypothesis that the data are
linear distributed. In many cases, it is the non-linear structures that exist in the data, and for
which the linear methods are obvious not optimal. Kernel method [10, 11] is a sort of powerful
approach that can transform the method to non-linear version, by performing the method in a
usually high dimensional feature space. As one representation of kernel methods, support vector
machines (SVM) have become popular in more and more applications for classification, including
EEG pattern recognition [7]. At the same time, many classical linear methods are endowed with
new ability to deal with non-linear problems [11]. Recently a formulation and solution of CSP in
feature space are proposed and applied to ECoG/EEG classification [12]. However, the number of
samples are usually very large when training kernel CSP, such that eigenvalue decomposition of
the kernel matrix becomes difficult or even impossible. This paper proposes a novel kernel CSP
algorithm for large scale dataset. In Section 2, CSP and kernel CSP are briefly introduced, as
well as the basic algorithm. Then based on quadratic equivalent representation, the large scale
kernel CSP algorithm are proposed. Experiment result of EEG classification is shown in Section 3.
Section 4 provides a discussion and concludes the paper.

2 Methods

2.1 Common spatial pattern and kernel CSP

Let’s consider the binary classification problem. Given two variables z,y € R” with a set of
observations {z;}™, and {y;}"_,, the idea is to find a spatial filter w € R such that the linear
projected signals has the high variance for one class and the low variance for the other:
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max wlSjw (1)
s.t. wT(Zl + EQ)’LU =1

The motivation of combining kernel method and CSP is mainly based on two facts: the success
of CSP in EEG feature extraction and SVM in EEG classification. The idea is to map samples to
feature space then perform CSP there.

®:RP - H, 2— O(2)

In H, the covariance matrices take the form

B = & 5 () - 8() - 87 = & 3 b)) )
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and the projection vector w can be expressed as a linear combination of all mapped samples:

m4n .
T, t=1,...,m
Zy =

wz;%@(zﬁ: Yirm, i=m+1,....m+n (3)

where ; are undetermined combination coefficients. Define (K);; =< ®(2;), ®(z;) > and

_ Ka::p Kfvy _ _ K:vz

we get

/VT(%KZIK:EZ + %szKyz)’y =1

2.2 “Whiten and rotate” algorithm

The “whiten and rotate” algorithm is a basic algorithm for solving kernel CSP problem. We first
diagonalize %K v+ %KZyKyZ, followed by a dimension reduction step, that is to say, removing
the near-zero eigenvalues, which is called “whiten”. Then “rotation” is performed by maximizing
variance for one class. For feature extraction, similar to CSP, the filter is usually constructed by
several eigenvectors {v;}}, corresponding to the largest eigenvalues on the both ends. Finally,

scale {v;}M, by y « Wi/\/’yiT(%Kme + 1K Ky )vifori=1,...,M.
For new sample ¢, the projection could be computed by

m+n

<B(c)w" >= Y A < ®(c), B(2) > =Key forr=1,... M. (5)
=1

2.3 Large scale kernel CSP (LSKCSP) algorithm

In applications such as brain-computer interfaces, there’s usually a large number of samples, even
though some techniques, e. g., downsampling, are utilized. In these cases, diagonalizing the Gram
matrix %HKZIK_TZ + %KZyKyZ becomes impossible on an ordinary computer.

Quadratic Equivalent Representation. Consider the data {z;}™, C R”. Due to the positive
definite property of the covariance matrix, it can be decomposed to product of two orthogonal

matrices:

m P
lex? =mY, = VVT = [u1,v9, ..., 0] % [v1, 02, .0y vp] T = ZviviT (6)
i=1 i=1
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where p = rank(X,), usually p < D < m.
Quadratic Equivalent Representation (QER) is defined as {v;}/_; plus (m-r) points located in
the origin. Compare it with the original set {z;}I",, we have

e They have the same covariance matrix.
e The projections to any directions have the same variance.

e When some new data, centered to the same center as {x;}/,, are added to the two datasets,
the above two statements still hold.

Figure 1 gives a demonstration of QER in 2-D case, where large numbers of data (indicated
by asterisk) are reduced to QER which contains only 2 non-zero samples (indicated by square).

+  original data
-4 O QER data

= ] 2 i 2 4 3

Figure 1: QER demonstration of 2-D data. The asterisk represents the original data and the
square represents the QER data. The solid lines indicate the principal axes of the original data.

The LSKCSP Algorithm. The basic procedure is to compute the QER datasets of {®(z;)},
and {®(y;)}7, and substitute QER for the original data to solve kernel CSP. This is achieved by
the following steps.

1) Segment the whole dataset of each class into several (not too) small subsets which scale
your computer could deal with.

2) Calculate the QER of each subset. Take two subsets of one class for example.

Sh

My = Y (a)b(z,)T = UL UL = 35 ul(ul)7

= i (7
mS =Y, ®(x)®(x;)" = UUL = 3 ul(u)”
=1 1=1
where h and [ are the indices of subsets, and my, and m; are the sizes. It shows that this procedure
is essentially Kernel PCA. Note that here QER data are actually represented by the combination

coefficients of the mapped original data,

ul = (aMT®(xy), i =1,2,...,5, ul=()Td(x),i=12,...,5 (8)

3) Combine each small QERs 2 by 2 to obtain the final QER {u;}!_; and {v;}!_; for two
classes respectively. Also take the combination of U” and U for example.

Sh

(sn -+ 080 = 3w (ul)T + 3 wi(u)”
= 3 ()T 0097 (i )al + 3 (o) (x) 87 (x)o! o)

Sk
U UL = 30w ()"
i=1
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4) In Equation 2, replace {®(x;)}}2; and {®(y)}L, by {ui}i_; and {vi}{_;, and now the
projection vector w could be expressed by

A Uiy, =1 S
WZ;mTi, ri:{vi_sizs—&—l,...,s—i-t
Then Equation 4 becomes
1 1 1
7KruKur77 = A(7I<ru1<ur + 7KT'UKUT‘)77 (10)
m m n

where the Gram matrices are all part of

3 Results

3.1 Experimental setup

In the training session or calibration measurement, each subject was asked to perform one of three
motor imagery tasks: (L)eft hand, (R)ight hand and (F)oot, according to the visual indication
on the screen. 4s of 54 EEG channels of 13 subjects were recorded during the imagery. Not the
following feedback phase but only the labeled data are taken into consideration in this analysis,
and tasks “left hand” and “foot” are selected for we just consider binary classification here.

3.2 Data processing

Data are 9-14 Hz band pass filtered and downsampled to 30 Hz. Interval [0.5s, 4s] of each trial
(i.e. data for one imagery task) is taken out. Ome quarter of all samples for each subject is
randomly generated as the test set, the other as the training set. The size of training/test sets for
each subject are: subjects 1 and 4-12: 210/70, subject 2 and 3: 202/68, subject 13: 157/53.

On the training set, all trials of the same class are concatenated according to channels, then
CSP or Kernel CSP filters are computed, and applied to test set. Suppose that there are 100
trials for one class, then the scale of the Gram matrix %KMKM + %szKyz in Equation 4 is
(3.5-30 - 100 - 2)2 = 21000%, which needs about 1.8 GB to store it if single precision is used in
Matlab, and is hard to be eigenvalue decomposed, so LSKCSP algorithm is employed.

In this experiment, samples of 10 trials length are grouped when computing the QER. Gaus-
sian kernel is chosen, for that it has a good adaptability by adjusting the variance parameter c.
Theoretically, when ¢ becomes very large, the LSKCSP should perform like CSP.

The subset of filters are selected by median score for CSP (the number is fixed to be 6) [3].
For Kernel CSP, if the final eigenvectors are more than 6, 4 filters are selected from both ends,
and if less than 6, one from each ends are selected.

Features are extracted by computing the logarithm of the variance of the projected CSP or
Kernel CSP signals, and classified by LDA.

Method CSP LSKCSP
c=20 c =40 c =80 c =160 c = 1000
mean +std % 79.2+15.5 67.0+£12.7 684+126 702+9.6 T4.0+£87 73.2+8.7

Table 1: Test accuracy averaged over all subjects.
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Figure 2: Test accuracy by CSP and LSKCSP algorithm with different variance parameters.

3.3 Results

Figure 2 shows the classification accuracy on test set for each subject. Results of LSKCSP algo-
rithm with increasing parameter ¢ are given. For half of subjects (7/13), CSP obtains the best
result, and for other subjects, LSKCSP with specific parameter performs better. Averaged re-
sults over all subjects are given in Table 1. Generally speaking, with the increase of ¢, results of
LSKCSP tends to be closer to CSP, with smaller deviation.

4 Conclusion

This paper proposed a novel large scale algorithm to solve kernel CSP in BCI applications. Based
on Quadratic equivalent representation, this method find a reduced dataset to replace the original
one in the kernel CSP algorithm, which can dramatically save memory when eigenvalue decom-
posing. Actually, this QER method could also be applicable in kernel PCA for large dataset.

Compared with CSP, LSKCSP algorithm with Gaussian kernel get comparative results, which is
not strange, for a large variance parameter makes kernel CSP approach CSP. It should be pointed
out that LSKCSP so time consuming, about 20 minutes for training of one subject (processor
1.4 GHz), so it is at the limit of what is practical for online BCI training.

Another problem which should be noted is the scale of subsets in the first step of LSKCSP.
Theoretically, when centering in Equation (7), the center of the whole class but not the subset
should be used. Here we assume they are nearly the same. So the subset should not be too small
and its samples should selected to represent the distribution of the whole class as much as possible.

As our future work, 1) a better parameter selection method should be developed for LSKCSP
algorithm, 2) the influence outliers needs to be analyzed and removed, and 3) a regularization
term is considered to be added to deal with the noise.
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Abstract

We present an offline analysis of a large set of BCI experiments, focusing on common
spatial filters and patterns (CSP). First, we show that it is possible to infer from the CSP
filters whether the cross-validation error of LDA-classified EEG data preprocessed by this CSP
will be high or low and predict thus the future performance of the feedback sessions following
the calibration. Our test is 7 to 10 times faster to compute than the cross-validation. Second,
from the CSP patterns, we calculate the corresponding source localization of the activations
on the cortex. We explore the possibility of applying our method towards the improvement
of calibration procedure quality and thus reduce the phenomenon of BCI illiteracy.

1 Introduction

Common Spatial Pattern (CSP) is an established method of processing raw EEG signals in order
to obtain a suitable signal projection for doing BCI in a two-class (e. g. left /right hand movement
imagination) setup [1]. It has benefitted from many enhancements over the last decade, some of
which are described in the context of the Berlin Brain Computer Interface (BBCI) in [2].

CSP is a supervised learning algorithm for two classes, which assumes that the signal measured
by EEG sensors is a linear spatial mixture of (unknown) original sources. The rows of the unknown
mixing matrix are called patterns, whereas the columns of the demixing matrix, which is the
solution of the inverse problem, are called filters. The goal of CSP is to find spatial projections
in sensor space that optimally demix the measured signal by maximizing the variance in one
class while minimizing the variance in the other class, thereby achieving optimal discriminability
for later classification. The filters are obtained by solving a generalized eigenvalue problem to
simultaneously diagonalize the covariances of both classes.

A researcher experienced with CSPs is able to decide if a given CSP filter is good or not, by
visual inspection — see Figure 1. By “good” we mean that the subject can perform BCI with
reasonably high accuracy (80 % or higher). However, the difference is not always as clear as in this
illustrative example. Moreover, it would be useful to understand, both from a machine learning
perspective as well as a physiological perspective, what makes a subject — and his CSP — “bad”.

In this paper we develop algorithms which can decide whether a given CSP filter is good, and
predict from the first session if the subject will be able to perform BCI well in future sessions,
albeit with a lower accuracy than the prediction of the quality of the CSPs.

By employing source localisation techniques we can further explain why it should be possible
to detect in the CSP filters and patterns how discriminable the mental imagination of the subject
was during the calibration phase.

To automatically learn the mapping between CSP filters and the cross-validation error on the
training set, we used recorded data from a large corpus of BCI experiments, computed the CSP on
the biggest common subset of channels and took this as the input of the mapping to be learned.
As output, we took the cross-validation error, computed using information from all the channels
that were recorded in the experiment.
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Figure 1: The 4 scalp plots on the left show a good CSP filter — cross-validation error 1%. The 4
scalp plots on the right show a bad CSP filter — cross-validation error 50 %.

We use feature selection methods based on the Markov blanket of the target. In Bayesian
networks, the Markov blanket of a node is the set of all nodes that are needed to explain that
target node. It contains all parents (the direct causes) of that node, all children (direct effects)
and the other parents of its children as well [3].

2 Methods

2.1 Data and preprocessing

The dataset used contains 148 experiments performed at the IDA group between 2001 and 2005
with 25 subjects. The paradigm was either LR (left/right) — 49 times, or LF (left/foot) — 53 times
or RF (right/foot) — 46 times. Figure 2 shows descriptive statistics of the dataset.

The data has been filtered in the frequency domain by applying a wide-band band-pass filter
from 5 to 30 Hz.

We processed these data using the Condor HT'C system on a computing cluster. The processing
we performed used the BBCI toolbox functions to first evaluate the cross-validation error on all
channels available in the experiment. Then, only the channels common throughout the whole
dataset were retained and the CSP was computed for each experiment. This was used as the
initial input to the predictor. As output (binary valued), we took the membership or exclusion
from the class of “good” experiments (i.e. less than 20 % cross-validation error on the trials
recorded). Here are the 45 channels available in all experiments considered: F5, F3, F1, Fz, F2,
F6, FC5, FC3, FC1, FCz, FC2, FC4, FC6, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3,
CP1, CPz, CP2, CP4, CP6, TP8, P5, P3, P1, Pz, P2, P4, P6, P8, PO3, POz, PO4, O1, Oz, O2.

The dataset for the learning problem we thus obtained had 148 samples each with 180 (45
channels multiplied by 4 filters) continuously valued features and a binary target.

2.2 Algorithms

Having more features than samples is always a problem, thus feature reduction and sparsification
are to be considered. The best approach to feature reduction we found on this dataset was the
“causal explorer” [4] able to provide us with Markov blanket estimations for a target feature. Out
of all algorithms available in that toolkit, we used HITON, described in [5], very well suited for
feature selection.

With the features thus selected, we perfomed a sparsifying linear norm-1 SVM training, by
dividing the currently available training set into two equal sets, use one subset for trainig the SVM
and one for testing the effect of the SVM parameters.

In order to validate the process, everything that has been described so far is wrapped into a
leave-one-out cross-validation procedure, that iteratively leaves an experiment out and trains on
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Figure 2: Left: the distribution of the number of trials. Right: The distribution of the cross-
validation error. Bottom: The number of experiments per subject.

the data derived from the retained experiments, and then tests on the left out experiment (CSP),
after keeping only the features inferred as important on the data used for training.

A typical such feature set contains the following channels: FC5, FC3, FC1, FC2, T7, Cz, C2,
C4, CP2, CP6, P3, P1, O1l. We remind the reader that we have in the dataset both experiments
where the classes correspond to imaginary movements of the left and right hands and experiments
where one of the classes corresponds to imaginary movements of one foot. In Figure 3(a) the
approximate placement of these channels on the scalp can be seen.

ALGORITHM 1.
initialize the number of errors with 0
foreach experiment, ¢
hold out the experiment ¢
use HITON_MB to find the Markov blanket estimation of the target
keep only the selected features, discarding all others
split the set of remaining experiments in half
foreach value of the SVM hyperparameter C' in a predefined set of 20 values,
train a norm 1 SVM on the first half
test it on the second half
retain the hyperparameter value that gave the best result and the corresponding linear model
keep only the selected features in the hold-out experiment, discarding all others
apply the linear model on the hold-out experiment
if classification fails to give the correct class, increase the number of errors

2.3 Implementation

The method has been implemented in Matlab. CVX, a package for specifying and solving convex
programs [6, 7] has been used to implement and solve various flavours of norm-1 SVMs, seen as
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Figure 3: (a) The channels selected by the causal feature selection. (b) Imagined movement of
a limb. On the left, CSP pattern. On the right, corresponding source localization on the cortex
obtained using the MUSIC model.

convex programming instances. Causal Explorer has been used to compute the Markov blanket.
Processing of the dataset (on all prefixes of each experiment) took 300 cpu-hours. The cross-
validation of our method took about two hours.

2.4 Inverse methods

To evaluate whether the CSP-patterns correspond to focal brain sources, which we expect to be
the case for useful patterns, we apply an inverse method for each pattern. We chose the well-known
MUSIC approach [8] which scans a predefined grid for dipolar sources and returns for each voxel
the goodness-of-fit of the best dipole placed at that voxel. The respective scan shown over the grid,
which in our case was confined to be on the cortical surface, provides a qualitative picture of areas
which are most likely involved in the generation of the respective CSP pattern. We emphasize
that the results are too blurred to represent true brain sources and can only be understood as a
rough indication of the source origin.

The calculations were done for a three-shell realistically shaped volume conductor using a semi-
analytic expansion of the electric lead field [9]. The volume conductor itself was chosen to be a
publically available standard head [10], and electrode locations were adjusted to this head model.

Typical appropriate locations of the sources are obtained for the good calibration sessions —
Figure 3(b), and typical mistakes for the failed calibration sessions are obtained and illustrated
in Figure 4. Please note that this source localisation analysis of the CSP patterns was purely
qualitative, as opposed to the quantitative analysis that we did on the CSP filters.

3 Results

The cross-validation process produced 27 % error. Thus we expect the method to be able to
identify the experiments leading to less than 20 % cross-validation error with 73 % accuracy. Note
that we used only 45 channels the are common to all BCI sessions in our dataset. On the other
hand, the performance to be predicted corresponds to the classifier using all electrodes for which
there is recorded data.

The results are good, given the ambitious task of predicting with the less informed CSP com-
puted on only 45 channels the performance of the (not yet computed) classifier on data processed
with all electrods for which there is recorded data. As a further advantage, the classification algo-
rithm presented here is on our data 7 to 10 times faster to compute than the 8-fold cross-validation
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Figure 4: Source localization on the cortex obtained from the “bad” CSP patterns that are most
likely related to non-movement imagination activity, using the MUSIC model. On left: seeing/eye
related. On middle: abstract cognitive processing/frontal activity. On right: no (or widely
distributed) cortical activity.

— in both cases the CSP calculation was included.

4 Discussion

About half of the experiments were under the considered threshold of 20 % used to label the
subject performance as “good” or “bad”. Therefore, for the learning problem, the dataset was
fairly balanced, which makes the error measure used appropriate.

The use of the causal feature selection techniques to BCI sensitivity analysis is new to our
knowledge and has produced set of channels that are relevant either for left hand, right hand,
foot/feet movement imagination and for general alpha power level. This sensible choice of the
channels further validates the use of this technique.

We have also run a different analysis where the input for the learning problem was the same
set of CSP filters as explained before, but the output was 1 if the minimum cross-validation error
amongst all known experiments of the same subject was below 20 %, and 0 otherwise. In other
words, we tried to predict from the CSP filter of one experiment the best performance of all, future
and past, experiments of the same subject. The precision we obtained in predicting whether the
subject will “ever” have a good training was lower, with a cross-validation error of 35%. What
came out interesting out of this was that the set of channels usually selected was slightly different.
Here is an example: F5, F3, Fz, F2, FC5, FC1, FC2, FC4, FC6, Cz, C4, T8, Pz, POz, Ol. The
difference seems to be the higher occurence of centro-parietal channels.

While looking at the localized sources for the CSP patterns one may easily identify the ac-
tivations of cortical regions. For the low performance sessions, this enables the experimenter to
pinpoint possible causes of the lack of performance in BCI for a particular subject, since he can
more accurately determine the origin of activation and thus instruct the subject on how to improve
his mental task performance.

5 Conclusion

A method to predict the success of a training session in which a subject’s EEG is recorded on at
least 45 channels while the subject performs imaginary limb movements in the Berlin BCI setup
has been presented. By employing a causal feature selection technique, based on the Markov
blanket of the target, we have been able to greatly reduce the number of features (channels) in the
input CSP filters, and in this case proved critical to the success of the algorithm which mapped
the CSP filters to sessions accuracy. As a result, we have been able to predict whether a BCI
training was successful (low cross-validation error, i.e. below 20 %), with 73 % accuracy.
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Furthermore, source localization has been employed to qualitatively inspect the CSP patterns
and explain individual performances of subjects. Whereas good CSPs correspond to expected
cortical sources, “bad” ones may be due to a variety of mental task performance “errors” which
are explainable.

This justifies the claim of the experienced BCI lab researchers of being able to see the success
of a training session from the initial CSP filters. Also, this opens the perspective — to be confirmed
with further online studies — of being able to reduce the BCI illiteracy by instructing properly
(e.g. “try to imagine a concrete movement.” or “are you vizualizing the scene?”) the subjects
who, initially, do not have a very good performance.

Acknowledgments: This work was supported by the European Commission’s Marie Curie Ex-
cellence Team grant MEXT-CT-2004-014194 “Brain2Robot”.
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Abstract

One of the fundamental criterion for the successful application of a brain-computer in-
terface (BCI) system is to extract significant features that confine invariant characteristics
specific to each brain state. Distinct features play an important role in enabling a computer to
associate different electroencephalogram (EEG) signals to different brain states. To ease the
workload on the feature extractor and enhance separability between different brain states, the
data is often transformed or filtered to maximize separability before feature extraction. The
common spatial patterns (CSP) approach can achieve this by linearly projecting the multi-
channel EEG data into a surrogate data space by the weighted summation of the appropriate
channels. However, choosing the optimal spatial filters is very significant in the projection
of the data and this has a direct impact on classification. This paper presents an optimized
pattern selection method from the CSP filter for improved classification accuracy. Based on
the hypothesis that values closer to zero in the CSP filter introduce noise rather than useful
information, the CSP filter is modified by analyzing the CSP filter and removing/filtering the
degradative or insignificant values from the filter. This hypothesis is tested by comparing
the BCI results of eight subjects using the conventional CSP filters and the optimized CSP
filter. In majority of the cases the latter produces better performance in terms of the overall
classification accuracy.

1 Introduction

Brain-computer interface (BCI) involves transforming signals from the brain into control signals
for transmission of messages or commands, thus offering a new communication pathway between
human brain and the computer system [1]. Patients suffering from motor impairments, severe
cerebral palsy and spinal chord injuries (SCI) may use a BCI system as a substitute communication
pathway which relies only on the mental imagination and not on neuromuscular control. The
main difference between BCI techniques and human-computer interface (HCI) tasks lies in not
relying on muscular response, but only on detectable signals representing responsive or intentional
brain activity. Recently there has been a significant growth in BCI technology but there are a
significant number of issues and areas that need to be improved [2] — reasons being the complexity
and ambiguity of the EEG signals recorded from the brain [3].

Many BClIs are based on EEG signals which are modified by motor related brain activity, as
these signals exhibit significant and lateralized event related activity. Event related desynchroniza-
tion (ERD) is the phenomenon which results in amplitude attenuation of certain EEG rhythms
when an event is initiated or is taking place in the brain [4, 5]. On the other hand, event-related
synchronization (ERS) is an amplitude enhancement of a certain EEG rhythm when cortical areas
are not specifically engaged in a given mode of activity at a certain instant of time [4].To capture
only these rhythms, a band pass filter between 8-26 Hz can be applied to filter out the non-event
related data. Even though hand movement (motor) imagery-related ERD/ERS forms a centre
close to the hand representation area in close proximity to the electrodes C3 and C4, one or two
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EEG signals recorded from both hemispheres are insufficient to completely describe the state of
brain activation during motor imagery [6]. Thus when using only 2 or 3 electrodes, it is difficult
to obtain the same accuracy as compared to multichannel EEG which captures most of the event
related information [6]. On the contrary, using a large number of electrodes adds more irrelevant
data but choosing good spatial patterns helps to reinforce the event related information. Common
Spatial Pattern (CSP) filtering provides an efficient solution for a larger number of channels. The
goal of CSP is to devise spatial filters that lead to new time series whose variances are optimal for
the discrimination of different brainstates or EEG classes. The CSP method is used to estimate
spatial filters that reflect the specific activation of cortical areas during movement imagination (cf.
Section IIT for more details on CSP).

In this work, the CSP method is used to find the appropriate CSP filter for a 60 channel EEG

recorded during motor imagery-based BCI experiments. The most significant CSP filters are then
statistically analyzed and each filter is optimized by removing the values from the filter which are
assumed to introduce noise rather than enhancing separability between different classes of EEG.
The technique developed for doing this is based on the hypothesis that values closer to zero in the
common spatial pattern are not significant and introduce noise. This hypothesis is then tested by
comparing results for the conventional CSP filters and the optimized one.
The remainder of the paper is organized into four sections. Section II contains details on the BCI
Competition IIT multichannel /multiclass datasets and acquisition procedure. Section IIT discusses
the CSP method and a novel CSP optimization technique. Results are plotted in section IV for
the comparison of CSP and its variant. Section V provides the conclusion.

2 Data acquisition and configuration

The datasets used in this analysis are datasets IIla and IVa provided for the third International
BCI Competition [7]. A berief description of these datasets is as under:
The dataset I1Ta was recorded from three subjects using a 64 channel amplifier from Neuroscan,
and was filtered between 1 and 30 Hz. The subject sat on a comfortable chair and had to perform
left, right hand, tongue and foot movement imagination according to the cue on the screen.
Each trial begins with a black screen and a beep sounds at ¢ = 2, at which time a fixation
cross appears on the screen which is indication for the subject to get ready. At ¢ = 3s an arrow
appears on the fixation cross indicating the imagined movement to be executed, pointing left,
right, up or down for left /right hand, foot and tongue imagery, respectively. The subject performs
the imagery task until ¢ = 7s. Each of these four tasks was performed 10 times in a random order
in each run.
Dataset IVa was recorded with slight variation from dataset IIla. 118 EEG channels were used
for data acquisition and arrows were displayed for 3.5s indicating the corresponding task to be
performed. The presentation of target arrows were intermitted by periods of random length, 1.75
to 2.25s, in which the subject could relax [7].
In this work, which is only a 2 class analysis, the data was filtered between 8-26 Hz to remove the
components which are generally not event-related.

3 Methodology

The purpose of CSP is to filter the original data using the optimally designed CSP filter into new
time series i. e., to produce the surrogate data space for the discrimination of two populations. The
patterns designed in this way help to maximize the variance for the ‘left motor imagery’ trials and
minimize the variance for the ‘right motor imagery’ in the surrogate data space [6, 8, 9, 10, 11, 12].

3.1 Common spatial patterns

CSP filtering involves linearly projecting the multichannel EEG data into a surrogate data space by
a weighted summation of the appropriate channels. This projection is based on the simultaneous
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diagonalisation of the covariance matrices from both classes [6, 8, 9, 10, 11]. This diagonalisation
is achieved by the following three steps.

Let X be a single trial EEG matrix for N-channel EEG of size N x T" where T is the number
of samples in a trial. A single trial is one specific imagined movement in a cue based paradigm
depending on the direction of the arrow. The normalized covariance for the two classes > and
> R can be represented as:

1 n
> - LS XXt (ke (LR (1)
k i
where n is the total number of trials for the class k, respectively. For the simultaneous diagonali-
sation of these two covariance matrices, the first step is to perform the whitening transformation
i.e., finding a matrix P such that:

P<§L:+§R:>PT:I (2)

where PT represents the transpose of P.
According to spectral theory, using P the matrices  and D can be calculated using (4) below. The
columns of the matrix @ are the eigenvectors and the diagonal matrix D contains the eigenvalues.

PY Q-P"=Q-D-Q" (3)
R
From Equation 1 and 2
Py Q-P"=Q(1-D)Q" (4)
L
The mixing matrix W can be calculated as :

W=Q" xP (5)
With the mapping matrix W, the trial X is projected as

Z=WxX (6)

From Equation 4 and 5 it is clear that the eigenvalues of the transformed covariance matrices sum
to one. By construction, the variance for a left movement imagination is largest in the first row
of Z and decreases for the subsequent rows [6]. The opposite is the case for a trial with right
motor imagery. Thus those eigenvectors whose corresponding eigenvalues are close to 1 or 0 are
chosen as spatial filters [6]. This can be achieved by arranging the eigenvalues in ascending or
descending order and matching corresponding columns of the W matrix. The appropriate number
of eigenvectors from both sides is chosen as filters; generally between 2 to 6 from either side of the
eigenvector matrice is optimal.

3.2 Optimizing the CSP filter

The chosen eigenvectors represent the filters whose values symbolize the weights to be applied to
corresponding channel for mapping the data to the surrogate data space. It is important that the
spatial pattern be used efficiently for optimal mapping. For this reason, in this work the CSP filter
has been analyzed and filtered to improve the performance. Table 1 portrays the range of values
in the CSP filter (4 eigenvectors — 2 from either end of the eigenvector matrix). It is important to
note that the greater the weight of the eigenvector value, the greater the impact the corresponding
channel would have on the surrogate data space. The values in the eigenvector which are closer
to zero have a very small impact in the surrogate data space and can often introduce noise and
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Statistics Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4
Range —-3.808 — 1.873 —3.579 — 4.112 —-2.971 — 6.367 —4.485 — 4.288
Threshold 0.5241 0.7697 0.9348 0.8703

Table 1: Statistics for CSP filter of Subject 1.
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Figure 1: Eigenvector optimization of CSP vector 1 for Subject 1.

degrade the effectiveness of CSP filter. Based on this observation, the modified CSP matrix, ¥,
can be extracted from the CSP filter W based on the significance of the weights in the filter.
The threshold value for removing superfluous weights is chosen based on the hypothesis that
the values closer to zero in the eigenvector curve (cf. Figure 1 for example) are non significant and
add noise rather than useful information and thus should be discarded. To illustrate this, Figure 1
shows plotted values for first eigenvector from the CSP filter W for subject 1 and the modified
eigenvector with values close to zero set to zero. To achieve this, the values of the eigenvector are
first arranged in ascending order.
Let w = w1, ..., w, be the values of the eigenvector population. To obtain the values closer to
zero in the eigenvector curve the range 7 of the eigenvector w, is given as:

~v = max(w;) — min(w;) (7)

If X is the percentile of the range v close to zero to be discarded, then the interval used for
thresholding the eigenvectors is calculated as

A- A-
Threshold interval = [0 — T’V 0+ T’Y (8)

Thus the optimized matrix ¥ is extracted from W as;

U, ; =W,; for |W; ;| > Threshold (9)

U, ;=0 for |[W; ;| < Threshold (10)
A-

Threshold = TW (11)

All the values lying in this interval are truncated to zero. The resulting CSP pattern will then
contain only the significant values which lie outside the threshold obtained via the above analysis.
Note that the columns of ¥ (the mixing matrix) are the modified common spatial patterns which
are time-invariant EEG source distribution vectors.

To apply the filters, X, the input trial, which is spectrally pre-filtered between 8-26 Hz is fed to
the modified CSP filter ¥ which maps the original EEG data into new surrogate space Z

Z=UxX (12)
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Figure 2: Classification accuracies for 3 subjects (IIIa) across sessions.

Cross-validation Test data (unseen)
CSP Modified CSP CSP  Modified CSP
Subl 924 95.2 93.3 96.1
Dataset IIla | Sub2  82.3 90.1 78.9 87.3
Sub3  78.8 83.2 70.0 74.1
Sub4  81.4 83.2 62.1 69.7
Subb  97.8 93.8 88.5 82.4
Dataset IVa | Sub6  67.1 74.8 68.0 78.5
Sub7  75.0 78.5 79.1 76.1
Sub8  90.7 88.5 80.1 82.0
Mean 83.2 86.4 77.5 80.8

Table 2: Classification accuracies.

For feature extraction, the log-variance of the surrogate data is used as the feature vector for
classification. The CSP filters and feature extraction are continually calculated from a 1s wide
window slid across the trials.

V = log{(var(Z)} (13)

4 Results and discussion

To assess the modified method, data from the right and left hand imagination trials from the BCI
competition are utilized. 5-fold cross-validation was carried out for each subject, where the data
was partitioned into a training set (80 %) and a validation set (20 %). Tests were performed five
times using a different validation partition each time. Information obtained using the maximum
mean-CA (mCA) rates on the 5-folds of validation data was used to setup the CSP filter and
classifier for a final single trial test on unseen test data (as per the BCI competition splits ). The
modified CSP was setup by varying A between 10-40 % of the range of the vector during cross-
validation and it was observed that generally A\ ~ 10 % provides the optimal performance.

Table 2 lists the classification accuracy rates for the comparison between the traditionally used
CSP method and the modified CSP for the eight subjects. These results indicate that for six
subjects out of eight, the classification accuracy is improved by applying eigenvector filtration
indicating that elimination of non- event related information from the surrogate dataspace using
modified CSP is beneficial for a BCI. Figure 2 also shows that the response latency is reduced by
the modified CSP (only subjects 1-3 are shown). It is notable that the modified CSP pattern helps
improve the classification accuracy on average by ~ 4 %. These results indicate that the hypothesis
that weights closer to zero in the CSP eigenvector are non-significant and can be degradative to
performance although statistical significance cannot be shown due to the small subject samples
and the large variation in results across subjects. Further fine tuning of A could improve the
performance but it has been observed that, in general, removing ~5-20 % of the values closer to
zero yields an acceptably optimized CSP filter.
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5 Conclusion

The results presented in this work indicate that appropriately modifying the eigenvectors of the
most significant CSPs can have a significant influence on the CSP filter. Eigenvectors values
around zero should be removed as they can be a noise source and degrade the separability of
motor imagery in the surrogate data space. To the best of the author’s knowledge this aspect
of CSP filtering is not accentuated in the literature. The results could be enhanced through
a more detail investigation into the optimal number of CSPs or subject-specific frequency filter
selection [8, 9]. Further statistical analysis on the CSP pattern could enhance the BCI accuracy by
introducing adaptive thresholds, which could help suppressing insignificant information for online
systems.

References

[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan. Brain-
computer interfaces for communication and control. Clin. Neurophysiol., 113:767-791, 2002.

[2] S. G. Mason, A. Bashashati, M. Fatourechi, K. F. Navarro, and G. E. Birch. A comprehensive
survey of brain interface technology designs. Ann. Biomed. Eng., 35:137-169, 2007.

[3] D. Coyle, T. M. McGinnity, and G. Prasad. A multi-class brain-computer interface with
SOFNN-based prediction preprocessin. IEEE World Congress Comput. Intell., 2008.

[4] G. Pfurtscheller and F. H. Lopes da Silva. Event-related EEG/MEG synchronization and
desynchronization: basic principles. Clin. Neurophysiol., 110:1842-1857, 1999.

[5] D. Coyle. Intelligent preprocessing and feature extraction techniques for a brain computer
interface. PhD Thesis, University of Ulster, N. Ireland, 2006.

[6] C. Guger, H. Ramoser, and G. Pfurtscheller. Real-time EEG analysis with subject-specific
spatial patterns for a brain-computer interface (BCI). IEEE Trans. Neural Syst. Rehabil.
Eng., 8:447-450, 2000.

[7] A. Schlogl, F. Lee, H. Bischof, and G. Pfurtscheller. Characterization of four-class motor
imagery EEG data for the BCI-competition 2005. J. Neural Eng., 2:L1-L9, 2005.

[8] B. Blankertz, F. Losch, M. Krauledat, G. Dornhege, G. Curio, and K.-R. Miiller. The Berlin
Brain-Computer Interface: accurate performance from first-session in BCI-naive subjects.
IEEE Trans. Biomed. Eng., in press, 2008.

[9] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Miiller. Optimizing spatial
filters for robust EEG single-trial analysis. IEEFE Sig. Process. Mag., 25:41-56, 2008.

[10] J. Miiller-Gerking, G. Pfurtscheller, and H. Flyvbjerg. Designing optimal spatial filters for
single-trial EEG classification in a movement task. Clin. Neurophysiol., 110:787-798, 1999.

[11] H. Ramoser, J. Miiller-Gerking, and G. Pfurtscheller. Optimal spatial filtering of single trial
EEG during imagined hand movement. IEEFE Trans. Rehabil. Eng., 8:441-446, 2000.

[12] Y. Wang, Z. Zhang, Y. Li, X. Gao, S. Gao, and F. Yang. BCI competition 2003 — data set
IV: An algorithm based on CSSD and FDA for classifying single-trial EEG. IEFEE Trans.
Biomed. Eng., 51, 2004.

73



4th Int. BCI Workshop & Training Course 2008

Mathematical morphological multi-resolution analysis of
EEG signals during misoperation of BCI system

K. Inoue!, M. Fujio!, T. Yamaguchi! and G. Pfurtscheller?

!Department of Systems Design and Informatics,
Kyushu Institute of Technology, lizuka, Fukuoka, Japan
2Institute for Knowledge Discovery, BCI Lab, Graz University of Technology, Graz, Austria

inoue@ces.kyutech.ac. jp

Abstract

Recently, there are a lot of researches on Brain Computer Interface (BCI) system, and some
systems have already been put to practical use. However, the development of the fail safe
function is indispensable to be able to use the BCI system more safely. In this paper, we try to
detect misoperation of BCI system by analyzing electroencephalogram (EEG) signals recorded
during misoperation. Mathematical morphological multi- resolution analysis is adopted as a
tool of EEG analysis. This method is a kind of wavelet analysis with non-linear characteristics.
In this study, it is investigated about optimal data length, electrode position and feature
extraction method. Effectiveness of a proposed method is confirmed through experimental
studies. As the results, we found out that construction of BCI system with fail safe function
is possible.

1 Introduction

Electroencephalogram (EEG) signals can be used to move a cursor to a target on a computer
screen. Such an EEG-based brain computer interface (BCI) can provide a new communication
channel to replace an impaired motor function [1]. It can be used by e. g., handicapped users with
amyotrophic lateral sclerosis (ALS). In such a BCI system, information (e.g. ERD/ERS, P300
etc.) which is included in EEG signals related to a cognitive task or motor imagery is used in
order to estimate the will of humans. For the EEG signals recognition method, there are many
methods have been proposed. For example, Pfurtscheller et al. extracted ERD/ERS from EEG
during right and left hand motor imagery and made it use for the pattern recognition for single-
trial wave form by a neural network [2]. We also have studied pattern recognition method based
on autoregressive (AR) model about right and left hand motor imagery [3, 4]. However, it seems
to be impossible to construct a complete BCI system, since it depends on human state. Therefore,
some compensation function is needed in BCI system. The research about error potential by
Schalk et al. [5] is useful to construct such function. However, the estimation of will of human and
the detection of misoperation must be done simultaneously in the BCI system in order to enable
a continuous operation with the fail safe function. In other words, the operation of the machine
based on the estimation of the will must be always executed, and the detection result of machine
misoperation must be used to stop machine as a fail safe function. From the viewpoint of such
BCI system, the error potential seems to be insufficient, because the detection period of error is
different from the estimation period of human’s will. Such different information seems to be able
to be extracted at a time, by using either multi channel EEG signals or different frequency band
signals.

Therefore, in this paper, we try to detect misoperation of BCI system by applying mathemat-
ical morphological multi-resolution analysis [6, 7] to EEG signal as a basic research. And it is
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Figure 1: Timing chart.

investigated about optimal data length, electrode position, feature extraction method. Effective-
ness of a proposed method is confirmed through experimental studies. As the results, we found
out that construction of BCI system with fail safe function is possible.

2 Experimental paradigm

During the experiment, subject fixated a computer monitor 100 cm in front of him. Each trial was
10 s long and started with the presentation of a fixation cross at the center of the monitor, followed
by a short warning tone (‘beep’) at 2000ms (see Figure 1). At 3000ms, the fixation cross was
overlaid with an arrow at the center of the monitor for 1250 ms, pointing to the left or to the right.
Depending on the direction of the arrow, subject was instructed to imagine a movement of the
left or the right hand. At 5000 ms, the monitor displays the feedback as result of discrimination
of BCI system for 3000 ms.

In this study, two kinds of experiments are executed. One is “Motor Imagery Discrimination
Experiment (Exp. I)” and this purpose is to train subject. The other is “Pseudo Feedback Ex-
periment (Exp. IT)” and this is executed to obtain EEG data during misoperation of BCI system.
Exp. I has been executed in the past for other purpose (EEG-based control of robot [4]). There-
fore, the specifications of Exp. II are different from the specifications of Exp. I, although they
should be set to be same. Three subjects (N, U, Y) participated in these experiments. They are
20-23 years old and free of medication and central nervous system abnormality.

2.1 Experiment I (motor imagery discriminate experiment)

Two subjects (N, U) participated in this experiment. Each of the subjects participated in 10
sessions, all on different days. Each session consisted of 3 experimental of 60 trials (30 ‘left’ and
30 ‘right’) and lasted for about 1.5 hours. The sequence of ‘left’ and ‘right’ trials, as well as
the duration of the breaks between consecutive trials (ranging between 500 and 2500 ms.), were
randomized throughout each experimental run. In 2-10 sessions, the feedbacks are executed based
on the parameter estimated from the previous experimental data. Feedback is refreshed every
250 ms on the monitor. Sampling frequency of EEG signals acquisition is 500 Hz. EEG recording
electrode positions are shown in Figure 2(a).

Right hand movement or left hand movement were able to be discriminated about 90 % on
both of these subjects at tenth experimental day. These two subjects participated in the following
Exp. II. The method of this experiment is the same as in [3]. Therefore, the detailed explanation
of this experiment is omitted in this paper.

2.2 Experiment II (pseudo feedback experiment)

Three subjects (N, U, Y) participated in this experiment. Subject Y did not have the experience
of Exp. I, but he was well informed of the experimental situation and system. In this experiment,

75



4th Int. BCI Workshop & Training Course 2008

(a) Experiment I (b) Experiment II

Figure 2: Electrode positions.

the feedback has displayed only one direction for 3000 ms. All subjects are told that feedback has
to do with motor imagery before the experiment (as Exp. I). However, feedback was generated
artificially at random regardless of subject’s motor imagery.

“Correct-Class” data is defined as EEG signals obtained when the direction of feedback arrow
on monitor is same as the direction of instruction arrow. “Error-Class” data is defined as EEG
data obtained when the direction of feedback arrow on monitor is different from the direction of
instruction arrow. The presentation ratio of “Correct-Class” to “Error-Class” is 8:2. The sampling
frequency is 512 Hz. EEG recording electrode positions are shown in Figure 2(b).

3 Signal analysis and pattern recognition method

3.1 Mathematical morphological multi-resolution analysis

In this study, we use the mathematical morphological multi-resolution analysis. These are captured
as a unified manner [7]. In this section, mathematical morphological multi-resolution analysis is
described. As basic operations, we employ Minkowski addition @& and Minkowski subtraction &,
those are respectively defined as follows.

[/ @ g](t) = max f(t —u)+g(u) (1)
[f ©9](t) = min f(t —u) — g(u) (2)

Here, f(t) is the input signal and g(t) is the structural function which characterizes the filters
which will be constructed below. The sets F' and G denote the domains of f(¢) and g(t), respec-
tively. Conventionally, it is assumed that every signal takes the value —oo out of its domain. By
combining these operations, we define two morphological filters:

Opening : fy(t) = [(f © 9°) & g](¢), (3)

Closing : f9(t) = [(f ® ¢°) © g](t), (4)

where ¢°(t) := g(—t) . The opening process for f(¢) by g(t) removes the parts in the positive
direction of the wave form of f(¢) those are too narrow to fit for the wave form of g(¢) attached
below. In contrast, the closing filter removes the narrow negatively directed parts. In other
words, opening (resp. closing) smooth f(¢) from the positive (resp. negative) direction by g(t).
Furthermore, the open-closing filter consisting of successive applications of the opening followed
by the closing provides an effect of low pass filter. Thus, we can also construct a high pass filter
by taking the difference between the input signal and its open-closed result.

Low pass : U!(t) = (f,)’(t) (5)
High pass : w'(t) = f(t) — ¥(t) (6)
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Notations are borrowed from [6]. The up arrow indicates increasing of the level in multi-
resolution. The schematic figures of morphological operations are shown in Figure 3.

It is necessary to set out the structural function to use morphological filters. By the convention,
the structural function has finite values only in the processing window and takes —oo on the
outside. In this paper, we use the Haar type structural functions. The Haar type structural
function is defined with a constant parameter ¢ and the width of window 2n + 1 as follows.

c —n<t<n
g(t) = { —oo  otherwise (7)

A sequence of successive processes with varying structural functions constitutes a multi-resolution
signal analysis. To describe this more precisely, let us assume that there exist sets V; and W; for
each level j (j = 0,1,...,L). We refer to V; (resp. W;) as the signal space (resp. detail space)
at the level j. Then, for a given input signal zo € Vj , we obtain the following recursive analysis
scheme.

ro — {z1, 1} = {z2, 92,01} — - = {Tk, Yk Yh—1, -, 1} — - (8)

where Tjt1 = w;(iﬂj) € Vi, yj = x5 —xj41 € Wig, for z; € Vj, xjp1 € Vjqr.

Conversely, the input signal zy can be reconstructed by summing up the detail signals at every
level. A three-level signal analysis scheme is depicted in Figure 4. In this study, we increase
the width of windows by 2 to the power of levels. And two types of multi-resolution analysis
are adopted. One is a method which uses the closing morphological filter (CMF) f9(¢) as a low-
pass filter. The other is a method which uses the closing-opening morphological filter (COMF)
(f9)4(t) as a low-pass filter. The former method and the later method will be called MRA-CMF,
MRA-COMF respectively as an abbreviation.

3.2 Pattern recognition method
3.2.1 Notations

We summarize the notations used in this section. M is the number of trials. zo(t), z;(t), y;(t),y(t)
are EEG signals, low frequency component signals of level j, high frequency component signals
of level j and reconstructed signals from {ya(t),ys(t),y(t),...} , respectively. The discrete time
parameter ¢ runs from 1 through V.

3.2.2 Feature extraction

At first, EEG signals are reconstructed by using y;(¢). In this study, 11 kind of reconstructed
signals are used for feature extraction (see Table 1). In the table, ‘Lu’, ‘Lv’, and ‘Lw’ are the
definitions of sets of signals. For example, level ‘Lu’ means sets of signals {y4, s, ¥}
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Reconstructed signal 0 1 2 3 4 5 6 7 Lu Lv Lw
Signals used ToO Y1 Y2 Y3 Y4 Ys Y6 Y7 Y4, Y5, Y6 Y5, Y6, Y1 Y4, Y5, Y6, Y7

Table 1: List of reconstructed signals used in experiments.
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Figure 5: Pattern recognition results based on each reconstructed signal (subject Y).

Next, the following value is estimated from the reconstructed signals as a feature parameter
related to event related potential (where H(-) is Heaviside function).

N
s=Y {H(@G() 5(t)} (9)

3.3 Decision rule

Bayes classifier is adopted as the pattern recognition method with the assumption that the feature
value s is a random variable with normal distribution. The discrimination function is as follows:

1
k* = argmgxPr(CHs) = argmkin {ln(ak) + 2—2(3 —my)? — Pr(C’k)} (10)
Tk

4 Results

The period of processing data is set to be the period from 5000 ms to 5500, 6000 and 6500 ms (pro-
cessing data length is 0.5, 1.0 and 1.5 seconds), since feedback arrow is shown at 5000 ms. Pattern
recognition result based on each reconstructed signals are shown in Figure 5. Figure 5(a) and 5(b)
show the result based on MRA-CMF and MRA-COMF respectively. The pattern recognition
results in each subject are shown in Figure 6.

Figure 5 shows that optimal data length is 0.5 seconds for recognition. High accuracies are
obtained by signals reconstructed from Level 4", Level 7" or Level Lw (4, 5, 6, 7) signals.

This fact suggests that Level 4" signal and Level 7*" signal has an essential information about
the reaction of subject related to misoperation of BCI system. Figure 6 shows that optimal filter
(closing filter or close-opening filter) is depend on each subject. The optimal electrode position
seems to be Cz, C3 or C4. These electrodes are used to determine right-hand movement or left-
hand movement. This fact suggests that detection of subject’s motion imaging and detection of
subject’s reaction of misoperation of BCI system are possible by using the signals obtained from
the same electrode.

5 Conclusion
In this paper, we tried to detect misoperation of BCI system by applying mathematical morpho-

logical multi-resolution analysis to EEG signal. Although more precise investigation about optimal
method (e. g. tuning method, optimal filter etc.) is needed yet, it was confirmed that detection of
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Figure 6: Pattern recognition result in each subject (target signal is reconstructed by using level
Lw signals, data length: 0.5s.)

subject’s reaction related to misoperation of BCI system was possible. Our results suggest that
the will of human may be able to be estimated by using the reconstructed signals (level 2 and/or
3) and the misoperation may be able to be detected by using the reconstructed signals (level 4
or Lw). A BCI system with the fail-safe function will be able to be achieved by advancing this
research further.
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Abstract

A method is presented to tag (watermark) stimuli with carefully chosen binary pseudo
random noise codes, and to decompose the EEG response into short waveforms for each rising
or falling transition in the stimulus. This decomposition can be used for EEG classification
by computing the class which has maximum correlation between the measured and predicted
EEG response. Classification performance when a single class is present is excellent (85 %),
and very robust when a small pass band or short time interval is used. A unique feature of
this method is that, while it is easy to generate tags for any number of classes, training the
classifier is needed only for responses to one stimulus class, and few trials (up to about a
minute of data) suffice for training.

1 Introduction

The neural responses of stimuli with a repetitive character have been well studied in EEG and
MEG. These “Steady State Evoked Potentials” (SSEP) are thought to reflect the frequency- and
phase-locked responses of neural circuits to periodic stimulation [1]. This has been shown in the
tactile, visual, and auditory domains [2, 3, 4]. As certain features of these stimuli, such as power
and phase at the stimulation frequency, are modulated by (selective) attention, SSEPs have been
used as the basis of BCIs [5]. Furthermore, the phase difference between stimulus and response
can be used as a probe for cognitive processing time and order (modulo the stimulation period).

However, interesting frequencies in the various domains (107140 Hz) are in the same range as
spontaneous oscillations that occur in the brain (alpha, theta, gamma) which may complicate
analysis. One approach to attenuating the relatively narrow band noise from other cognitive
process would be to use a spectrally spread stimulus. One could think of chirps, frequency hopping,
pseudo random noise and other signals that have a broadband spectral character. This will only
work if the underlying hypothesis of an attuning process claimed to explain SSEP does not hold:
oscillators cannot attune to non-periodic or fast changing signals. Thus a test with this signal is
valuable both for scientific reasons to explore the dynamics of interacting neuronal populations
and for the pragmatic aim to increase the robustness of BCI systems.

Broadband signals have already been used for single cell behavior [6]. In [7] this approach is
elaborated for amplitude modulated auditory stimuli and EEG responses. In this paper we focus
on the classification process and a way to structurally decompose the noise codes and demonstrate
how they form a powerful new method for probing cognitive processing.
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Figure 1: a) Average spectrum of a set of 31 golden codes of 31 bits long, presented at a bit rate
of 31 Hz. b) Average spectrum of long sequence of a repeating golden code.

2 Pseudo random codes

Pseudo random noise is an optimal deterministic periodic signal with statistical properties close
to that of Gaussian White Noise. For applications in signal detection the random bit codes need
certain properties. To be able to detect the time-lag of a code in a response, the auto-correlation
of a code should be close to zero for all time lags different from zero. To distinguish different codes
easily, the cross-correlation between codes should be minimal at all time lags. There is a family
of codes, golden common codes [8], which have this property and is used heavily in broadband
communication systems (WIFI, cell phones). The spectrum of these codes is shown in Figure 1.

3 Decomposition of the signal

One nice property of purely periodic stimuli, such as the more commonly used frequency tags, is
that they can be detected by simply looking for an increase in signal power at the stimulation
frequency in the neural response. This is possible because the total response after the current
stimulus is simply the sum of the appropriately delayed responses to all previous stimuli. As
the delays between stimuli are set the terms in this sum are constant hence giving a fixed total
response. Thus purely periodic stimuli generate a periodic response with the same frequency.
This is true even if the responses to individual stimuli have a much longer duration than the
inter-stimulus interval, i.e. the stimulus responses overlap.

Unfortunately for non-period stimuli, such as Pseudo-Random noise tags, this is no-longer true
because the delays between stimuli are no-longer fixed. When inter-stimulus interval is much longer
than the stimulus response, then this is not a problem as one can directly learn an estimate of
individual stimulus responses. This is the approach taken in Event Related Potential BCI systems
such as visual P300 spellers. However, as stimulus response durations can be quite long, e.g. in
P300 systems significant response lasts up to 700ms after stimulation [9], this non-overlapping
requirement places quite a strong limit on the stimulation rates and hence system bit-rates.

What we would like is to estimate a single isolated stimulus’s individual impulse-response from
an over-lapping set of training responses. We can the used the impulse-response to re-construct
the estimated total response to a known overlapping stimulus sequence, and use the correlation
between the recorded and estimated responses as the basis of a classification system. This paper
presents such an approach where we decompose the response to a stimulus sequence as a sum
of overlapping impulse-responses to the stimulus events contained in the sequence. We learn the
individual impulse responses using a least-squares technique. The effectiveness of the technique is
demonstrated with classification results on EEG data derived from pseudo-random-noise tagging
experiments.
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Figure 2: The decomposition of a mean EEG into its structural components and fit to the data.

The input stimulus is a binary modulation sequence. As we believe the brain responses mainly
to changes in input, we treat the transitions in this bit sequence as the stimulus events. Further,
we postulate that the brain responds differently to rising (0-1) and falling (1-0) transitions.
Finally, assume that each transition contributes a time-limited impulse-response waveform which
combine linearly to give the total stimulus response. Figure 2 illustrates this model. The same
decomposition model was used for timing signals in [10]. In algebraic terms this model can be

written as:
L

o(t) = > L(r(t —7) +Tp(6)f(t—7) 1)
T=1
where, x(t) is the total response at time ¢, L is the duration of the response, r(.),f(.) are the
temporal responses of the brain to a rising (resp. falling) edge in the stimulus, and I,.(t), I(¢)
are indicator functions which have the value 1 if there is a rising/falling edge at time, ¢, and 0
otherwise. This model can more compactly be expressed in matrix notation using a structure
matrix M to encode the indicator functions I, Iy, as,

z= I,(i:%—i—L) If(i:%+L) szp (2)

where, z is the column vector of modeled response for each time, the rows of M signify sample times
with each row being the previous row shifted 1 element to the right, and p is the concatenation of
the two types of response function. Equation 2 is linear in the temporal responses, r and p, so these
parameters can be found using a least-squares regression with the average measured response.

4 Experiments

We collected the 128 channel EEG responses for 140 trials of listening to a saw-tooth carrier wave
of 420 Hz, AM modulated by one of two cosine filtered pseudo random noise modulators presented
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Figure 3: Edge components derived from the regression fit, for two classes and the averaged and
windowed waveform used for classification.

at 168 bits/second. For details of the experimental procedure see [7]. Two noise-tags were used,
called code A and B, in a sequential purely perceptual mode. The classification problem was to
identify which stimulus the subject was exposed to at each point in time. All classification results
are estimated using 3 seconds of EEG data with 10-fold cross validation, with 20 testing trials,
from a dataset containing 280 trials (140 per class).

To classify EEG signals we use a simple correlation approach, where the predicted class is
that which has maximal correlation with its class prototype. We present results for 2 types of
class-dependent prototypes. The first is simply the mean EEG response for this class. This is
used as a base-line for comparison. The second is the decomposition approach presented above,
where the decomposition was conducted independently for each channel' This yielded very good
fits: predictions explained up to 33 % of the variance for the best electrode. In Figure 3 the
impulse-response functions are shown for the two classes. It can be seen how the responses are
similar in the central region but differ towards the edges. We believe these differences are due to
overfitting, and use a simple cosine window (parameters) and the mean of the two waveforms to
suppress these differences. Note, using an appropriately regularized parameter estimate may be a
better approach to deal with this overfitting issue. We intend to pursue this approach in future
work.

4.1 Results

To estimate classification performances a subset of the channels were used, where the subset was
found using two different strategies. The first used a stepwise forward selection procedure to
incrementally add the single best electrode until training set performance was maximized. The
second approach used first used Independent components analysis to determine create a set of
“virtual electrodes” from which the forward selection procedure was again used.

In terms of classification performance using the mean EEG response obtained 79 % correct,
using all 128 channels. Using the decomposition with electrode selection on the raw EEG channels
gave a significantly better 85 % correct, whereas using ICA derived virtual channels gave 94%
(using on average 9 ICA components). In Figure 4(a) it is shown which channels were used in the
decomposition classification. The topology of the most often selected ICA component is shown in
Figure 4(b). This shows a clear dipole nature over the auditory cortex, as would be expected for
an auditory stimulus.

To demonstrate the robustness of the decomposition approach (and the pseudo-random noise
tags) Figure 5 shows the classification performance as a function of the pass-band of a spectral

INote these different approaches have different advantages and disadvantages. The decomposition approach
treats all rising and falling edges as the same and so cannot represent any non-linearity or history dependence of
the response. However, because it uses an order of magnitude fewer parameters, the decomposition may extract
underlying regularities better and be less prone to over-fitting.
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Figure 5: a) Classification rate for octave-wide pass-band signals. b) classification rate vs. training
set size.

filter and as a function of the training set size. This clearly shows that classification performance
gracefully degrades as more of the signal it attenuated away (i. e. the pass band narrows). Further,
only a very small amount of training data, 25 trials which is 75s of data, are required to obtain
75 % of the full-training set performance.

Finally, to demonstrate that impulse-responses learned on one stimulus sequence can be used
with another, we trained the decomposition using only data from one code and tested it on the
other. Classification rates only dropped by only a few percent (from 94 to 91 %). This proved
the validity of the approach and limits the amount of time needed for collecting training data in
multi-class setups considerably. This is not possible in the mean EEG method which uses complete
induced or evoked responses directly.

5 Conclusion

We have demonstrated how pseudo random noise sequences with certain characteristics can be
exploited as a stimulus tagging method. Furthermore, the EEG response can be predicted from a
decomposition based on the structure of rising and falling edges in the tag. For auditory amplitude
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modulation this decomposition technique proved very successful: classification rates are high and
can be reached with very little data, and even from data obtained from a different tagging sequence.
Furthermore, the detection is robust with shorter durations or small pass bands causing a slow
and graceful degradation of the classification rate. These properties show that noise tagging
represents a very promising approach for the development of a BCI. It is usable in the tactile and
visual domain as well. For P300 spellers the possibility to handle overlapping responses at fast
flashing rates seems promising to optimize these types of BCIs [9]. One possible improvement
that we are investigating is the construction of bit codes which preserve their low auto and cross
correlation properties when short sub-sequences are used.

Noise tagging is also potentially very useful for tracing and decomposing cognitive processing
through a set of sequential modules, each with their own location and time delay. Further the
systematic comparison of this new method to the use fixed frequency tags, would allow us to gain
insight in how far and where in the brain oscillatory attunement present, if at all. We intend
to investigate this issue further in future work. This investigation could further be enhanced
by decomposing the individual electrode responses as weighted and time delayed versions of an
individual edge response.
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Abstract

In this paper, the application of online wavelet transform for the detection of motor im-
agery tasks in real-time brain-computer interface (BCI) experiments is described for the first
time. Wavelet packet (WP) features were compared with band power (BP) features, both
selected with Distinction Sensitive Learning Vector Quantization (DSLVQ). Unlike other stud-
ies, online performances are compared in this work. Thereby the WP /BP features were used
to detect oscillatory patterns in ongoing EEG during different motor imagery tasks and to
generate real-time-feedback in the BCI experiments. The WP method performed slightly
better than the standard BP method in the online experiments and in the subsequent of-
fline cross-validation analysis, but no statistically significant difference could be found in the
performance increase.

1 Introduction

An electroencephalogram (EEG) based brain-computer interface (BCI) is a communication system
that provides a direct connection between the human brain and a computer [1]. Thereby the bio-
electrical activity of the human brain is modified by mental activity (thoughts) without requiring
any physical movement. Different EEG signals can be used as input to a BCI, either event-related
potentials (ERPs) or transient oscillatory changes in the ongoing EEG. Motor imagery (MI) can
induce event-related desynchronization (ERD, amplitude suppression) and/or event-related syn-
chronization (ERS, amplitude enhancement) in alpha and beta frequency bands and has been
shown to represent an efficient mental strategy for operating a BCI [1, 2].

Feature extraction is one of the key issues in BCI research and its goal is to find a suitable
representation (signal features) of the EEG data that simplifies the subsequent detection of MI
patterns. Ideally, the signal features should encode the brain patterns just associated with the
MI performed by the user. Traditionally, signals are analyzed in either the time domain or in
the frequency domain. Wavelet transforms overcome these problems by providing a multi-level
time-frequency decomposition of signals, which allows the simultaneous use of longer duration
intervals for low-frequency information and shorter duration intervals for high-frequency informa-
tion. Wavelet transform has already been used for the detection and de-noising of ERPs [3, 4, 5]
and recently also for offline analysis of oscillatory EEG [6, 7]. The outcome of these studies was
that wavelet transforms improve the detection performance compared to other existing feature
extraction methods. Up until only Hsu [5] reported results of an online BCI for the detection of
ERPs during real finger movements, but no one has reported on the online analysis of oscillatory
EEG components during MI.

The goals of this paper are (i) to demonstrate that wavelet transforms using wavelet packet
analysis (WP) can be used for online BCI experiments, and (ii) to conduct an online comparison
study to explore whether wavelet transform features perform better than standard band power
(BP) features. Therefore all subjects performed BCI feedback experiments with BP features as
well as with WP features.
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2 Methods

2.1 Subjects, data recording and experimental paradigm

Five subjects (2 males and 3 females, age 26.0+3.7 years) participated in this study. Three bipolar
EEG derivations (C3, Cz and C4; 2.5 cm anterior and posterior to the position of the 10/20 system;
ground electrode at Fpz) were recorded with a sensitivity of 50 nV, band pass filtered between
0.5 and 100 Hz (activated power line notch) and sampled at 250 Hz. The BCI system consisted of
an EEG amplifier (g.tec, Guger Technologies, Graz, Austria) and one data acquisition card (E-
Series, National Instruments Corporation, Austin, USA). The BCI algorithms were implemented
in MATLAB 6.5 and Simulink 5.0 (The MathWorks, Inc., Natick, USA) using the open source
package BIOSIG (http://biosig.sourceforge.net/).

The participants were instructed to imagine either a kinesthetic left or right hand movement,
depending on a visual cue stimulus (arrow pointing to the left or right between seconds 3 and 4.25).
Visual feedback between seconds 4 and 7 was presented continuously (sample-by-sample) by using
a horizontal bar graph, in which the length of the bar was proportional to the classification output.
The exact timing scheme is illustrated in Figure 1.A. Each run consisted of 40 trials (20 left and
20 right cues), whereby the sequence of right and left cues was randomized within each run. The
subjects participated on five different days (called sessions) and in each session, four experimental
runs were performed. The data of the first training session (tr) was recorded without feedback
and used for the offline analysis. In all other sessions (fb1-fb4) online feedback was provided. The
task of the subject was to keep the MI task over the entire feedback period. In each session, two
runs with feedback based on BP features and two runs with feedback based on WP features were
performed. The order of feature extraction type has been permuted for each subject and session.

Sealing function Phi Wavelet function Psi
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Figure 1: (A) Timing of the paradigm. (B) Symlet “sym9” mother wavelet.

2.2 Feature extraction: band power (BP)

For each of the three bipolar channels 16 non-overlapping frequency components between 6-38 Hz
were calculated with a bandwidth of 2 Hz. The frequency components were computed by digitally
band pass filtering the EEG signal (Butterworth IIR filter of order 5), squaring and averaging the
samples over the past second. Finally, the logarithm was computed from this time series.

2.3 Feature extraction: wavelet packet analysis (WP)

For each of the three bipolar EEG channels the wavelet coefficients obtained by a wavelet packet
analysis were calculated as features. A symlet (sym9) mother wavelet was used (see Figure 1.B),
which has already been used for the detection of oscillatory changes in the electrocorticogram [8].
One level of wavelet decomposition separated the original signal into two complementary halves,
i.e. approximation and detail. In each half, the number of samples was reduced by half because
of dyadic down-sampling. Thereby the frequency range was also reduced by half. Due to the
sampling frequency of 250 Hz, the theoretical frequency content was 0-125 Hz. After the first level
of decomposition the resulting approximation component contained signals from 0-62.5 Hz and the
detail component contained signals from 62.5-125Hz (so the bandwidth was reduced to 62.5 Hz).
After the second step the bandwidth was reduced to 31.3 Hz, after the third step to 15.6 Hz and
so on. Decomposition up to level 4 was performed to have on the one hand a reasonable frequency

87



4th Int. BCI Workshop & Training Course 2008

resolution (e.g. beta band 15.6-23.4Hz) and on the other hand to keep the number of features
and therefore the computational effort small. Not only the 16 wavelet packet features from the
fourth decomposition level were used, but also the components from higher levels, resulting in a
total number of 31 features for each EEG channel. It was only necessary to consider the half of
the components (fifteen), because of the interest in the alpha and beta band components (same
frequency range of interest as used by BP features). The WP signals were reconstructed, squared
and logarithm transformed to achieve power values [8]. For the last online-session a decomposition
up to level 5, with a reduced subset of 15 components in the interesting frequency range (similar
to [4]), has been used.

2.4 Feature selection with DSLVQ and classifier setup

The feature extraction procedure used yielded up to 16 BP features and 15 WP features for each
EEG channel. For selection of the most informative features the ‘Distinction Sensitive Learning
Vector Quantization’ (DSLVQ) was used (for details see [9]). The major advantage of DSLVQ is
that it neither requires expertise, nor any a priori knowledge nor assumption about the distribution
of the data. Furthermore, not only relevant features, but also feature combinations are identified.
Features were selected according to following criteria (with the precondition of a symmetrical
arrangement [2]): (i) large mean feature relevance and small variance, (ii) only important during
MI, (iii) two features per channel, (iv) same features for all channels, (v) adjacent BP features
were combined to one feature (e.g. 20-22Hz and 22-24 Hz were combined to 20-24 Hz). In case
of WP features condition (v) is changed to: use features of lower decomposition level if both
lower and higher level features are equally important. The selected features were used to set up
a Fisher’s linear discriminant analysis (LDA) classifier to discriminate between the two different
mental states; for each feature extraction method one classifier was setup. The accuracy rates
were estimated by a 10 times 10-fold cross-validation LDA-training.

After each feedback session, a classifier update (DSLVQ selected feature set and LDA weights)
was performed for both feature extraction methods (BP and WP) based on all data recorded in
the previous session. The updated classifier with the modified feature set was only used in the
next session if the classification accuracy could have been increased (see last column in Table 1).

3 Results

In Figure 2 the feature relevance of the extracted wavelet packets up to decomposition level 4 is
given over the trial time for one channel. Each row corresponds to a feature and the value in each
cell is the feature relevance. The cells are plotted in dark if the feature is important during this
0.5 seconds time period. In this dataset the important features are the wavelet packets with the
number 26 (~16-31Hz), 27 (~16-23 Hz), 28 (~23-31 Hz) and 30 (~8-15Hz), whereby feature 26
is a feature after decomposition level 3 and decomposed into feature 27 and 28 by the next wavelet
decomposition step. Therefore only feature 26 and 30 have been selected. The features selected
and used for BP and WP for all sessions and subjects are given in Table 1.

After each experimental session the online performance of each run was estimated by plotting
the classification accuracy over the trial time. The highest classification accuracy during the
feedback time of this accuracy was extracted and used as a performance measure. In Figure 3.A
the classification accuracy is displayed; beginning with second 4.5 it climbs above 95 %, but single
class accuracy goes up to 100%. The point with the largest accuracy during the feedback time
is marked. The accuracy for all runs and subjects is given in Table 1 together with the cross-
validated classification accuracies. Either band power (BP) or wavelet packet (WP) features were
used in each run, and the order of feature type was alternated (the used method for each run is
indicated in Table 1). The box plots of all online accuracies in Figure 3.B shows that WP slightly
performed better than BP.

Paired sample t-tests showed no significant differences between the conditions (BP and WP)
for the online classification accuracy (f(4y = 1.776, n. s.). The grand average of the classification
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Figure 2: DSLVQ feature relevance map over the trial time for channels C3 using wavelet features
(decomposition level 4) extracted from data of subject sl (session fbl). The maps of channel Cz
and C4 are not displayed because of lack of space. The number in each cell is the feature relevance
and important features are highlighted with a darker background. The classification performance

over the trial time is given in the last row. The selected features are marked with dotted rectangles
(feature 26 and 30).

accuracy of wavelet features (mean + SD = 91.15% =+ 8.37%) is slightly larger than for band
power features (90.08 % + 8.84 %). One phenomenon that was also reported by the subjects was
that the wavelet features needed slightly more time to move the feedback bar to the correct side,
but were more accurate compared to the band power features. A more detailed analysis showed
that in session fb2 wavelet was significant better than band power (t(4) = 2.450; p = 0.07; with
BP mean = 87.63 % and WP mean = 90.63 %) and as well in session fb3 (t(4) = 2.449; p = 0.07;
with BP mean = 90.27% and WP mean = 93.75%). The paired sample t-tests of the offline
cross-validation accuracy showed again no significant differences (f(4y = 0.376, n. s.) between the
two conditions.
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Figure 3: (A) Online Performance (classification accuracy) of run 2 in session fb3 of subject sl
using wavelet features (20 trials per condition). The cue onset is indicated at second 3 with a dot
dashed line. The feedback (FB) was given from second 4 to 7. The indicated highest classification
accuracy during the feedback time is marked (99.4% at second 5.9) and used in Table 1. (B)
Box-plots of the classification accuracy for both conditions (band power [BP] or wavelet packet
[WP]) of each subject.

4 Discussion and conclusion

The goals of this study were (i) to investigate whether wavelet transform can be used for online BCI
feedback experiments and (ii) to compare the online BCI performance between wavelet features
and standard band power features. The results presented show that the proposed method based on
wavelet-packet decomposition in combination with a DSLVQ feature selection process can be used
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Table 1: Online classification accuracy in percent of each run and session. In brackets the used
feature extraction method either band power (B) or wavelet packet decomposition (W) is indicated.
The BP frequency bands and the WP feature numbers are specified. Cross validation accuracy
in percent of each session for BP and WP features WP is given in the right part of the Table.
In the last session (fb4) a wavelet decomposition till level 5 was used. The last column (update)
indicates if a new classifier (C) with a different feature set (F) based on the current data was used
for the following online session.

online results cross validation results

run 1 run 2 run 3 run 4 BP WP BP WP update
[%] ‘ [%] ‘ (%] [%] ‘ band [Hz] ‘ nr. [%] [%] ‘ BP / WP
sl tr 87.0 88.0 CF / CF
fbl 97.5 (W) 86.0 (B) 89.4 (B) 92.3 (W) 10-14 20-28 | 28 30 96.9 97.5 CF / CF

fb2 98.5 (B) 96.3 (W) 99.3 (W) 99.1 (B) 10-14 22-26 | 26 30 98.8 100.0 -/ -

fb3 100.0 (B) 99.4 (W) 97.5 (B) 100.0 (W) 10-14 22-26 | 26 30 99.4 100.0 -/ CF

fb4 100.0 (W) 100.0 (B) 83.9 (W) 96.5 (B) 10-14 22-26 | 54 60 97.5 96.9

s2 tr 90.0 88.1 CF / CF
fbl 97.5 (B) 95.0 (W) 97.1 (W) 92.5 (B) 10-16 19-27 | 27 30 94.4 93.8 CF / CF

fb2 92.5 (B) 93.8 (W) 97.5 (B) 99.1 (W) 10-12 16-24 | 20 26 95.6 95.0 -/ CF

3 || 100.0 (W) | 99.2 (B) | 97.5 (B) | 97.4 (W) | 10-1216-24 | 2028 || 975 | 96.3 | CF /CF
fbd || 94.5 (W) | 97.1 (B) | 98.3 (W) | 97.5(B) | 10-122024 | 5254 || 97.5 | 96.9
s3 tr 96.3 94.4 CF / CF
b1 || 92.2(B) | 97.5 (W) | 98.7 (W) | 100.0 (B) | 11-1417-23 | 2630 || 94.4 | 95.0 /-
2 || 86.4 (B) | 96.3(B) | 95.0 (W) | 99.4 (W) | 11141723 | 2630 || 95.0 | 96.3 -
3 || 95.0 (B) | 95.0 (W) | 91.0 (B) | 96.8 (W) | 11-141723 | 2630 || 93.1 | 93.8 | CF / CF
fbd || 93.9 (W) | 92.5(B) | 95.0(B) | 99.4 (W) | 10-142228 | 5060 || 95.6 | 96.9
sd tr 83.5 84.0 CF / CF
bl || 88.9 (B) | 89.3(B) | 81.8 (W) | 81.9 (W) | 10-142226 | 2730 || 81.9 | 813 | C/C
th2 || 86.1 (W) | 81.4(B) | 81.1(B) | 85.3 (W) | 10-1422-26 | 2730 || 82.5 | 825 | CF /CF
3 || 92.3 (W) | 87.0(B) | 91.2 (W) | 86.1 (B) | 10-1420-26 | 2830 || 86.3 | 863 | C/CF
fb4 94.9 (B) 91.1 (W) 92.2 (W) 95.7 (B) 10-14 20-26 52 59 88.8 84.4
s5 tr 78.5 79.6 CF / CF
8 (B) ®B) | 727 (W) | 705 (W) | 10142230 | 2628 || 73.1 | 76.9 /-
2 || 82.6 (W) | 79.5(B) | 69.9 (W) | 64.1(B) | 10142230 | 2628 || 688 | 700 | CF/C
) W) | 75.8(B) | 86.4 (W) | 10-142432 | 2628 || 77.5 | 80.6 | CF /CF
Y | 80.4 (B) | 86.7(B) | 10-1422-30 | 5560 || 80.6 | 83.1

to detect oscillatory patterns in the ongoing EEG. Single trial classification of different MI tasks
is possible and accurate online feedback based on these wavelet features can be given. Online
classification accuracies between 70% and 100% were achievable. Therefore the statement of
Hinterberger et al. [10] that “wavelet transformed data cannot be fed back on-line before the end of
a trial...” and “wavelet transformed data should serve for BCIs without immediate feedback. ..”
is not longer valid.

In the online experiments, the wavelet features performed slightly better than band power
features (in two subjects better and in three subjects equal), but because of the performance
variations of the subjects over the runs, no statistically significant difference could be found in
the performance increase. In the offline evaluation only for one subject WP features were not
superior to BP ones. These findings are consistent with the results of existing offline studies, in
which wavelet analysis outperformed other methods [4, 5, 7, 8].

When comparing the online classification results and the accuracy rate obtained by the offline
analysis, several differences need to be considered. The main difference between both is that online
results are given for each run and the cross validated offline results only for each session. Although
in single online runs performances with 100 % accuracy could be achieved in subject s1, s2 and s3,
only the data of sl could be separated offline with 100 % accuracy. The reason for this result are,
that the time course of the classification accuracy varies in each run, so the time point of the best
classification is slightly different for each run. If the data of all four runs per session are analyzed
together, an averaged time course exists. Subjects s4 and s5 improved with both methods over
the sessions, in contrast to subjects sl and s2 which retained their high classification accuracy
over the sessions but could not improve further. In the case of the offline performances, a general
improvement for all subjects and methods could be achieved, except for session fb4 in subject sl
and fb3 in subject s3. In case of subject sl it was nearly impossible to exceed the result of fb3
with 100 % accuracy, but fb4 was very good with 97 % classification accuracy.
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In general, the difference between published offline studies and this online study is that in the
offline studies only the best possible separability of the data rather than the performance achieved
is given (see also difference in this work between online and cross-validated offline results). Clearly
a large number of methods and parameters can be compared in an offline study and various
optimization procedures can be applied to find the best separation between the different MI
tasks. Nevertheless it is not guaranteed that the subject would perform better with the optimized
method. In contrast to that, in this work both feature extraction methods have been used in
online experiments and it could be demonstrated, that the wavelet packet features selected in the
offline analysis can be applied and successfully in online sessions. The prediction out of the first
training session that wavelet and band power features should work and perform similarly has been
proved. In summary, it could be demonstrated for the first time that a wavelet transform can be
used for an online EEG-based brain-computer interface to detect oscillatory patterns in ongoing
EEG during MI.

Acknowledgments: This work was carried out as part of the PRESENCCIA project, an EU
funded Integrated Project under the IST programme (Number 27731) and the EU COST Action
BMO0601: Neuromath.
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Abstract

A recently introduced blind source separation concept called time-frequency ratio of mix-
tures (TIFROM) is employed to build spatial filters for brain-computer interfaces (BCI) pre-
processing. TIFROM works on the concept of sparsity, that is, it seeks to locate single source
zones by finding few adjacent low variance areas in the time-frequency decomposed mixtures.
The method presented in this paper is under-determined and is adapted with some modifi-
cations to the need of BCI preprocessing for two class motor imagery tasks. Two distinct
groups of electrodes (5 each) around and including Cs and C4 (from the international 10-20
system) were chosen a priori for estimating corresponding filters.

The mean accuracy values of 8 subjects in 2 sessions are compared with CSP and Infomax.
The pairwise t-test concluded that CSP performed significantly better than Infomax in both
sessions. However, with respect to TIFROM, CSP was found to be significantly better in
only one of the session. Moreover, no significant difference was found between the results of
TIFROM and Infomax.

1 Introduction

A new blind source separation (BSS) concept called time-frequency ratio of mixtures (TIFROM) [1]
is introduced in this paper. It was already shown [2] that TIFROM can separate dependent,
Gaussian or non-stationary signals and there exist some areas in the time-frequency plane where
single sources occur, that is, the signals are sparse in the time-frequency domain. Moreover,
the method is reported to be particularly successful in separating linear instantaneous under-
determined mixtures [2]. It is this under-determined approach of TIFROM that will be employed
to build spatial filters for BCI preprocessing in this study. More specifically, TIFROM seeks to
build two spatial filters for the two class motor imagery data representing discriminative task-
related activity in regions contra-lateral to the movement side. In this regard, two distinct groups
of electrodes (5 each) around and including Cs and C, (from the international 10-20 system)
were utilized to estimate corresponding filters. The results of the TIFROM are compared with
Infomax [3] and common spatial patterns (CSP) [4, 5]. The reason for choosing Infomax as BSS
method was its better performance in comparison with other ICA-based algorithms in recent
years [6, 7]. On the other hand CSP, which is a supervised method, is considered as the best
performing algorithm in BCI preprocessing.

2 Methods

2.1 Experiment

The electrode montage, illustrated in Figure 1 (right), consists of electrodes for recording the EEG
signals. The 22 signals were sampled with 250 Hz and filtered between 0.5 and 100 Hz. Moreover,
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Figure 1: Left: Timing of a trial of the training paradigm. Right: EEG electrode setup, some
labels corresponding to positions in the international 10-20 system are indicated.

line noise was suppressed by enabling a 50 Hz notch filter. This study was conducted on datasets
recorded from eight healthy subjects, not experienced with BCI training. They were seated in a
comfortable armchair in front of a computer screen.

The experimental paradigm consisted of two different tasks, that is, right and left hand move-
ment imagination. The beginning of each trial (at ¢ = 0s) was indicated by an acoustic tone along
with the display of a fixation cross on the screen. After two seconds (at t = 25), a visual cue (an
arrow pointing either left or right) appeared for 1.25s on the screen. Each position of the arrow
required the subject to perform the corresponding imaginary movement. Specifically, they were
asked to keep up the imagination of the movement between seconds 3 and 6. After six seconds (at
t = 6s), the fixation cross disappeared indicating the subject to relax. The next trial started after
a short break of 1.5-2.5 seconds. The experimental paradigm is illustrated in Figure 1 (left). Two
sessions of each subject were recorded on different days, each session comprising 6 runs. Each of
the two types of cues was displayed 12 times within each run (which yields a total of 72 trials per
session for each class) in a random order. All the runs of each session were concatenated. Overall,
there were 144 trials in each session for every subject.

2.2 Time-frequency ratio of mixtures

For the sake of simplicity, a model of linear instantaneous mixtures of two sources is considered
first. Signal mixtures are denoted by x(t) and z2(¢). Each is a linear combination of the source
signals denoted by s1(t) and sa2(t):

iEl(t) = ausl(t) + ausg(t) (1)

xg(t) = aglsl(t) + a2282(t) (2)

In matrix notation these equations can be written as x = As, where A is a mixing matrix
whose inverse is directly estimated, up to a scaling and permutation factor, by using the time-
frequency information contained in the observations. More specifically, TIFROM seeks to estimate
the inverse of the mixing matrix [2]:

ATl = ( 1/101 1/102 )_1 )

Here, ¢1 = a11/a21 and ¢o = aq12/age, which give estimated separated sources y as follows:

y(t) = A7'x(t) = [a1151(t), a1252(t)] " (4)
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The coefficients ¢; in the estimated inverse of the mixing matrix are automatically determined
by using time-frequency information in the observations. To this end, the short-time Fourier
transform (STFT) of the observations z;, denoted by X;(¢;,ws), is computed:

+oo
Xi(tw) = == S m(r)h(r = e 5)

X (t,w) is the contribution of the signal x; in the short time and frequency windows respectively
centered at time ¢ and frequency w. The STFT decomposition only requires a single source to
occur alone in a few adjacent time-frequency windows for its resolution [2]. This leads to the
fundamental assumption of the TIFROM approach:

For each source s;, there exist some adjacent time-frequency windows (t;,ws) where only S;
occurs:

Si(ty, wr) < Si(ty,wr), VI #1
TIFROM then seeks to make those single source areas obvious by calculating the complex

ratio: X, )
1 t]7 Wk
atj,wg) = ——= 6
( J ) X2 (t]7(Uk) ( )
The linearity of the STFT operator allows to write the complex ratio « as follows:

a1151(tj, wy) + a1252(t;, wy) (7)
a2151(tj, w) + azeSa(t;, wy)
The coefficients are computed in the following way: For each frequency wy, (or time t¢;), the

sample variance of the complex ratio «(t;, wy) is calculated on the series I'; of M short overlapping
time windows (or frequency windows):

altj,wr) =

1 M
Var[a](T'q, w) = MZIIO&(%W/«) —a(lg,wi)|? (8)

The sample mean @ of the complex ratio « is defined as:

1M
a(lg,wr) = lea(tj7wk) (9)
=

What remains to be done is to sort the values of Var[a](T'y, wy) in ascending order. The lowest
value directly gives a time-frequency domain (I'y,wy) with only one source. The corresponding
coefficient ¢; is then given by @(I'y,wy). The second coefficient can be found by searching the
next lowest value of Var[a](I'y,wy) associated with a significantly different value of @(T'y,wy) by
using a threshold of minimum difference between the two values. The separated signals thus can
be obtained by applying the inverted mixing matrix.

The extension of the basic model (2 x 2 case) to the N x N case can be done elegantly by
considering the coherence property of time-frequency maps [2]. More specifically, the areas (T'y, wy)
where a single source appears alone in one observation are the same for all observations. That is,
a single source manifesting itself in some adjacent time-frequency windows of one channel, will be
present in all the channels in the same areas. As a consequence of this coherence, single source
areas can be detected by analyzing the variance of the ratio a(t,w) = X;(t,w)/X;(t,w) associated
to only one pair of observation. The inverse of the mixing matrix for the N x N case is depicted

below:
1 1 -
1/(:12 1/CN2
Al = : . : (10)
1/01N71 1/CNN71
1/ClN 1/CNN
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2.3 TIFROM for BCI preprocessing

Ideally speaking, for a single source to occur alone in a time-frequency domain (I'g, wy) the corre-
sponding variance Var[a](I'y,wy) should be zero in that region. However, there is always a small
interference from other sources and the variance values will be different from exactly zero. This
suggests that the method needs a variance threshold in addition to the threshold value required
for the separability between the sources. In the case of EEG-related brain patterns, both of
these thresholding criteria are subject-specific. Therefore, in order to circumvent this problem,
the TIFROM method was adopted for BCI preprocessing with some modifications. The modified
method is described in the following paragraphs.

First of all, STFT decomposition was performed on each single trial. The STFT of the signals
was computed with the full sampling frequency of 250 Hz using 250 points. These parameters
ensured a maximum frequency resolution of 1 Hz. In the next step, only time-frequency bins that
fell in the range of 7-30Hz and 3-6s (motor imagery period) were chosen for further analysis.
Next, the ratio of these STFT-transformed signals were computed according to (6). To this end,
we computed the ratios with respect to the two contra-lateral channels C3 and C, corresponding
to positions in the international 10-20 system. Due to their importance in the method, channels
C3 and C4 were termed as pivot channels. To be more specific, X; in (6) means pivot channel (Cs
or C4) whereas X5 is a symbol for the remaining channels. Each of these time-frequency ratios of
decomposed signals with respect to C3 or C4 will be processed separately with the aim of building
spatial filters, one for each of them. For further processing, one group will be considered and the
same procedure will be true for the other one.

For one pair of observation, i.e. one pair among Cz—cl, C3—c2, ... (where cl, ¢2, ...represent
5 channels, including and surrounding C3 — see Figure 1), the sample variance of the complex
ratio & was calculated on M short adjacent frequency bins for each time ¢;. The parameter M
in this study was chosen to be 4, with the aim of estimating 11 overlapping 4 Hz frequency bands
in one pair of observation. Specifically, the adjacent frequency bands thus obtained were different
from each other by 2Hz (e. g. 7-10Hz, 9-12Hz, ...). The process described in the lines above was
repeated for all pairs of observations in a group. Thereafter, the algorithm seeks to find for each
frequency band the averaged time-frequency bin where the variance is smallest. The corresponding
coefficient was then determined by the sample mean of the complex ratio « according to (9) (here
the summation is performed over k). The procedure was repeated for each frequency band and all
the respective coefficients ¢; were estimated along with the corresponding observation pairs. The
next step consisted of filling the coefficients in the mixing matrix as represented in (10). In this
context, it should be mentioned that due to the coherence property, the averaged time-frequency
area where a source appears alone in one observation is the same for all observations. Therefore,
the mixing matrix is obtained with columns corresponding to distinct frequency bands and rows
to observations (5 channels), according to (10). Each column represents a unique averaged time-
frequency bin where the variance is smallest at one of the pair of observations. It can readily be
seen that the method is under-determined as one pair of observations can correspond to two or
more columns. The same procedure as described in the preceding paragraphs is applicable to the
other group (C4—cl, C4—c2, ...), thereby obtaining a second mixing matrix.

2.4 Feature extraction and classification

For the computation of spatial filters with Infomax preprocessing, the entire data (i.e. a whole
session) for each subject was used. The unmixing matrix (i.e. spatial filter) thus obtained was
then multiplied to the entire (raw) data. As a next step, for each of these twenty-two components,
logarithmic band-power features were calculated. The frequency band selected was 7-30 Hz for
all subjects. Overall, there were 22 band-power features corresponding to 22 ICA components. In
contrast to the Infomax, TIFROM utilized only the motor imagery period (3-6s) and a frequency
band of 7-30 Hz to calculate unmixing matrices. It has already been mentioned that TIFROM
calculates two unmixing matrices based on two distinct group of channels including and surround-
ing the two contra-lateral pivot channels. Therefore each of these unmixing matrices were then
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Session 1 Session 2

Subject | TIFROM Info CSP | TIFROM Info CSP
sl 80.4 76.8 79.5 87.0 84.4 91.0
s2 59.6 58.7 58.9 59.0 60.4 64.4
s3 92.4 93.2 98.0 94.6 92.8 96.1
s4 92.7 93.3 95.9 95.9 97.5 98.9
sh 96.5 93.0 934 93.7 92.2 94.0
s6 74.3 72.8 73.1 66.7 74.0 74.6
s7 63.5 55.8  59.0 59.2 59.8 56.4
s8 66.2 70.9 75.2 75.9 79.6 914
Mean 78.2 76.8 79.1 79.0 80.0 834

Table 1: Overall accuracies (in %) of TIFROM, Infomax and CSP.

multiplied to EEG data of corresponding channels. The number of components so obtained in each
case was 11 — a total of 22 components. Finally, for each of these 22 components one band-power
feature was calculated by utilizing a frequency band of 7-30 Hz.

After feature extraction, the next step is the same for both preprocessing methods. For this
purpose, 90 % of the data was used to train a linear statistical classifier (Fisher’s linear discriminant
analysis, LDA) [8]. Within each trial, samples between seconds 4.5 and 5.5 were used to train the
classifier. This classifier was then applied to the remaining 10 % of the data and the classification
accuracy was calculated. The whole procedure was repeated 10 times, i.e. a 10x 10 cross-validation
procedure [8] was performed.

In the case of CSP, signals were first band-pass filtered in the range of 7-30 Hz, then the
samples were partitioned into 10 parts before building two CSP spatial filters. Each part was used
as test set only once in the following way. The (two) spatial filters were calculated on the basis of
the 90 % portion (nine parts) and were then applied to this data. In the next step, 6 components
(the first and last three) were chosen and log-transformed normalized variances were calculated
for each of the components. Next, these features were forwarded to a linear statistical classifiers
(Fisher’s linear discriminant analysis, LDA). The classifier weights were calculated and along with
two spatial filters was then applied to the remaining 10 % of the data. The whole procedure was
repeated 10 times, i.e. a 10 x 10-fold cross-validation procedure was performed and classification
accuracies were determined. The same time slice (between second 4.5 and 5.5) was used to train
the classifier like in the case of Infomax and TIFROM. It should be mentioned that in the case of
CSP like TIFROM the time slice of (3-6s) was used to calculate the spatial filters.

3 Results

The accuracy values for TIFROM, Infomax and CSP for all the subjects and two sessions are
shown in Table 1.

In this comparison the pairwise t-test was applied to the data (Table 1) for each session
separately at a 5 % significance level. The results revealed that CSP performed significantly better
than TIFROM in the second session. On the other hand, CSP performed significantly better than
Infomax in both sessions. Similarly, pairwise ¢-tests did not find significant differences between
TIFROM and Infomax in either of the session.

4 Discussion and conclusion

It has been shown that TIFROM performed comparably with Infomax in both session and with
CSP in session 1. However, as expected CSP remained the best performing algorithm. The
method can be easily extended to 3 class problems by preselecting an additional group of electrodes
including and around C,. This pre-selection of reduced number of electrodes can come very handy
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in practical applications of BCI systems. Therefore, as a direction of further research it can be
worthwhile investigating how other algorithms such as CSP performs in comparison with TIFROM
for reduced number of electrodes.

Apart from TIFROM, hardly any method in BCI preprocessing is available that utilizes time-
frequency decomposed information for building spatial filters. Sparsity is only one concept that
proved to be useful in extracting relevant information from time-frequency decomposed signals.
Its relative success at least in comparison with Infomax, can be seen as an encouragement for
exploring other hitherto unexploited concepts that can be utilized for extracting useful information
from time-frequency decomposed signals.

Acknowledgments: This work was funded by the Higher Education Commission (HEC), Pak-
istan, the European projects Presenccia (IST-2006-27731) and Eye-To-IT (IST-2006-517590), and
the Styrian government project GZ A3-16 B 74-05/1.
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Abstract

Independent component analysis (ICA) and other blind source separation (BSS) methods
are important processing tools for multi-channel processing of electroencephalographic data
and have found numerous applications for brain-computer interfaces. A number of solutions
to the BSS problem are achieved by approximate joint diagonalization (AJD) algorithms, thus
the goodness of the solution depends on them. We present a new least-squares AJD algorithm
with adaptive weighting on the separating vectors. We show that it has good properties while
keeping the greatest generality among AJD algorithms; no constraint is imposed either on
the input matrices or on the joint diagonalizer to be estimated. The new cost function allows
interesting extensions that are now under consideration.

1 Introduction

Given a set of matrices C: Cy,k=1... K, K > 2, the approximate joint diagonalization (AJD)
constis in finding a matrix B such that all K products BC,B” result in matrices as close as
possible to diagonal form. The AJD is an important algebraic tool extending the generalized
eigenvalue problem (two-matrix diagonalization). As such, it is enjoying considerable interest and
several efficient algorithms have been proposed [1, 2, 3, 4, 5, 6, 7, 8, 9]. In the context of brain-
computer interface (BCI) the AJD provides a natural extension of the common spatial pattern to
multi-class feature extraction [8]. Furthermore, since many matrices can be jointly diagonalized,
one may optimize the spatial filter not only with respect to the signal diversity across classes [8],
but also with respect to other kinds of signal diversity such as coloration and non-stationarity [9].
Recently a least-squares (LS) AJD algorithm has been proposed almost simultaneously in [6]
and [8]. This algorithm does not impose restrictions either on the input matrices Cy, (e.g., real,
positive-definite, symmetric, etc.) or on the joint diagonalizer B (e.g., orthogonality), thus it
is the most flexible among existing AJD algorithms. In [7] a similar LS idea has been used
to perform simultaneous joint diagonalization and zero-diagonalization on two matrix sets, an
approach that suits time-frequency data expansions. More generally, AJD algorithms are well
adapted to expansion of the signal in several dimensions, enhancing the ability of capturing the
source of diversity in a given data-set, hence offering a powerful approach for feature extraction.
We anticipate that AJD algorithms will acquire a prominent role in feature extraction methods
for BCI and we feel that a general approach may prove advantageous, which motivated us pursue
further LS algorithms. The criterion used in [6] and [8] is
3°1(B) = 3 [|off (BC,BT)|’
k

(1)

where || - || indicates the Frobenius norm and the Off operator zeros the diagonal entries of the
matrix argument. The minimization of this criterion with respect to B evidently yields an AJD
solution in the LS sense.
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2 Method

For simplicity of exposition in the following we assume that the N-dimensional input matrices Cy
are real and square, but not necessarily symmetric. The non-square/complex case is easily derived
thereupon. We propose a weighted and normalized version of (1) given by the minimization of

>k [(WBC.BTW)|J?
where W is and N-dimensional diagonal matrix holding the weights for each row vector of B.
Since Y, [(WBC,BTW)[2 = 3, ||Off (WBC,B?W)||? + 3", || Diag(WBC;BTW)||2, where
the Diag operator zeros the off-diagonal entries of the matrix argument, the minimization of (2)
is equivalent to the maximization of

pT(B) =

>, |IDiag(WBC, B"W)||? (3)
>, (WBCBTW)|12

PDiag(B) =

Denoting by b7 the i-th row vector of B and by b; its transpose (stil the row vector but in
column representation) and following [7] we expand (3) such as

N K
> |IDiag(WBC,B"W)||* = ZZ (wib{ Cybw;)” = wib] |3 (Crbwb] Cy)| b
=1

i Ws
k k=1 1i=1 k=1
(4)
and
K N N N K
Z I(WBCB W) =Y "> > “(w;b] Cybjw;)? = > wb] | Y (CkB"W?BCY) | biw;
k=1i=1 j=1 — =1
(5)
Now by defining
K
M; = > (Cybwib] Cy) (6)
k=1
and
K
M =) (C:B"W’BC}) (7)
k=1
and substituting (4) and (5) in (3), we can write
ia ’U}ZbZTMiblwz
pPeE(B) = (8)

tr(WBMBTW)

Similarly as in [6, 7, 8] the optimization of B according to 8 may proceed iteratively row-by-
row. For each vector of B a step consists in sphering M (fixing the denominator) and finding the
optimal direction b; maximizing szMibi. Updating b; will results in different M and M;, to
which a new b; will correspond and so on iteratively. The process sequentially applies to all IV
vectors of B within each iteration, resulting in mutual restrictions. The following sphered weighted
diagonalization (SWDiag) algorithm makes use of adaptive weighting:
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Initialize B by a clever guess or by I (the identity matrix) if no guess is available. Initialize W by I.
While not Converge do

For i = 1 to N do twice
(A: Sphering): Find H such that HMHT =1
(B: Optimal Direction): Find the principal eigenvector u; and associated eigenvalue X\; of aMHT
Update the i-th row of B as b «— u} H

End For

1
2

Update all diagonal elements of W as w; « X, 2 and normalize them so as S w? = N, i =1... N
7

End While

This family of algorithms has good convergence properties (see [6, 7, 8]). Note that M in (7)
and M, in (6) are updated at each pass of the for loop. If each pass of the for loop is not repeated
twice, as suggested, the algorithm still converges, but the stopping criterion (see below) displays
a “saw” (non-monotonically decreasing) behavior. The eigenvalues associated with the principal
eigenvectors of Step B are by definition comprised between 0 and 1.0 and equals 1.0 if the off
criterion is zero, which happens if the input matrices can be diagonalized exactly, that is, if they
have exactly the same eigenstructure. If not, or more in general due to sampling error, which will
always happen in practice, the eigenvalues will converge to a value smaller than 1.0. This ensures
numerical stability of the algorithm and provides the rationale for the weighting scheme: at each
iteration the diagonalization achieved by each row vector of B is proportional to the magnitude of
the associated eigenvalue. In (7) C;BT”W2BCY can be written as Cy > w?b;b! CF, thus we see

(]
that the adaptive weighting emphasizes the search of vectors attaining a lower eigenvalue at the
expense of those attaining an higher eigenvalue, which steers the algorithm toward a more balanced
solution. See also the discussion on balanced solutions in [6]. As for the stopping criterion of the
algorithm, we stop as soon as the change of the N eigenvalues )\; is negligible.

Each eigenvector (optimal direction) in step B can be successfully updated toward convergence
if matrix M; does not have multiple maximum eigenvalues. In this case the optimal direction
eigenvector cannot be found uniquely. This is also the case of the LS algorithm of [6] and [8],
which minimizes

SOT(B) =) | Off(BC,B”)||* with constraint Diag(BEB”) =1 (9)
k

where E is any positive definite matrix. Since the matrix E is disjoint to matrix B, their
algorithm consists in performing the sphering once at the beginning and then iteratively finding
the optimal directions by minor component analysis and scaling to match the constraint. However,
if after sphering there are multiple minor eigenvalues this algorithm is more likely trapped. On the
other hand in our optimization scheme the matrices HM;H7” change at each pass due to the fact
that the sphering step (step A) depends on the previous estimation of B in (7), thus our algorithm
may be trapped only if the multiplicity of maximum eigenvalues happens close to convergence,
whence the changes caused by the sphering update are small and cannot correct the multiplicity

issue anymore.

3 Results

We compared our SWDiag algorithm and its unweighted version SDiag (obtained setting all weights
to 1.0 and not updating them at each iteration) to the well-established FDiag algorithm of [5] and
QDiag of [6]. We performed simulations using synthetic input matrices and a real-data example.

For the synthetic matrices simulation we generated 12 6-dimensional square diagonal matrices
with each diagonal entry distributed as a chi-squares random variable with one degree of freedom.
Each of these matrices, named Dy, may represent the error-free covariance matrix of six inde-
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Perturbation FDiag QDiag Sdiag WSDiag

None 0.9999 0.9999 1.0 1.0
(0.0000)  (0.0011) (0.0) (0.0)

Mixing 0.9926 0.9927 0.9915 0.9928
(0.0107) (0.0104) (0.0119) (0.0102)

Independence 0.8057 * 0.7961 0.8002
(0.0676) (0.0698) (0.0683)

Table 1: Mean and standard deviation (within parentheses) of the performance index (11) across
500 repetitions of the synthetic input matrices simulation with and without perturbation. The
higher the index the better. *: QDiag resulted in a false solution 87 out of 500 repetitions in this
case.

pendent standard Gaussian processes (zero mean and unit variance). The 12 input matrices were
obtained as

C, = AD, AT (10)

k = 1...12, where each entry of the 6-dimensional square mixing matrix A is randomly
distributed as a standard Gaussian.
We considered three cases:

No perturbation: the exact AJD problem as described by (10)

Perturbation of the mixing matrix: input matrices were generated as C; = AkaAg, where
each entry of the mixing matrix A in (10) is perturbated as Ay;; «— A;; + ¢CA;;, where
¢ is +1 or —1 with equal probability and ¢ is uniformly distributed in [0.001...0.1], for all
k=1...Kandforalli, j=1...N.

Perturbation of independence: with probability 0.2 each off-diagonal symmetric pair of the
input matrices Dy, is perturbated as Dy;; = Dyji < ¢(v/Dgiin/Durjj)/0, where ¢ is +1 or
—1 with equal probability and § uniformly distributed in 1...8, for all £ and ¢ > j.

Given true mixing A, each AJD algorithm estimates demixing B, which should approximate
the inverse of A out of row scaling (including sign) and permutation. Then, matrix G = BA
should equal a scaled permutation matrix. At each repetition we computed the performance index
such as

2N -1DY, Y, G
> m]aX(G?j) + Ej miaX(ij)

which is positive and reaches its maximum 1.0 if G has only one non-null elements in each row
and column. For QDiag as per (9), we used E = I for this simulation. The mean and standard
deviation across 500 repetitions are reported in Table 1.

The real data example concerns an eyes open EEG recording of a 12 year-old boy compris-
ing 19 electrodes and 11 seconds sampled at 128 samples per second. The recording (Figure 1,
top) displays a rapid sequence of eye blinks and bilateral jaw muscle contamination visible at
temporal leads T3 and T4. We performed AJD of 44 Fourier co-spectral matrices corresponding
to frequencies 1 Hz to 44 Hz in 1Hz steps. For QDiag we used the sum of the cospectra in this
range as E in (9). EEG data was previously whitened and the 16 most energetic components
were retained. Such an AJD procedure corresponds to exploiting the different coloration of EEG
source components. In fact, the AJD of cospectral matrices successfully estimates the inverse of
the mixing matrix if the source components have non-proportional power spectra (characteristic
coloration). Out of random permutations, FDiag, QDiag and WSDiag gave very similar results
(Figure 1).

Performance Index =

(11)
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Figure 1: Top: about 9s of a 11s epoch extracted from the raw EEG recording of a 12 year-
old male. From left to right, electrode labels according to the 10-20 international system, raw
EEG tracing (upward deflection is negative potential; the space between two horizontal centering
lines is 70 uV), average power spectrum (from zero to 32 Hz; arbitrary units) and autocorrelation
function (the space between two horizontal centering lines is autocorrelation = 1 in the upward
direction and —1 in the downward direction). The gray shaded area in the background of EEG
tracings is the global field power, the sum of the square of potentials across electrodes for each
sample (arbitrary units). The next three plots are the sources estimated using FDiag, QDiag and
WSDiag on the same set of Fourier cospectral matrices. For all methods sources were standardized
(unit variance) and plotted on the same scale.
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4 Discussion

We have presented a new least-squares approximate joint diagonalization algorithm with adaptive
weighting for the row vectors of the matrix to be estimated. Simulations on synthetic input
matrices and a real-data example indicate the good performance of WSDiag when compared to
FDiag and QDiag. Our new LS optimization scheme allows interesting manipulations, besides the
adaptive weighting here proposed, which are now under investigation. We are currently considering
weighting also the input matrices and solving block diagonalization problems. We are also working
on the convergence properties of the algorithms and on its link to cost function (3).

5 Conclusion

The proposed AJD algorithm may prove useful for the extraction of electroencephalographic fea-
tures. Application of source separation methods making use of AJD algorithms has been recently
introduced in the brain-computer interface field [10, 11] and appears a promising approach.
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Abstract

P300 is a potential widely used in brain-computer interfaces (BCI), as P300 is an innate
response that does not require training on the part of the user. In the literature several
classification algorithms have been used (e.g., Linear Discriminant Analysis, Stepwise Dis-
criminant Analysis, Support Vector Machines), and, typically, first the P300 relevant features
are extracted from the EEG signal, then they are fed into the classifier. From this, it becomes
clear that feature extraction is the key point, and doing it by hand can be at the same time
cumbersome and suboptimal. In this paper, we face the issue of automatic feature extraction
by using a genetic algorithm (GA) able to retrieve the relevant aspects of the signal to be
classified in an automatic fashion. We do not use GA for feature selection or classifier opti-
mization; instead, we learn directly from the signal which are the features we should use in
our classifier. The approach has been used for single-sweep classification with a logistic clas-
sifier on a group of 10 subjects affected by ALS (amyotrophic lateral sclerosis), hospitalized
in the S. Camillo structure, and a group of 4 healthy subjects, voluntarily participating to
the study. Results are promising, reaching up to 95 % accuracy for some subjects; moreover,
the features extracted by the GA turn out to be related to the P300 activity and can provide
insights about the most interesting regions and time to classify P300s.

1 Introduction

A brain-computer interface (BCI) [1] is an interface that does not entail muscle movements, but
it bypasses any muscle or nerve mediation and connects a computer directly with the brain by
picking up signals generated by the brain activity.

In this study, we focus on the P300 [2], an event-related potential (ERP) that can be recorded
through an electroencephalogram (EEG). This potential is a late positive wave that occurs between
250 and 800 ms after the onset of a meaningful stimulus; the wave elicitation occurs in response
to task-relevant events, and its latency depends on the stimulation paradigm.

The P300 has been widely used for BCIs, with many variations, but in all cases the paradigm
is the same: the BCI system presents the user with some choices, one at a time; when it detects a
P300 potential, the associated choice is selected. The user is normally asked to count the number
of times the choice of interest is presented, so as to remain concentrated on the task. As the P300
is an innate response, it does not require training on part of the user.

In [3], Donchin and colleagues presented the first P300-based BCI, called also P300 speller,
which permits to spell words. A grid of letters and symbols is presented to the user, and entire
columns or rows are flashed one after the other in random order. Classification is made through
stepwise discriminant analysis (SWDA) applied to averages of samples from epochs relative to the
same stimulation (same row or same column).

104



4th Int. BCI Workshop & Training Course 2008

In [4], a virtual-reality system is presented where users operates objects selected through the
P300. Classification is made by comparing the correlation of single responses with the averages of
all target and nontarget responses.

In [5], tests have been made both with healthy and impaired subjects. The subjects control
a cursor by choosing among four commands (up, down, left, right) via the P300. Single-sweep
detection is performed; independent component analysis (ICA) is used to decompose the EEG
signal, a fuzzy classifier identifies a candidate P300 component among the ones extracted by ICA,
and a neural network classifies it as target or non-target. The system is more effective with healthy
subjects, though no exact reason could be pinpointed.

In [6], an initial attempt at using a BCT in a home environment is reported: a person with ALS
uses a P300 speller on a daily basis. The system is very similar to the original Donchin’s speller,
with a few differences in the detection algorithm.

Many techniques for detecting the P300 extract relevant features from the EEG signal and feed
those features into a classifier. In these approaches, feature extraction becomes the key point, and
doing it by hand can be at the same time cumbersome and suboptimal. In this paper we face the
issue of feature extraction by using a genetic algorithm (GA) able to retrieve the relevant aspects
of the signal to be classified in an automatic fashion.

GAs have been used already in the BCI field, although differently from the present work:
in [7], the best combination between different features and different classifiers is sought for a
motor-imagery task, while in [8], a classifier operating on P300 features is selected by a GA.

In the following section, we present the paradigm used to collect the EEG data for the present
study, while Section 3 gives a brief overview of the GA. Section 4 presents the performance achieved
by the GA and a graphical interpretation of evolved classifiers.

2 Experimental setup

2.1 Subjects

A group of 10 subjects affected by ALS, hospitalized in the S. Camillo structure, and a group
of 4 healthy subjects voluntarily participated to the study (ALS group: 3 females and 7 males,
mean age of 55years, range 31-73 years; control group: 2 females and 2 males, mean age of
36 years, range 27—41 years). The research was approved by the ethical committee of the S. Camillo
Hospital; informed consent was obtained according to the Declaration of Helsinki. All participants
underwent neuropsychological evaluation and auditory odd-ball P300 testing, in order to exclude
cognitive deficits. We assessed that all participants had preserved auditory, visual, and cognitive
functions, including adequate language comprehension.

2.2 BCI paradigm

An experiment was carried on to test the ability of the subjects to use a BCI based on P300
elicitation with an on-line single-sweep classifier. The paradigm consisted of a presentation of
finite sequences of visual stimuli on a computer screen to the subjects. They were asked to control
the movement of a virtual object (a blue ball) from the center of the monitor to one out of four
peripheral target images representing generic needs. The initial distance between the virtual object
and the target image encompassed four discrete steps. Upward, rightward, downward and leftward
arrows in peripheral positions of the monitor (see Figure 1a) were flashed in random order. Each
arrow indicated one out of four possible directions for the movement of the ball. Participants
had to pay attention to the arrow indicating the target image direction (target arrow; probability
of occurrence: 25%), but to ignore the arrows indicating wrong directions (distracting arrows;
probability of occurrence: 75 %). The subjects had to move the blue ball along only one direction,
according to the target image specified by the examiner.

Each trial comprised the flashing of one arrow for 150 ms (see Figure 1b), followed by the data
processing necessary for P300 recognition, and finally the generation of the feedback consisting in
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(b)

Figure 1: Representation of a trial. (a) The blue ball, the target images and the four directions
arrows; (b) the flashed arrow; (c¢) the movement of the ball after a P300 recognition.

the movement of the ball (see Figure 1c¢). The interval between the presentation of two arrows
(inter-trial interval — ITT) was 2.5, in order to achieve optimal on-line data processing. A session
was defined as the complete sequence of trials sufficient to reach the target image (range: 13-92
trials). We hypothesized that every target arrow should elicit a P300 wave. Every time a P300
was detected during the trial, the ball moved on the graphical interface in the direction of the
flashed arrow. Each participant performed eight learning sessions (LS) in the first day, and sixteen
testing sessions (TS) spread over the following 11 days (more precisely, first day: 8 LS — second
day: 4TS — two days interval — fifth day: 4TS — two days interval — eighth day: 4TS —
two days interval — eleventh day 4 TS). Learning sessions were characterized by an ideal feedback
(after each target stimulus the ball moved), while all testing sessions were characterized by a real
feedback (the movement of the ball depended on the classification algorithm).

2.3 Data acquisition

EEG electrodes were placed according to the international 10-20 system at Fz, Cz, Pz and Oz;
the EOG was placed at SO2; all electrodes were referenced to the left earlobe. The five channels
were amplified, band-pass filtered between 0.15Hz and 30 Hz, sampled at 200 Hz, and digitized
(with a 16 bit resolution). Every ERP epoch, synchronized with the stimulus, began 500 ms before
the stimulus onset, and ended 1000 ms after the stimulus onset (1500 ms total). Thus, after each
stimulus (trial) the system recorded 300samples per each of the 5channels, available for on-line
and off-line processing.

3 Genetic algorithm

We applied the genetic algorithm described in [9] to the data described in the previous section in
an offline fashion. In this section, only a very brief description of the algorithm is given; details
are given for the fitness function, as it differs from the one used in the cited work.

Genetic algorithms are a class of optimization algorithms that mimic the way natural evolution
works. In a genetic algorithm, a set of possible solutions to an optimization problem are coded in
strings called chromosomes solutions are evaluated, and the best ones (those with highest fitness)
are selected and combined together to form new possible solutions, in a process that mimics
evolution among living beings. After some repetitions of the procedure, good solutions emerge.

In the genetic algorithm used in this work, each individual (chromosome) represents a set of
possible features for discriminating the presence of a P300 in EEG recordings. Each gene encodes
a feature and an EEG channel from which to extract it; a feature is obtained by multiplying the
EEG channel by a weight function, whose exact shape is encoded by parameters in genes (see
Figure 2 for examples of weight functions). Genetic operators are a variant of 1-point crossover
and uniform mutation, and tournament selection with elitism is used.

The fitness of a chromosome is computed by evaluating the performance of a logistic classifier
on the features it encodes. To have a fair estimate of the performance, a 4-fold cross-validation
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Figure 2: Weight functions used for feature extraction

Subject Training Test Recall Exp. Perf.

Targ. Non-T. Targ. Non-T. Targ. Non-T. Targ. Len.
S1 204 703 99 284 61%+t3% 66 %+2% 57% 22.9
S2 121 354 58 166 96 %+1% 95%+1% 100% 13.1
S3 98 277 57 206 63%+5% T7T%+£3% 1% 233
S4 175 492 61 178 86 %+4% 83%+3% 93% 16.4
S5 114 325 32 94 B5%+E7% 78 %+3% 8% 19.5
S6 124 356 52 148 87T%+t3% 85%+5% 9% % 16.0
S7 144 433 50 138 82%+t4% 76 %+3% 8% 17.8
S8 112 340 39 112 2%LT% 72%+5% 80% 17.9
S9 185 529 50 154 94%+2% 86 %+2% 96 % 14.6
S10 219 690 47 142 97 %E2% 82%+2% 94% 145
S11 86 228 30 84 75 %+4% 81 %+2% 88% 19.3
S12 116 327 34 95 85%+t5% 90 %+3 % 98% 15.8
S13 218 617 84 240 TT%+3%  T7T%+2% 84% 19.0
S14 165 489 61 170 55%+7%  73%+4% 63% 26.0

Table 1: Means and standard deviations of recall for targets and non-targets obtained in 14 runs
of the GA.

scheme on the training set is used, and the mean performance on the 4 folds is used as the fitness.
The “performance” f of a classifier is obtained by combining precision pr and recall r for targets

according to this formula:
7 2 n 1 (1)
== -
3PT 3T
The definitions of precision and recall in terms of true positives (T'P), false positives (FP), and

false negatives (FN) are:

TP TP
“ TP+ FP "TTTPFFEN

An analysis of the combination of the features extracted by the genetic algorithm and the
classifier trained on the training set allows to compute weights assigned to individual EEG samples.

(2)

pr

4 Results and conclusions

The GA was applied in an offline fashion to the data recorded as described in Section 2. EEG
data were decimated to half of the original frequency; epochs were trimmed to the interval from
—0.2s to +0.8s (i.e., half a second was thrown away), and the linear trend was removed. No
normalization of data was performed; we tried to normalize EEG data before running the GA,
but it did not change the test performance significantly, so we chose the way that required less
computation.

The GA was trained on the first three quarters of the available data for each subject, and the
features encoded by the best chromosome and the corresponding classifier trained on the training
set were applied to the remaining quarter of the data. This procedure was repeated with 14
independent runs of the GA on each subjects.
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Figure 3: Examples of templates obtained in two different GA run for Subject S2

The results are shown in Table 1: the mean values and the standard deviation of the recall
of targets and non-targets over all the 14 runs are presented. Subjects S11, S12, S13, S14 are
healthy, while all the others are affected by ALS. For most subjects, the performance of the GA
is good, achieving consistently more than 70 % of recall in 8 subjects (i.e., the mean is at least
two standard deviations over 70%). In 6 subjects, the classifiers achieved often more than 80 %
of correct answers.

The last two columns of Table 1 show how effective this BCI can be for the various subjects; the
first of the two is the expected fraction of times a user reached the desired target, and the second
is the expected number of trials needed to reach a target. These numbers have been obtained with
a Montecarlo simulation of the BCI done with the mean recall values obtained by the GA. Only
3 subjects reach an accuracy in the task performance lower than 80 %, so we can consider the
classifier performance satisfactory in at least 11 cases. For a comparison, a perfect classifier (with
100 % recall) reaches the target always, in 12 trials on average; a random classifier (50 % recall)
reaches the target in 25 % of the cases, and each selection takes almost 21 trials on average.

Figure 3 shows what the GA has found: the continuous green lines represent the weight
assigned to individual EEG samples in the final logistic classifier, while the averages of targets
and non-targets epochs are given as references. Units are uV and s; the templates have been
scaled to fit in the graphs. The plots regard two classifiers that reached over 90 % of correct
epochs for Subject S2; although the averages are not very different, the algorithm found good
classifiers concentrating more on the Fz and Cz channels. By comparing the averages of targets
and non-targets in the plots, it is possible to see that they have important differences in the Fz
and Cz channels between 400 and 800 ms after the stimulus. The P300 complex includes other
subcomponents besides P3b, which has its maximal amplitude in parietal regions, as P3a and the
slow wave post P3b, which have their maximal amplitude over fronto-central regions. P3a occurs
when the changes in physical properties of the novel stimulus are task relevant and attention is
switched to the stimulus source. The slow wave post P3b occurs in the latency range from 500 to
1400 ms, and its amplitude increases as the task becomes more demanding and difficult [10, 11].
This suggests that the characteristics of the task and the attention requirement determine strong
response in the front-central region, which is exploited by the classifiers found by the GA.

We think that the results obtained offline are very promising and could be confirmed in future
online tests. The GA is very suitable for an online application; for the data set used in the present
work and on a low-end PC, a single run of the GA takes between 5 and 15 minutes, depending on
the subject, and the classification of an epoch less than 1 ms.
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Abstract

An approximate entropy feature is tested with parameters appropriate for online BCI —
a short calculation window and use of the running standard deviation of the EEG signal.
Features are extracted from self-paced real movement data, with various values of the em-
bedding dimension and tolerance of comparison. Two alternative features, band power and
reflection coefficients, are extracted for comparative purposes. Class separability is measured
using classification results from k-means clustering for individual features and linear discrim-
inant analysis for multiple features, as selected by sequential forward floating search. Results
show this method of calculating approximate entropy to be a candidate for online movement
detection in self-paced BCI systems.

1 Introduction

In many traditional feature extraction methods it is assumed that the fundamental signal char-
acteristics are contained in the amplitude and the frequency spectrum. However for some signals
these features are insufficient as signals belonging to different classes have different bandwidths.
Such signals can be best distinguished using complexity measures which are independent of the
precise frequency content of the signal [1].

In recent years, there have been many research studies on nonlinear complexity measures for
analysis of EEG signals [1, 2, 3]. These methods are used for analysis of the electrophysiologi-
cal condition of subjects, discrimination of mental tasks, and diagnosis of different pathological
conditions such as epilepsy, memory impairments and sleep disorders. It is reported that signal
complexity is correlated with the mental and physiological condition of subjects.

In this paper the detection of index finger movement using a nonlinear complexity measure,
approximate entropy, is investigated. Detection rates using two linear features, band power and
reflection coefficients, are included for comparison.

2 Methods

2.1 Approximate entropy

Approximate entropy (ApEn) is a recently developed method that measures the irregularity of
time series data [4]. This measure of irregularity is obtained by comparing the original time series
with time shifted versions of itself. For this purpose the original signal is reconstructed in phase
space using time delay embedding. The number of previous data points used for making the
prediction of the next data point is termed the embedding dimension, m.

Assuming we have EEG data from a single channel;

x=[z(1),z(2),...,2(N)] (1)

with N data points, a sequence of vectors are constructed with time delay embedding as follows;
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y:[y17y27y35"'7y1\/[] (2)

where
yi = (i), 2(i +7), 2 +27), ... .2+ (m = 1)7)]" (3)
fori =1,2,...,N — (m — 1)7. The next step is the calculation of the correlation integral using

the reconstructed vectors, which is defined by

N—(m—1)

cre =y sl (@

Jj=1

where N is the length of time series, r is the tolerance of comparison, y; and y; are vectors
constructed in phase space, || - || represents the Euclidean distance between vectors and ©(x) is the
heaviside function such that ©(z) = 1 if z > 0 and ©(xz) = 0 if < 0. The approximate entropy
ApEn(m,r) is obtained by;

ApEn(m,r) = ®™(r) — @™ 1(r), (5)
where
1 N—(m—1)
o™ (r) = m Z In[C7™ (r)]. (6)

2.2 Recording

Signals were acquired at 256 Hz. Five bipolar EEG channels were recorded over the motor cortex
at locations C3, C1, Cz, C2 and C4 as shown in Figure 1. EMG was recorded from the flexors
of the left forearm. A right mastoid reference channel was used. Signals were acquired using a
Guger Technologies g.BSamp. Data was recorded from eleven right handed subjects, three subjects
were female, ages ranged from 23 to 46. Subject 1 was experienced using a BCI system based on
self-paced movement, Subjects 7 to 11 had experience in offline BCI experiments, the remaining
subjects were naive to BCI use.

As data was un-cued the number of trials performed within each run was variable. Each subject
performed three runs in a single session. A run lasted 610 seconds. After a five second pre waiting
period a fixation cross appeared on the screen. The fixation cross remained on the screen for 10
minutes during which time data was acquired. A five second post waiting period was used.

Within each run subjects were instructed to perform self paced flexion/extension of the left
index finger whilst the fixation cross was visible. Subjects were requested to perform each move-
ment for between 5 and 10 seconds and to rest for at minimum 10 seconds between movements.
Instructions were given to concentrate on the fixation cross as much as possible during each run.
After each run EMG recordings were assessed to ensure subjects understood requirements and
could moderate actions accordingly.

2.3 Feature extraction and parameter initialisation

ApEn was calculated using a window of 32 samples with an overlap of 31 samples; a 1 second
averaging window was applied. Prior testing had determined that this window size demonstrated
promising results whilst retaining a calculation time appropriate for online use.

The calculation of ApEn involves selection of three parameters namely the embedding dimen-
sion m, time delay 7, and the distance within which the neighboring trajectory points must lie
(tolerance of comparison) r. There is no fixed manner of determining m and 7 values used in the
phase space reconstruction of the time series. In this study ApEn values were calculated for m
values ranging from 1 to 10, with 7 fixed at 1, as suggested in [5].
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Figure 1: Electrode layout.

In previous studies it has been suggested that r should be calculated via the product of the
standard deviation of the original signal [4] with a coefficient value. In order to estimate an ap-
propriate range of coefficient values for r a prior investigation was performed using data recorded
from three subjects (2 channel: C3, C4) during use of an online BCI system utilising self paced
movement. ApEn values were derived for 10 embedding dimensions over a set of coefficient val-
ues, ranging from 1 to 4 incremented by 0.1. Class separation was determined by calculating
Bhattacharyya distances [6]. Based on class separation results the maximum coefficient value for
testing was increased to 5 and the increment step to 0.2.

As the standard deviation of the entire signal is not an appropriate parameter for use in an
online BCI system we substitute the use of the running standard deviation of the relevant EEG
channel. The running standard deviation is calculated and updated sequentially based on prior
data up to and including the sample point for which features are extracted. As subjects perform
three runs the standard deviation value of each channel is recalculated for each run. As the
standard deviation of a signal takes time to converge we tested k-means classification accuracy
over time during the prior investigation to ensure results would not be detrimentally affected.

2.4 Classification

Class labels were derived through manual markup of the EMG channel. At the point of each
class transition 32 samples prior and post were dropped. To ensure equal sample sizes for each
class we obtain the number of samples for each class within a run, take the minimum N, and use
n =1...N from each class. As we are interested in comparative class separability cross-validation
was not applied. Classification results are representative of training classifiers using the entire
dataset.

To examine the relationship between class separation, embedding dimension and r values classi-
fication results for single electrode-feature pairs were obtained by use of k-means clustering (Math-
works Matlab, default settings). To compare feature separability using multiple electrode-features
a sequential forward floating search (SFFS) algorithm [7] was applied using a linear discriminant
analysis (LDA) classifier. A maximum of six features were selected, corresponding to lightweight
online use.

Classification results were also calculated for ten band power features (BP) corresponding
to the delta (0.1-0.5Hz), theta (5-8Hz), alpha (8-12Hz), sigma (12-15Hz), beta (15-25Hz)
bands along with five gamma bands (25-35, 35-45, 45-55, 55-65, 65-75Hz) and autoregressive
reflection coefficients (K), orders 1 to 10. To determine if ApEn complexity information could be
complementary to these features a SFFS was run using all three features.
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3 Results

Maximum k-means classification results for each subject are presented in Table 3 along with
associated electrode site and related parameter values. Optimal r values all fall within the range
1.2 to 3.8 whilst m values cover all possible embedding dimensions. No significant differences
were found between classification accuracies obtained for approximate entropy when compared to
band power and reflection coefficient features (p > 0.05, paired t-test, df = 10). From k-means
classification results we obtained optimal r coeflicients for each embedding dimension, Figure 2
shows the relationship between these values for subjects demonstrating classification dominance
in channel C4.
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Figure 2: Optimal r coefficients for m values, C4 dominant subjects.

Class separation as measured by multiple feature LDA classification is shown in Table 2.
Classification accuracy is shown for BP, K, ApEn, the maximum classification result using a
single feature (Max) and classification accuracy achieved when all three features are made available
to SFFS (Comb). The column ‘Comb Used’ outlines the combination of features used for each
subject.

When comparing use of multiple features within feature groups we find significant differences
in class separation across subjects for AE and BP (p < 0.05, paired t-test, df = 10), AE and K
(p < 0.05, paired t-test, df = 10), no significant differences were found between BP and K features.

Band Power Reflection Coefficients Approximate Entropy
Subject | Acc % Site Band | Acc % Site Order | Acc % Site 7 Coeff m Value
1 81.42 C4 5 80.40 C4 3 82.56 C4 1.8 3
2 66.79 C4 4 61.18 C4 1 62.37 C4 2.4 1
3 58.60 Cz 10 60.72 C2 2 64.37 C4 2.8 3
4 63.61 C4 7 71.99 C1 5 72.25 C2 2.2 7
5 65.94 C3 10 70.67 C3 5 66.11 C3 1.2 9
6 56.58 C2 1 64.30 C3 5 62.18 Cz 3.8 9
7 61.21 C4 5 60.41 C1 3 62.02 C4 2.8 3
8 65.55 Cz 10 71.01 Cz 6 66.76 C4 3.6 10
9 58.54 C1 9 63.83 C4 6 59.55 Cz 1.6 3
10 57.08 C4 3 61.08 C4 3 63.03 C4 2.0 5
11 59.14 C4 5 60.49 C2 4 57.33 C1 1.2 8
z (o) 63.13 (7.09) 66.01 (6.59) 65.32 (6.93)

Table 1: k-means classification: maximum for each subject.
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Classification Accuracy % Comb Used

Subject | BP K ApEn Max Comb | BP K  ApEn
1 83.47 86.56 87.06 87.06 87.97 2 0 4
2 75.44 64.92 73.87 7544 77.25 3 0 3
3 61.27 62.51 69.90 69.90 70.18 1 0 5
4 76.78 79.85 81.11 81.11 83.07 1 1 4
5 75.40 75.67 79.71 79.71 80.95 1 1 4
6 63.19 67.65 66.45 67.65 69.17 0 3 3
7 65.79 62.46 68.62 68.62 67.52 4 1 1
8 70.31 72.15 74.50 74.50 76.01 0 1 5
9 61.74 62.52 61.70 62.52 63.65 0 2 4
10 66.07 64.22 63.17 66.07 66.79 4 0 2
11 66.97 65.53 66.65 66.97 68.02 3 0 3
X 69.68 69.46 72.07 72.69 73.69 | 1.73 0.82 3.45
o 720  8.11 7.99 7.53 7.84

Table 2: LDA classification accuracy using six features selected by SFFS.

Significant differences were found between accuracy rates obtained using combined features against
BP (p < 0.01, paired t-test, df = 10), K (p < 0.01, paired t-test, df = 10) and AE (p < 0.01,
paired t-test, df = 10).

4 Discussion

Maximum k-means classification results for each subject, obtained for a single feature, show no
significant difference in class separability when using approximate entropy as compared to the
more traditional features, band power and autoregressive reflection coefficients. Demonstrating
that, given optimal parameters, signal complexity may be comparable to these linear features.

We use the classification rates from k-means to investigate the relationship between parameters
varied in the approximate entropy calculation and class separability. As the selection of these
parameters is a non-trivial problem, we calculated approximate entropy with a range of m and r
coefficients in an exhaustive manner. The results of k-means classification, as shown in Figure 2
show parameters m and r are proportionally related to one another; as the distance between
embedding vectors increases with m it is necessary to increase r for optimal performance.

Significant differences were found between the degree of class separability, as measured by
LDA classification accuracy, when comparing the use of multiple features of a single type. The
difference in classification accuracy found between approximate entropy and the linear features
are likely to be attributable to the difference in granularity in the search spaces. Parallel work
using an increased feature space for band power has failed to find a significant difference in class
separability between the features.

When comparing classification accuracy obtained for approximate entropy with the use of all
available features, in our case augmenting the approximate entropy feature space with information
from band power and reflection coefficients, we find significant differences in classification accuracy
with relatively comparative feature spaces. This suggests that the linear features used provide
further characterization of EEG time series which is complementary to approximate entropy.
Across subjects the use of combined features demonstrates a bias towards the approximate entropy
feature, followed by band power which is represented around twice as often as reflection coefficients.
The bias towards approximate entropy is again, likely to be influenced by the increased search
space for the feature. We did not utilize cross-validation in this study as we are interested in
separability of features rather than the generalisation ability of a particular BCI system. An
attempt to counter the overfitting problem, to some extent, was made through the use of linear
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LDA classifiers. We plan on using cross-validation in future tests and during online BCI system
design.

The classification results achieved using approximate entropy demonstrate that, although com-
putationally expensive, promising results may be obtained using parameters appropriate for online
use. A short window was used to investigate the applicability of approximate entropy for online
BCI use where the detection latency and the number of channels to be processed are important
factors. Increasing the window size should lead to a greater accuracy at the cost of latency of
onset detection and the feasible number of channels used.

The main constraint to the use of approximate entropy for BCI use is in the estimation of the
correct range of parameters. Based on the subjects tested it appears that optimal r coefficient and
m values are subject dependant. In this study we used a fixed 7 value of 1, this was employed to
restrict the search space of the feature. Using methods such as the first local minimum of mutual
information and first zero crossing of the autocorrelation function it may be possible to obtain an
optimal 7 value [8, 9]; we expect this to increase the characterization ability of the approximate
entropy method.

5 Conclusion

Based on a limited number of subjects approximate entropy features using a short calculation
window appear appropriate for detection of real finger movement. Classification results suggest
that the complexity information derived may be complementary to the linear features tested.
Further research is necessary to determine if methods used are applicable to imaginary movements.
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Abstract

Due to the non-stationarity of electroencephalogram (EEG) signals, online training and
adaptation is essential to EEG based brain-computer interface (BCI) systems. Three methods
were used to adapt linear discriminant analysis (LDA) classifiers during simulated online
training for a comparative study. One method generates a new classifier based on updated
means and variances of the BCI data of different classes, and the other two are Kalman filter
and extended Kalman filter based methods that adapt LDA’s parameters directly. Cue-based
motor imagery BCI experiments were carried out with 9 naive subjects. Results show that
all methods returned comparable improvement during online training, but the mean-variance
updating based method is much simpler than the other two methods.

1 Introduction

A brain-computer interface (BCI) is a communication system in which an individual sends com-
mands to the external world by generating specific patterns in brain signals and a computer detects
and translates the brain signal patterns into commands that accomplish the individual’s intention.

It is well-known that electroencephalogram (EEG) signals, particularly in EEG-based BCT sys-
tems, are non-stationary. The non-stationarities may be caused by the subject’s brain conditions
or dynamically changing environments. To some extent, a realistic BCI system has to be trained
online and adaptive even in application phases where the true labels of ongoing EEG trials are
unknown. Therefore, adaptation of feature extraction [1, 2, 3, 4] or classification is very impor-
tant for BCI. Classifiers were manually updated or re-trained with new recorded data in between
runs [5], or automatically updated online [6, 7, 8, 9].

This paper compares three online training methods for adapting parameter values of the linear
discriminant analysis (LDA) classifiers of the BCI systems to deal with non-stationary EEG signals.
Cue-based motor imagery BCI data were used to simulate online training for the purpose of
comparison, so that true labels are available for supervised adaptation. The first adaptation
method regenerates a new LDA classifier based on the newly updated means and variances of the
BCI features of different classes. The second and third methods are Kalman filter and extended
Kalman filter based adaptation methods. Experimental results shown that all methods returned
comparable improvement on performance, but the first method is much simpler than the other
two methods. We also investigated the issue of ‘when’ to adapt, by repeating the experiments
with systems updated only when the prediction mismatches the true label at each trial.

2 Methods

2.1 Synchronous data acquisition and offline training

The experiments were carried out with able-bodied subjects who sat on an armchair at 1m distance
in front of a computer screen. The EEG recording was made with a g.tec amplifier (Guger
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Technologies OEG Austria). Five bipolar EEG channels using 10 electrodes were measured over
C3 (FC3 vs. CP3), C1 (FC1 vs. CP1), Cz (FCz vs. CPz), C2 (FC2 vs. CP2), and C4 (FC4
vs. CP4). The EEG was sampled at 250 Hz.

A simple synchronous BCI paradigm, proposed by the Graz BCI Lab [10], was used to record
data for training classifiers offline. The subjects were asked to imagine left versus right hand
movements. The experiment consisted of 6 runs with 40 trials each. In each trial the subjects
relaxed until a green cross appeared on screen at ¢t = 2s (s for second). At ¢t = 3s, a red arrow
(cue) pointing either left or right direction appeared on screen for 2 seconds. The subject’s task
was to respond to the arrow by imagining left or right hand movements until the green cross
disappeared at t = 8s. The order of left and right cues was random, and there was a random
interval of 2-3 seconds between trials.

Logarithmic band power features were extracted from EEG signals and used to classify the
imagery movements into left or right class. Frequency bands that give good separation were
manually or automatically selected for each subject. Using the selected frequency bands, EEG
signals were digitally bandpass filtered, squared, averaged over a 1 second sliding window, and a
natural logarithm was then applied to obtain the features. Using the extracted features and their
corresponding class labels (from the cue signals), two LDA classifiers were trained, with one to
distinguish left imagery movement from others (right imagery movement or no imagery movement)
and the other to separate right imagery movement from others.

It was shown in the BCI competitions 2003 and 2005 that LDA performs as well as (some-
times even outperforms) non-linear classifier, and almost all the winning classifiers are linear [11].
Therefore, we chose to use and adapt LDA in this study.

2.2 Adaptation methods

The advantage of using LDA is that it is completely determined by means and variances of the
BCI data from individual classes and the number of samples from each class. Therefore, it can
be updated incrementally and robustly with new input data without explicit history of previous
training data. We employ the following method [12, 13], called MCLDA, for updating means and
variances that define a LDA classifier, with an additional learning parameter C.

T — HE|k—1

N+C (1)

Pk = Hilk—1 + C -
(N = 1)Spe—1 + Oz — i) (& — i)™ @)
N+C-1
where fiy,—1 and Xjy,_q are the mean and variance before updating at time step k, and k|k
denotes after adaptation at time step k. N is the number of samples, which will be increased by
C after the above updating. It can be seen from the above equations that the learning parameter
C multiplies the involvement of new data x for the newly generated classifier.

On the other hand, Kalman filter based adaptation method, KALDA [7], adjusts adaptation
speed dynamically in respect to the linear response from the current model, w1 and Agjp_;.
The update equations are briefly shown below, where p is the number of elements of wy,_1, 2 is the
current class label. As can be seen from ( 6), when a true positive trial is predicted, the algorithm
enhances the classifier, otherwise, the system makes correction if the prediction is incorrect.

Yip =

Ak\kql‘

K= 3
SETAk|k_1ZL' + (1 — C) ( )
A=Ay — KaT Ay (4)
Ape = trace(A) - C/p+ A (5)
Wik = Wijk—1 + K (2 — swpp—1) (6)
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In extended Kalman filter (EKF) the state transition and observation models need not be linear
functions but may instead be differentiable functions. Lowne et al. [14] used a logistic regression
function in the observation model. The update equations for EKF are shown below:

Pijg—1 = Py_1jj—1 + max {up_1jp — up_1j5—1, 0} - I (7)
Ppjp—1z
= wzlP l (8)
klk—12 + C
Py = Pajr—1 — Ku(Pypp—1z)” (9)
Wy = Wijk—1 + K (2 —y) (10)

where u = y(1—y) is the uncertainty of the moderated logistic regression output y, I is an identity
matrix, and ug_1); — Up_1)k—1 is information gain from the last update step.

3 Simulated online synchronous BCI experiments

We tested 3 adaptation algorithms with offline cue-based BCI data recorded using the methods
described in Section 2.1. The experiments were carried out with 9 able-bodied subjects without
previous BCI experience. A total of 6 runs of data, with 40 trials each, were recorded for each
subject. The first 4 runs were recorded within one day, and the last 2 runs were recorded later on
another day.

For each subject, a classifier was trained based on the data from the first 4 runs. Adaptation
algorithms were tested on the fifth and sixth runs, with 80 testing trials in total. The benefit
of the adaptation can be demonstrated because the training and testing data were recorded on
different days.

Both manual and automatic feature selection methods have been tried. The same frequency
bands, 7-15Hz, 15-25 Hz and 25-45 Hz, were manually chosen for band power feature extraction
for subjects S1, S2, S3, S7 and S8; Different frequency bands were chosen by automatic feature
selection method for other subjects in order to achieve better classification results. Band power
in 10 frequency bands was initially extracted from raw EEG signals, where 7-25 Hz was separated
every 3Hz, and 25—45 Hz was separated every 5Hz, resulting in a vector of 10 features from each
channel. For 5 channels, there are 50 features in total. The Sequential Floating Forward Selection
(SFFS) method [15] was used to select up to 10 features that return the best 4 fold cross-validation
performance.

In synchronous BCI the user’s intention is triggered by a cue. At each trial, instead of sample-
by-sample update, the data within the 2 seconds after the cue is averaged for prediction and
adaptation; thus the classifier is updated once at each trial. For simplicity, we choose the start
of the 2 seconds period at 1, 2, or 3 seconds after the cue, respectively for different subjects. It
was selected manually based on the single trial analysis of the training data such that the chosen
period gives maximum accuracy across all training trials.

The testing was performed offline in order to compare the performance of different adaptation
methods, but in a way that online testing is simulated. At each trial, the prediction was made
and recorded for evaluation before supervised learning adapts the classifiers for the next trial.

Two different adaptation schemes were tested. In one scheme, the adaptation can take place
at every trial, so that the adaptation performs both enhancement and correction depending on
whether the prediction at each trial matches the true label or not. In the other scheme, the
adaptation is restricted to when the classification mismatches the true label only. By doing this,
the system adjusts with correction only (without enhancement).

The experiment is evaluated by comparing the performance between with and without adapta-
tion. Two performance indexes are provided. The first is based on event-by-event analysis, which
shows the performance as if the system was running for real online application where a decision
has to be made based on the predefined decision time instant or interval. The second performance
index is max-accuracy, which shows the maximum accuracy that can be achieved at a proper
decision time point.
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Always Adapt Adapt when False
Subject No Adapt | MCLDA KALDA EKF MCLDA KALDA EKF
S1 73.75 76.25 73.75 73.75 73.75 76.25 76.25
S2 70.00 70.00 70.00 75.00 71.25 70.00 71.25
S3 70.00 72.50 72.50 75.00 75.00 70.00 72.50
S4 70.00 72.50 77.50 72.50 71.25 77.50 73.75
S5 70.00 70.00 71.25 70.00 70.00 71.25 75.00
S6 67.50 67.50 75.00 68.75 70.00 67.50 71.25
S7 60.00 63.75 68.75 63.75 62.50 62.50 62.50
S8 58.75 63.75 62.50 65.00 63.75 63.75 65.00
S9 56.25 61.25 65.00 63.75 66.25 65.00 65.00
mean 66.25 68.61 70.69 69.72 69.31 69.31 70.28
variance 4.08 13.72 7.34 10.20 10.98 5.38
p value 0.003999 0.003490 0.002452 | 0.010411 0.012219 0.000407

Table 1: Event-by-event analysis (%).

Always Adapt Adapt when False
Subject No Adapt | MCLDA KALDA EKF MCLDA KALDA EKF
S1 76.25 78.75 76.25 76.25 77.50 77.50 78.75
S2 73.75 75.00 78.75 75.00 76.25 77.50 77.50
S3 73.75 78.75 75.00 75.00 76.25 75.00 77.50
S4 72.50 78.75 75.00 76.25 73.75 77.50 77.50
S5 72.50 75.00 72.75 72.50 72.50 75.00 75.00
S6 70.00 72.50 71.25 72.50 71.25 72.50 72.50
S7 67.50 72.50 71.25 68.75 70.00 71.25 72.50
S8 65.00 67.50 68.75 68.75 66.25 68.75 66.25
S9 63.75 70.00 67.50 68.75 70.00 66.25 68.75
mean 70.56 74.31 72.94 72.64 72.64 73.47 74.03
variance 3.52 3.16 3.13 3.13 1.56 1.87
p value 0.000162 0.001887 0.003835 | 0.003835 0.000056 0.000031

Table 2: Maximum accuracy analysis (%).

4 Results

The results of the simulated synchronous online training under event-by-event analysis are given in
Table 1, and under max-accuracy analysis are given in Table 2. Mean and variance of improvement
and t-test (paired and tailed) were used to compare the effect of adaptation. In the case of event-
by-event analysis, the performance was improved from 66.25% to 68.61 % (MCLDA), 70.69 %
(KALDA), and 69.72% (EKF) when adaptation was performed at every trial (Always Adapt).
EKF achieved the best p-value 0.00245, but MCLDA returned lowest variance on improvement
at 4.08%. A 70.28% accuracy was achieved by EKF when the system adapted only when the
prediction was incorrect at each trial (Adapt when False), and the lowest variance on improvement
and p-value were also achieved by EKF at 5.38 % and 0.00041 respectively.

The improvement under the maximum accuracy analysis is similar. The system was improved
from 70.56 % to 74.31 % (MCLDA), 72.94 % (KALDA), and 72.64 % (EKF) when adaptation was
performed at every trial. MCLDA returned the best averaged accuracy and lowest p-value at
0.00016, and KALDA and EKF acheived marginally lower variance of improvement. When the
system was adapted only when the prediction was incorrect at each trial, EKF achieved the highest
overall improvement with 74.03 % accuracy and lowest p-value at 0.000031.

Good improvements are achieved by subjects whose performance were low when there were no
adaptation. Subject 8 produced 58.75 % without adaptation, and the improvement by adaptation
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Event-by-Event Maximum Accuracy
Always False Always False
MCLDA vs KALDA | 0.0502(KALDA) 0.5000(same) | 0.0666(MCLDA) 0.1497(KALDA)
MCLDA vs EKF 0.0768(EKF) 0.1140(EKF) | 0.0111(MCLDA) 0.0106(EKF)
KALDA vs EKF 0.2375(KALDA) 0.1221(EKF) | 0.3063(KALDA) 0.1561(EKF)

Table 3: t-test on methods against each other. At each entry, the method with higher mean value
is shown in a basket. Always: always adapt adaptation scheme. False: adapt when false only
adaptation scheme.

was 6.25 % by EKF under event-by-event analysis for both adaptation schemes. Similarly for Sub-
ject 9, the improvements for different adaptation schemes were up to 8.75 % and 10 % respectively
under event-by-event analysis by different adaptation methods.

On the other hand, adaptation offers less improvement for subjects who have already achieved
good accuracy without adaptation. For instance, the result for Subject 1 was improved by 2.5 %
by KALDA and EKF with correction only adaptation scheme. Performance improvements for
other subjects vary from 1.25% to 5 %.

Overall, both performance indexes have demonstrated that better results have been achieved
with correction only adaptation.

We preformed t-test to show the improvement from each adaptation method against no-
adaption. It was also used to compare the three adaptation methods, each against another (see
Table 3). Since the t-test is non-directional, the method achieved higher mean value is shown
at each comparison. It can be seen that EKF beats KALDA and MCLDA on performance in-
dexes under “Adapt when False” adaptation scheme, with 0.0106 being the lowest p-value against
MCLDA. KALDA beats EKF when the system always adapt, but only marginally in terms of
mean and p-values. MCLDA performs better than KALDA and EKF under Maximum Accuracy
analysis when the system always adapt, with relatively low p-value at 0.0666 and 0.0111. Roughly
speaking, these three methods achieve comparable performance.

5 Conclusion

We tested 3 adaptation methods to update LDA’s parameters online at each trial. It is clear
that all adaptation methods are able to return good increases in performance, even with short
online training period. While no method performs significantly better than others, EKF seems to
perform better with lowest p-value from 3 out of 4 tests, and highest accuracy improvement from
2 out of 4 tests. This is also confirmed when T-test was carried out to compare the methods with
one against another. KALDA returned highest improvement for some subjects (S4, S7 and S9).
The performance of MCLDA is similar to that of KALDA or EKF, while its implementation is
simpler.

In this paper, a cue-based BCI system was used for our experiments. Our ongoing work is
to implement adaptive classifier for self-paced BCI. It is a great challenge to train and adapt a
self-paced BCI online because the user’s control intention and timing are usually unknown to the
self-paced BCI system. Furthermore, the system should be switched to unsupervised learning once
the online training reaches a satisfactory level, or true labels are unavailable.

Acknowledgments: The authors would like to thank Matthew Dyson, Tao Geng, and Steve
Roberts for constructive discussions and comments.
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Abstract

This paper discusses simulated on-line unsupervised adaptation of the LDA classifier in
order to counteract the harmful effect of non-class related non-stationarities in EEG during
BCI sessions. Three types of adaptation procedures were applied to the two large BCI data
sets from TU Graz and Berlin BCI project. Our results demonstrate that the unsupervised
adaptive classifiers can improve performance substantially under different BCI settings. More
importantly, since label information is not necessary, they are applicable to wide ranges of
practical BCI tasks.

1 Introduction

A Brain Computer Interface (BCI) has to be robust against non-stationary changes [1] or adapted
to these [2, 3, 4]. Some BCI users, especially at early training stages, might not generate stable
EEG patterns. The system requires then supervised classifiers that can “follow” unexpected class-
related changes of EEG and successfully help in the learning process [2]; however, class information
is usually not available in practical BCI tasks. On the other hand, when subjects can generate sta-
ble patterns, task related EEG information might not change so drastically, but different electrode
montages or task unrelated factors affect the signals. In this case, class information might not
be required for the adaptation of the system. This motivated us to study whether unsupervised
adaptation based on extra assumptions works in practical BCI scenarios. In BCI experiments
one of the main problems from session to session or from calibration to feedback within the same
session, is the bias adaptation. Typically the features move in the feature space and the classifier
should be re-adjusted [2, 4, 5]. Even during a feedback session the bias must be recalculated after
some time. When a subject generates almost stable patterns, one could expect the change between
the vectors connecting the two class means to be small. This difference can be measured by the
angle formed between the vectors connecting the mean values of each class (see Figure 1(b)).

All data processing methods used in this paper are causal and suitable for on-line and real-
time realization. We describe adaptive unsupervised classifiers based on the simple and robust
linear discriminant analysis (LDA). For this we exploit the fact that adapting parameters of LDA
without label information is possible. The improvement in performance on two large data sets
using these classifiers indicates that there exist underlying background activity that negatively
affects the system performance, but that can be counteracted with the proposed methods.
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2 Material and methods

2.1 The datasets
2.1.1 Graz data

Experiments were carried out with 21 subjects without previous BCI experience. They performed
motor imagery of the left and right hand to control a “basket feedback”, [6]. Each subject con-
ducted three sessions of 9 runs and 40 trials per run (we used second and third sessions). Two
bipolar channels, C3 and C4 were recorded.

2.1.2 BBCI data

We took 19 datasets recorded from 10 subjects who performed motor imagery (left-right hand,
right foot) according to visual cues without feedback. The pair of tasks with best discrimination
was chosen. These datasets were used because they revealed non-stationarities in a previous
study [7]. Brain activity was recorded with multi-channel EEG using 55 Ag/AgCl electrodes.

2.2 Feature extraction techniques

We selected a standard choice in each laboratory: Adaptive autoregressive parameters (AAR) for
the Graz data and Common spatial patterns (CSP) for the BBCI data.

2.2.1 Adaptive autoregressive parameters

To extract AAR parameters from the EEG [8], an adaptive filter based on a stable version of
Recursive Least Squares (RLS) was used. AAR parameters of model order 5 were computed
from two bipolar channels over C3 and C4. The logarithmic variance of the innovation process
(which resulted from the adaptive filtering used) was also concatenated because it provides further
information, see formula of the auto-regressive spectrum.

2.2.2 Common spatial patterns (CSP)

CSP is a technique to analyze multichannel data based on recordings from two classes (tasks).
It yields a data-driven supervised decomposition of the signal x(t) parameterized by a matrix
W that projects the signal in the original sensor space to a surrogate sensor space xcsp(t),
[9]: ®csp(t) = x(t) - W. Each column vector of a W is a spatial filter. CSP filters maximize the
variance of the spatially filtered signal under one task while minimizing it for the other task. Since
the variance of a band-pass filtered signal is equal to band-power, CSP analysis is applied to band-
pass filtered signals to obtain an effective discrimination of mental states that are characterized
by ERD/ERS effects. Detailed information about this technique can be found in [9].

2.3 Classifiers

We concentrate on a binary classification problem with linear classifiers which are specified by
discriminant functions. LDA assumes the covariance matrices of both classes to be equal, X. We
denote the means by @1 and s, and arbitrary feature vector by « and define:

D(x) = [hw]"-[1a] (1)
w o= B (uy— ) (2)
b = —w'-p (3)
po= g ) @

Then D(x) is the difference in the distance of the feature vector x to the separating hyperplane
described by its normal vector w and the bias b. If D(x) is greater than 0, the observation x is
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classified as class 2 and otherwise as class 1. Note that using a “pooled covariance matrix” instead
of an averaged one does not affect the classification result. We consider five on-line aptation
schemes: two of them require label information (supervised) and the other three can update the
classifier without knowing performed tasks.

2.3.1 Supervised adaptive LDA

In the supervised scenario, we can update the class means gy, po and the common covariance
matrix 3 in on-line manner. LDA relies on the inverse X1 of the covariance matrix ¥ (see (2)
and (3)), which can be recursively estimated applying the matrix inversion lemma, where UC is
the update coefficient and x(¢) is the current sample vector without the mean.

1 » 1
m ) (E(t -1 - 1-UC | (DT -v(?) () 'U(t)T> (5)

ucC

St =

with v(t) = 2(t — 1)~ !-z(t). Note, the term x(t)T - v(t) is a scalar, and no costly matrix inversion
is needed. To estimate the class-specific adaptive mean g1 (¢) and po(t) one can use:

p;(t)=(01—-UC) pu;(t —1)+UC-x(t) with i:= class of z(t) (6)
We also consider a simpler adaptive classifier (Mean classifier) which only updates the class

means p1 and po by (6), while the covariance matrix 3 is kept constant.

2.3.2 Unsupervised adaptive LDA I: common mean changes

As shown in [10], there are changes which affect the mean of the features. One can modify part
of the bias given in (3) by adapting the common mean p(t) (the average of the two class means).
We update the global mean pu(t) by the same rule as (6) except that all trials from both tasks are
used. This classifier is called CMean in this paper.

b(t) = ~w” - p(t) (7)

2.3.3 Unsupervised adaptive LDA II: common mean and covariance changes

We update the global mean and covariance matrix (CMean-CCov classifier), and keep the difference
between the two class means constant. We estimate the inverse of the “pooled covariance matrix”
for which no class information is needed, as in (5). We only need to substract the common mean
estimator to the current feature vector x(t). The LDA bias and weights are modified:

w(t) =2(t) " (p2 — 1) b(t) = —w(t)" - p(t) (8)

2.3.4 Unsupervised adaptive LDA III

A scaling happening in the feature space can be accounted for by using a parallel formula to that
explained in [11] for the case of adaptive CSP filters:

w(t) =222 (py — ) b(t) = —w” - p(t) (9)
In which one should use the “normalization assumption” of [11].

()72 (pe—pa) = BTV (p2 — ) (10)
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Figure 1: Left plot: percentiles of classification error rates. Middle plot: angle formed between
the vectors connecting the mean values of the two classes at two different time points. Right plot:
computed angles for the two datasets.

2.3.5 Parameter selection

For each method, the update coefficient UC, the number of samples used to adapt the classifiers
and the initial time for adaptation had to be selected (see [2]). All tuning parameters of “Graz
data” were optimized based on the runs in session 2 for each subject and applied to session 3. The
initial classifiers were calculated using the data from the previous session. For “BBCI data”, the
sessions were divided into two halves. The parameters were optimized in the first half and applied
to the second one.

2.4 Investigating the nonstationarities

The proposed unsupervised adaptive LDAs (Section 2.3.2-2.3.4) are based on the assumption that
the means of the two feature distributions drift in a similar way, i. e. the difference between the two
means is nearly constant. In order to quantify the validity of this assumption, the angle formed
between the vectors connecting the mean values of each class of the first half and the corresponding
vector of the second half is determined for each dataset.

3 Results

Figure 1(c) summarizes the results of the angles computed for every dataset. With “Graz data”
the mean values were calculated using the data of session 2 for the first vector and session 3 for
the second. With the “BBCI data” we used the first half against the second.

Figure 1(a) shows the percentiles 5, 25, 50, 75 and 95 of the classifiers. A significance test
with a Sidak corrected p-value for multi-comparison of 1.74 % revealed that no adaptation is
significantly worse than all the other options. The supervised classifier was found significantly
better than the rest of classifiers. Adapting the mean with and without class information did not
show significant differences, although using class-labels for adapting the mean was better than
CMean-CCov and Rotation classifiers. However, no differences were found between CMean and
CMean-CCov, although Rotation was worse than the first one. Finally, no significant differences
showed between CMean-CCov and Rotation.

Figure 2 depicts error rates of each of the classifiers versus no adaptation except in the bottom-
right corner, where the mean and common mean classifiers are compared. The time in which the
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Figure 2: Comparison of classifiers based in error rates. All of them are compared to no adaptation
except the bottom-right corner, in which adaptation with and without class labels are compared.

performance was calculated was fixed beforehand to assure causality of the results. The values
below the diagonal mean that the classifier of the y-axis performs better than the one of the x-axis.

4 Discussion

Results presented in Figure 1(c) show that angles for BBCI subjects vary from 8 to 25 degrees.
The features used were not adaptive and were computed with a fixed spatial filter after which band
power estimates in a narrow band were calculated. Some of the subjects were naive, but did not
present bigger angle-differences than experienced ones. Also, the two datasets used to estimate
this difference come from the same session which would be an explanation for the small change.
However, this is a realistic setting because many BCI systems record calibration and feedback runs
in the same session. In contrast, all Graz subjects were inexperienced, besides the features were
adaptive. These subjects show angles varying from 9 to 81 degrees.

Figures 1(a) and 2 suggest that supervised adaption is the best option, followed by the super-
vised adaptation of the means. All unsupervised classifiers seem to perform very similarly, with a
slight advantage of the CMean classifier, which might be due to a lower number of parameters to be
adapted. It is interesting to note that adapting means with and without class-labels was not found
significantly different, which is explained by the small difference between the vectors connecting
the two means (small angles) found in most of the subjects. Looking at the comparison between
the Mean and CMean classifiers in Figure 2 one can see that especially for 4 subjects (all of them
from the Graz dataset) Mean was better than CMean. Finally, the Rotation classifier exhibits the
worst average error rate of the unsupervised classifiers, and was found to be significantly worse
than CMean. This might be caused because the assumptions to define problem are too strong.

5 Conclusion
When operating a BCI there is considerable fluctuation in the underlying statistics. This ob-

servation is subject- and even task-dependent. Compensating such non-stationary effects and
investigating their underlying cause is an important mile-stone on the way to more robust BCI
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systems. Our focus in this paper is to study non-task related fluctuations, for which unsupervised
data analysis methods can contribute to compensating such non-stationarity. We consider three
unsupervised classifiers that are shown to successfully counteract the effect of non-class related
EEG changes. These unsupervised classifiers can perform well under very different settings using
CSP or AAR features for preprocessing and training and test sets from within the same session and
from different ones. This is in line with the small fluctuations that can be found when analysing
the change in the vectors that connect the class means at different time points. In other words,
for the majority of subjects considerable signal variation is task unrelated and can thus be tackled
in an unsupervised manner.
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FKZ 01IBEO1A /B, and by the IST Programme of the European Community, under the PASCATL2
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Abstract

Anticipation increases the efficiency of a daily task by partial advance activation of neural
substrates involved in it. Single trial recognition of this activation can be exploited for a
novel anticipation based Brain Computer Interface (BCI). In the current work we compare
different methods for the recognition of Electroencephalogram (EEG) correlates of this ac-
tivation on single trials as a first step towards building such a BCI. To do so, we recorded
EEG from 9 subjects performing a classical Contingent Negative Variation (CNV) paradigm
(usually reported for studying anticipatory behavior in neurophysiological experiments) with
GO and NOGO conditions. We first compare classification accuracies with features such as
Least Square fitting Line (LSFL) parameters and Least Square Fitting Polynomial (LSFP)
coefficients using a Quadratic Discriminant Analysis (QDA) classifier. We then test the best
features with complex classifiers such as Gaussian Mixture Models (GMMs) and Support
Vector Machines (SVMs).

1 Introduction

Anticipation is a process that not only depends on past and current states but also on future
expectations. Without anticipation everyday cognitive tasks would become exclusively reactive.
Conversely, this process increases the efficiency of daily tasks by partial advance activation of
the neural substrates involved [1]. We hypothesize that the recognition of this activation can
be exploited for Brain Computer Interaction (BCI). For example, consider a scenario of a brain-
actuated wheelchair [2] driving towards a table with breakfast lying among several other tables.
Using the onboard sensors the intelligent controller in the wheelchair can detect the presence
of a table in front but it cannot decide by itself whether to dock or avoid. If the controller
is integrated with anticipation recognition algorithms, the user can issue the docking command
just by anticipating the docking event to happen. Otherwise, the controller triggers the obstacle
avoidance behavior.

To the best of our knowledge, anticipation related potentials in human EEG are well studied in
the context of clinical science and functional neurophysiological studies [3] but not well explored
in the context of BCI, excepting one early attempt based on neurofeedback [4]. In the current
work we compare different methods for the recognition of these potentials on single trials as a first
step towards the design of an anticipation-based BCI.

To record these potentials we have considered a classical Contingent Negative Variation (CNV)
paradigm [3] as an experimental procedure. A vast amount of literature describes the CNV po-
tentials (the potentials recorded using CNV paradigm) as related to anticipation [3, 5, 6]. In this
paradigm a warning stimulus (S1) predicts the appearance of an imperative stimulus (S2) in a pre-
dictable inter-stimulus-interval (ISI). A negative shift in the cortical activity with a centro-medial
distribution (under the vertex electrode, Cz) usually develops between S1 and S2 depending on
contingency of stimuli and task parameter relevance [5, 6]. This signal has been shown to be
stable over several days and in different conditions (e.g., amount of sleep time) [5]. In addition,
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one neurofeedback experiment suggests that humans are able to modulate its amplitude [4]. The
stability of this potential, and the human’s ability to modulate its amplitude, support the possi-
bility of using this phenomenon for the design of anticipation-based BCI. To this end, it is first
necessary to ascertain the feasibility of achieving reliable recognition of CNV potentials on single
trials; this is the goal of the present study. In the following sections we describe the experimental
setup, along with classification techniques used in recognizing these potentials.

2 Methods

2.1 Experimental setup

We used the CNV paradigm with relevant (GO) and irrelevant (NOGO) conditions for simulating
anticipatory and non-anticipatory behaviors (e. g., the table with food corresponds to a relevant
condition). Figure 1(a) and Figure 1(b) describe the CNV paradigm used in the current study.
The EEG signals of nine male subjects (2227 years) were recorded in four consecutive sessions
with 50 trials each (equiprobable GO and NOGO trials in random order separated by an inter-trial
interval of 4 £ 45).

2.2 Data acquisition and preprocessing

The EEG signals were acquired for 9 subjects using 32 (subjects 4, 5 and 9) or 64 (remaining 6
subjects) electrodes according to the 10/20 international system with a sampling rate of 512 Hz.
Raw EEG signals were first spatially filtered by using common average reference (CAR). The
signals were then filtered using a low pass filter with cut off frequency of 15 Hz and then the trials
were extracted and separated into GO and NOGO trials using S1 as the reference (i. e., onset of S1
considered as at 0.0s) with [—1.0,5.0] s as total trial interval. Average voltage of the time window
from —1000 ms to 0 ms was used as a baseline.

2.3 EEG grand averages

The EEG grand averages at Cz electrode computed over subjects for GO and NOGO conditions
show clear differences (see Figure 1(c) for grand averages using 64 electrode set-up). Similar
differences are observed in the case of 32 electrode set-up. From the topographic plots of average
scalp distribution we observed an increasing negativity under this electrode in GO condition and a
smaller negativity in NOGO condition. An evoked response due to S1 is observed at this electrode
around 0.3s to 0.4s in both conditions. The potential at Cz during GO condition is composed of
an early peak around 1s and a late peak between 3.5s and 4.0s which is consistent with previous
studies [6]. Although clear differences are observed in grand averages, the use of these potentials
for BCI imposes the challenge of recognizing them on single trial. The methods developed for
addressing these challenges are described in the next section.

3 Classification

As the subjects were instructed to press a button on the arrival of S2 (at 4s) the recognition
methods evaluated here are based on the EEG potentials up to 3.5s after the onset of S1 (0.0s)
in order to avoid any movement preparation potential that could contaminate the recognition of
anticipation processes. In the scope of the current work we restrict to features computed from the
potential at Cz electrode alone (vc,(t), where t is time, ¢ € [0 Thax] and Tinax = 3.58).

3.1 Feature selection

Since slope and peak negativity are usually reported as features of CNV potentials [1], we first
test Least Square Fitting Line (LSFL) parameters with the help of a Quadratic Discriminant
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Figure 1: CNV experimental setup and ERP grand averages. (a) In the GO condition a warning
stimulus (S1) with a green dot at time ¢ = 0s is displayed and then an imperative stimulus (S2)
with a red dot on the screen is presented with ISI of 4s. Subjects are instructed to anticipate
and press a button as soon as S2 is presented. (b) To differentiate the NOGO condition from
the GO condition S1 is replaced with a yellow dot. The subjects are instructed to do nothing for
this condition. (c) The grand averages of GO and NOGO trials for six subjects recorded with 64
electrode configuration at Cz electrode. The circular figures are the topographic representation of
average scalp distribution at different time scales for GO (bottom) and NOGO (top) conditions.

Analysis (QDA) classifier. We then compare higher order features such as Least Square Fit-
ting Polynomial (LSFP) features computed as the coefficients of n'"' order LSFP («;, where
i=1...no0f 9c, = ap + ait! + ast? + ... + a,t™). Each trial is then described by feature vector,
Xx=[ag a1 az ... ay]T, where x € R"*!. The best polynomial order for each subject is chosen
by comparing training accuracies of classifiers calculated for n € {2,3,...,6} (the maximal order
for search is 6 due to the limited amount of training samples). The LSFL features are equivalent
to the LSFP features with order one.

3.2 Classifiers

We compare classification of anticipation related potentials using the features described above with
the help of different classifiers described in the following paragraphs. Due to space limitations we
give only a very brief introduction of these classifiers.
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Quadratic Discriminant Analysis (QDA). Similar to Linear Discriminant Analysis (LDA)
classifier, the QDA classifiers assumes that the features are normally distributed and relaxes the
assumption that the covariance of each class is identical. For the current problem, we first project
the features onto a canonical space with the help of a projection matrix, that maximizes between-
class variance and minimizes within-class variance, which can be obtained by maximizing Fisher’s
criterion [7]. We then calculate QDA classifiers on the projected features.

Gaussian Mixture Model (GMM). The GMM is a generative model widely used for clus-
tering and classification applications. In the current study we first model each class distribution
with a separate GMM and using these models we build a classifier. The initial estimates of means
are obtained using a k-means algorithm and we then use the Expectation Maximization (EM)
algorithm [7] for estimating the mean (p), covariance (Xy) and mixing coefficients (m) of each
Gaussian component of the GMM. Due to limited number of training samples we reduce the
number of free parameters to estimate by constraining the covariance matrix to be diagonal and
sharing it among all the components. The best number of Gaussian components for each subject
is obtained by exhaustive search in the range {1,2,...,4} based on training accuracies. Since this
classifier suffers from the problem of local minima for complex data that are not well clustered,
we built 100 different models with random initial Gaussian centers. The best model from all the
100 models was then chosen using the training accuracy and considered for testing with test data.

Support Vector Machine (SVM). SVMs are supervised learning methods that simultane-
ously minimize empirical classification error and maximize the geometrical margin between two
classes [8]. In the present study we report classification results based on linear kernel (SVM-linear)
and Radial Basis Function kernel (SVM-RBF). The free parameters of the classifier are estimated
by 10-fold cross validation on training trials.

4 Results

To assess the classification performance across sessions we did a 4-fold cross-validation study where
each fold corresponds to a separate session. The results of this study are summarized in Table 1.
We first did feature comparison with the help of QDA classifiers trained separately for each subject.
We observed that the LSFP features outperform the LSFL features (Wilcoxon test p = 0.01, over
all the subjects and sessions), suggesting that these features describe the anticipation related
potential better than the LSFL features that are usually computed for the characterization of the
CNV potential in neurophysiological studies [1, 4]. It is worth noting that no specific differences
are observed for EEG setup with 32 or 64 electrodes.

Since LSFP features performed better, we tested them on the other complex classifiers such
as GMM and SVM-linear and SVM-RBF classifiers to compare with the performance of the QDA
classifier (see Table 1). The classification accuracies of the QDA classifier are significantly better
than the other three classifiers (Wilcoxon test, p = 0.01 among all the subjects and sessions).
Coming to individual subjects, the accuracies for subjects 6, 8 and 9 are close to random for all the
methods. For subjects 1, 2, 3 and 5 the QDA classifier with LSFP features performed significantly
better than the other classifiers (the best being subject 5, 75.86 + 6.45%). On average the SVM
classifier with linear kernel is the next best classifier. However, this classifier gives accuracies above
65 % only for one subject whereas the QDA classifier does so for 3 subjects. The SVM classifier
with RBF kernel and GMM classifier perform worse compared to the QDA classifier.

Although the QDA classifier with LSFP features performs best compared to all the other
methods, the results of cross-validation show that the recognition method is not reliable enough
for a BCI. Nevertheless, most subjects exhibit an increasing performance over sessions (we excluded
the subjects 6, 8 and 9 from this study due to the classification accuracies are close to random
in all sessions with all the classifiers). Figure 2 illustrates this trend with the help of accuracies
averaged over all the 6 subjects separately for each session. The accuracies in the 34 and 4"
session are significantly higher (67.06 4+ 12.30% and 66.77 £ 7.77) as compared to the first two
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\ | LSFL | LSFP \

| Subject || QDA | QDA | GMM | SVM-linear | SVM-RBF |
1 62.15 £ 8.62 66.14 £6.78 | 58.02£9.44 | 58.02£5.69 | 58.52+7.92
2 64.61 £13.17 || 66.04+£6.90 | 64.55£5.68 | 64.55+6.31 | 54.37+£5.44
3 47.57+5.56 || 59.91 +£10.97 | 46.87+£1.82 | 46.87£7.37 | 45.93 £ 7.68
4 50.50 £5.74 58.00£7.48 | 61.00£5.29 | 61.00 £12.48 | 51.00 £ 3.83
5 68.83 £ 8.95 75.86 £6.45 | 66.31 £7.36 | 66.31 £6.60 | 46.73 +4.11
6 53.64 £ 8.40 53.09£9.55 | 43.54£4.00 | 43.54+6.43 | 52.44+£3.03
7 44.64 £3.01 || 54.77+£11.93 | 57.04 = 7.20 | 57.04 +10.03 | 53.75 +4.44
8 53.82£9.39 51.28£4.25 | 44.01£9.09 | 44.01£9.36 | 47.11 £6.40
9 51.00 £ 8.08 51.00£5.29 | 51.00 £9.59 | 51.00 £12.70 | 53.00 £ 8.25

Table 1: Comparison of cross-validation accuracies with different features and classifiers.

sessions (58.60 £+ 13.96 and 61.37 £ 5.61). Observing this trend, we argue that the features of
this potential are becoming stable and well separable over time due to subjects adaptation to the
experimental paradigm. This suggests that, similar to BCI systems, a good training method is
a key component for subjects to learn to provide stable EEG patterns. Proper training of the
subjects is likely to enhance the classification accuracies with the methods studied in the current
work.

@©
o

Classification accuracy (%)
(o)) [e2] ~
o o o
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o
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Figure 2: Average classification accuracies in different sessions using QDA classifier with LSFP
features for subjects 1-5 and 7.

5 Conclusions

We compared different classification techniques for the recognition of anticipation related potentials
from human EEG as a first step towards the design of a novel BCI. From the off-line studies on these
potentials using the QDA classifier we observed that the LSFP features perform better than the
LSFL features. This result suggests that LSFP features describe the anticipation related potential
better than the LSFL features, the latter being those usually computed in neurofeedback and
neurophysiological studies for the characterization of CNV potentials [4, 1]. We also compared the
classification accuracies of LSFP features with QDA, GMM, SVM-linear and SVM-RBF classifiers.
The 4-fold cross validation, with each fold corresponding to a separate session, showed that the
QDA classifiers perform significantly better than the other classifiers

It is worth noting that none of the subjects considered in the current study had previous
experience with the CNV protocol. The systematic observation of the performance in each session
showed an increasing trend in classification accuracy for most (6 out of 9) subjects. We argue
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that this trend is due to subjects’ adaptation to the experimental paradigm. However, for the
remaining subjects the classification accuracy is at chance level which is most likely due to lack of
practice (note that the CNV paradigm is a learned task and subjects need to practice for a few
sessions). As some subjects learn faster than others the classification accuracies also differ in the
same way. Moreover, as there is a learning component, the classifier calculated using the later
sessions does not perform well for the early session, whereas the classifier calculated using early
sessions performs better for the later session (see Figure 2).

Proper training of the subjects is likely to enhance the performance of the recognition methods
compared in the current study. Moreover, an early study based on neurofeedback showing that
the subjects were able modulate these potentials [4]. Based on this knowledge we hypothesize
that the closed loop implementation of the current recognition methods can improve the subject’s
training yielding to more stable and well separable features. We consider this implementation as
next immediate step for further research. In addition, we will extend these methods to multi-
electrode features in order to improve the classification accuracies. Also, fast recognition of these
potentials is another crucial factor for building a reliable BCI application. We plan to achieve this
by extending the current methods to multi-classifier based recognition techniques in which each
classifier looks at different temporal blocks of EEG and makes a decision as quickly as possible.

Acknowledgments: This work is supported by the EC-contract number BACS FP6-IST-027140
and the Swiss National Science Foundation NCCR, “IM2”.
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Abstract

In approaches in which there is direct interaction and mutual interdependence between
human brain and technical devices manifold anthropological, philosophical and ethical issues
arise, some of which will be discussed in the following. These relate to human self-perception,
to the enormous dependence of the individual person from the computer system and to prob-
lems that may arise in case of technological disturbances and dysfunction. For as opposed
to the traditional use of tools and technical instruments, brain-computer interfaces (BCls)
and other neurotechnological devices are technical tools which are in direct contact with the
human brain and body or which even enter the human brain and body.

1 Introduction

During the past decades, our knowledge of the structure and function of the human brain has
increased considerably. This has prompted the development and use of various pharmacological
and technological procedures to be used in medical contexts, among them neurotechnological
approaches. These include direct brain-computer interfaces (BCIs) which allow brain signals to be
used for communication and control of movement [1, 2, 3]. Apart from non-invasive approaches
such as the so-called thought translation device, which is a biofeedback communication system
used by locked-in patients [4], invasive brain-computer interfaces are currently being developed
which aim at enabling the brain to exert direct motor control. In animal experiments using
microelectrode arrays implanted in the motor cortex, it has been possible to control movements
merely by “thinking them through” [5]. There are also some reports of successful clinical studies
with prosthetic limbs [6].

2 Discussion

In the following, medical, anthropological and ethical issues of BCIs will be discussed. In this,
after a short paragraph on risks and benefits, the focus will be on implications which the direct
interplay between man, brain and technical devices might have for our conceptions of human
identity and authenticity.

2.1 Risks and benefits

The BCI approach is a very promising technology that raises enormous hopes for patients suffering
from severe diseases such as amyotrophic lateral sclerosis (ALS), stroke, spinal cord injury or
cerebral palsy. The clinical applications of this technology have been facilitated by the availability
of small high-performance computers and other small, biocompatible devices. In the use of BCIs
the risk-benefit-ratio is essential.

Possible benefits include positive effects on autonomy, communication and mobility, which are
all aspects of central relevance for persons. Of particular importance is the influence of the devices
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on the quality of life of the individuals involved, on their independence and on their possibility to
participate in family and social life.

Compared to non-invasive procedures, the invasive methods involve considerable risks. These
include the risk for brain lesions going along with the implantation or removal of electrodes and
other technical devices, and the risk for infections or immunological reactions. Also long-term
functionality is a crucial issue. There may be situations, however, in which non-invasive BCIs
cannot be used for practical reasons or in which invasive BCIs go along with greater benefits.

It should not be forgotten that in invasive BCIs, there is an implantation of technical material
into the human brain, this being the organ which determines, like no other, an individual’s overall
existence. Only those uses in which considerable benefit can reasonably be expected and in
which the expected benefits clearly outweigh the risks can be considered acceptable. This requires
an adequate amount of basic research and animal experiments carried out before beginning to
do clinical trials. Before invasive procedures are chosen for an individual patient, all other less
invasive options should have been taken into consideration.

2.2 Brain-computer interfaces and human self-perception

As opposed to the customary, traditional use of tools and technical instruments, BCIs are technical
tools which are in direct contact with the human brain. By way of this intensive interaction
between technical devices and the human brain, the distinction normally drawn between tools and
the subject who uses them is blurred. This holds in particular in invasive BCIs in which a “tool”
is integrated directly into the human brain. BCIs may be characterized to be hybrids of man
and machine: The BCI results from intensive interdependence between a person and a computer
system. Most often, it involves complex mutual learning and adaptation processes.

In view of this intensive interaction between person and technical devices the question arises:
In how far can the technical system be integrated into the self-conception of the person involved?
In how far may a person consider the artificial actuator, for example a prosthetic limb, to be part
of herself? Is this bodily extension an aim worth pursuing?

These are complicated issues, for from an external perspective there is no answer to the ques-
tion: What is it like to live with a BCI? In order to find an answer to that question, the internal
perspective of the person involved is necessary. The philosopher Thomas Nagel has explicated
this in his famous article: “What is it like to be a bat?” in which he argues that it is impossible
for human beings to know what it is like to be a bat because human beings will never be able
to have a bat’s internal perspective and a bat’s consciousness [7]. In spite of these difficulties,
self-perception and identity are very fundamental issues for persons which need detailed reflection
in the context of BCls.

The idea of bodily extension is most obvious in the use of prosthetic limbs, but it plays a central
role in all forms of BCIs: The neuromotor prosthesis may be considered to be an additional limb
over which — by way of the BCI — the person gains control. At least in the beginning of an
individual’s BCI use, however, there is an obvious difference between a prosthesis and a person’s
body: The prosthesis clearly is not part of the person’s body, which is not just any body, but the
body experienced by the person to be her own body. In this, self-experience plays a central role,
a person’s experience that this body is her own body.

Maurice Merleau-Ponty [8] has used the term “Leib” for this particular perception of one’s
own body from the internal perspective. For bodily self-perception, physiological as well as mental
aspects are important. For Helmuth Plessner’s position [9], the internal perspective, the external
perspective and border-drawing, achieved by oscillations between internal and external perspective,
are central for an individual’s self-conception. In how far can a person’s bodily perception be
extended to a tool that the person uses regularly? In the 1940s, Maurice Merleau-Ponty had such
an extension of a person’s bodily experience in mind when he discussed the integration of a blind
person’s cane into that person’s bodily perception (“Erweiterung der Leibessynthese”, [8], p. 182).

This idea of integration is supported by recent studies such as the one carried out by Iriki et
al., [10]. In this study, in macaque monkeys there has been an extension of the visual receptive fields
of bimodal cortical neurons along the length of a rake used by the monkeys as a tool to retrieve
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distant objects. This supports the idea that tools can become incorporated into the body schema,
i.e., the internal representation of one’s body, constructed by proprioceptive, somatosensory and
visual signals.

Also other experiments carried out in animals and humans encourage this idea [11, 12]. In
view of these results it seems possible that prosthetic devices can be incorporated into the body
representation [3]. Probably, an assimilation of the prosthetic device as if it were part of the
person’s own body will be facilitated by providing the brain with multiple sensory feedback from
the artificial actuator.

As Lebedev and Nicolelis ([3], p. 542) put it:

“Altogether, these results suggest that long-term usage of an artificial actuator directly con-
trolled by brain activity might lead to substantial cortical and subcortical remapping. As such,
this process might elicit the vivid perceptual experience that the artificial actuator becomes an
extension of the subject’s body rather than a mere tool.”

So, in the long-term usage of a BCI, the person involved may no longer consider the artificial
actuator to be a mere tool, but to be an extension of her body, to be part of her own body. It
seems that incorporation of the prosthetic device into the body representation is even necessary
for adequate BCI functioning.

2.3 Hybrids of man and machine: ethical aspects

What are the ethical implications of such a direct interdependence between man and computer in
a brain-computer interface?

Apart from medical aspects relating to the risks of the procedure: Is a person harmed by the
intensive interrelation with a computer or by the incorporation of technical devices into the brain?
Manifold concerns, fears and fantasies stem from the option to integrate computers and other
technical instruments into the brain and other parts of the human body. These involve aspects
such as the technicalization of the human body, the encouragement of a reductionist, technological
view on human beings, the fear of losing human identity, and speculations relating to cybernetic
organisms, cyborgs [13].

Undoubtedly, these concerns relating to a technicalization of the human body reveal that there
are ethical limits to the amount and range of human body parts to be substituted by technical
devices. These issues clearly need broad and intensive interdisciplinary discussion. This holds
in particular since in BCI use an incorporation of the artificial actuator into the person’s body
representation and a modification of the person’s self-conception are to be expected.

In my opinion, however, it is not adequate to reject neurotechnological approaches such as
BClIs merely because of the technical nature of these devices. Instead, the functions achieved by
the technological system are crucial. In clinical contexts, BCIs aim at substituting basic human
functions that have been lost due to disease or accident. For the persons involved, the ability
for communication or for motor control conferred by the BCI are of central relevance for their
independence and overall room for manoeuvre in everyday life. In this, the decisive criterion is
not whether biological or technical material is used, but whether the system is able to substitute
for the lost function at an acceptable risk-benefit-ratio.

In BCI use, a patient’s quality of life, ability to communicate, motor performance or room for
manoeuvre strongly depend on the correct functioning of the BCI. In order to allow the patient
to control his overall situation as far as possible, it is necessary to secure continuous functioning
of the system without any disruptions or technical problems. For dysfunctions and failures have
direct negative impact on the person involved. Consider for example the sudden disruption of a
person’s sole possibility to communicate with her surroundings. An impression of this enormous
dependence and of the central relevance of communication for persons is given by Jean-Dominique
Bauby’s captivating book “The Diving Bell and the Butterfly” [14].
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3 Conclusion

BCIs are a very fascinating technological approach which raises enormous hopes for patients
suffering from severe diseases. The intensive interdependence between man and computer system
in these hybrid devices implicates manifold theoretical and ethical issues relating to human self-
perception, identity, and technicalization that need further discussion.
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Abstract

While allowing for a control of a feedback device via brain activity, Brain-Computer Inter-
faces (BCI) still suffer from performance decrements during an online session. As a possible
cause for this problem, nonstationarities in the statistical properties of the EEG data have
been identified. There are numerous studies claiming that new methods of adaptation have to
be found [1, 2, 3, 4, 5], in order to confine the influence of statistical nonstationarities on the
classification accuracy, but so far no heuristic-based approaches have been developed. With
this study we were able to isolate one cognitive factor responsible for statistical nonstationar-
ities in EEG data: the Loss of Controllablity (LoC). LoC refers to the perceived control the
user has over a feedback device. We induced this factor artificially in a highly controlled ex-
perimental setup. Phases with reduced controllability induced a highly significant deviance of
Event Related Desynchronisation BCI features but had no significant effects on features from
Slow Cortical Potentials. Data based adaptation approaches are lacking an explanation for
the causes of statistical nonstationarities. Hence these approaches run the risk of overfitting
the adaptation to factors not relevant for the features. By identifying possible causes, like the
factor LoC, we follow a new theoretical perspective on a heuristic based approach, applicable
to a broader context of settings. Our results also show that statistical nonstationarities in
EEG signals can be traced back to a functional background, and are not random noise. The
identified cause for nonstationarities, LoC, could help to develop new methods of adaption
by serving as an indicator for a change in the statistical properties of the EEG data. With
this heuristic-based approach other factors could also be identified, in order to improve BCI
online adaptation.

1 Introduction

Subject of investigation — Nonstationarities: In recent years nonstationarities in statistical proper-
ties of Electroencephalogram (EEG) data (in the following referred to as nonstationarities) became
an increasingly relevant issue in BCI (Brain-Computer Interface) research. These nonstationarities
are likely to occur in the course of time of an experimental session, causing drastic changes in BCI
relevant features, hence leading to a serious decline in the classification accuracy. There are several
studies claiming that they have to be further investigated to find new solutions of online adaption
e.g. [1, 2, 3, 4, 5]. A first systematic quantitative study was given by Shenoy et al. [3]. They
found evidence for nonstationarities in the statistical properties of the relevant extracted features.
Shenoy et al. [3] point out the need of an investigation of neurophysiological and psychological
causes. Various adaptation methods have been developed, following a data based approach. Here
some of the parameters of the translation algorithm are updated during an online session [4, 5, 2, 6].
Nevertheless, apart from [3], none of these investigated possible causes for nonstationarities and
are therefore vulnerable to an overfitting to factors irrelevant for classification. Likewise, in this
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study we want to investigate nonstationarities on a new theoretical basis, proposing a heuristic
approach. Causes for these effects have to be identified at first, in order to find relevant indicators.
As a result, a new adaptation scheme could be followed by changing parameters of the translation
algorithm, whenever the crucial factor is denoting the need for adaptation.

Factor of interest — Loss of Controllability: This study investigated the factor of perceived
Loss of Controllability (LoC). By controllability we refer to the perceived control the user has
over a feedback device. Noticing classification errors, the user is trying to regain control over the
machine. Perceived LoC could cause a change in the mental state of the subject, and therefore
have an impact on the feature distributions. The idea of perceived controllability has been stated
before, for it refers directly to the classification accuracy of a BCI system [7, 3]. Data based
methods face the problem of complexity in online BCI systems. These consist of two strongly
interacting components, namely the user and the machine, which creates a closed feedback loop.
Each of the interacting systems has to optimize for the same goal — hence ideally adaptations of
both systems should converge. But in the other case, it can happen that both systems diverge from
one another, as demonstrated here. LoC is a result of the static translation algorithms confronted
with the variable brain trying to optimize during phases of classifier errors. LoC can be defined
as the classifier output being inconsistent with expected feedback. Hence, in a new experimental
setup, the RLR (Rotation-Left-Right) paradigm, we manipulated the rate by which the user was
able to predict the feedback under controlled conditions, by artificially inserting machine errors.
The study was held in offline mode, to ensure the control of possible intervening factors and to
avoid phases of loss of control over the feedback device, as they occur in online sessions (for details
see methods section). This study has found evidence for a crucial factor causing nonstationarities.

2 Methods

An offline analysis approach [8] was utilized, replacing the usual online session which follows the
initial calibration measurement. Thereby subjects performed a series of clearly defined control
actions, while the EEG was only recorded and not fed back to the user. Therefore, the subject is
not influenced by the performance of a particular algorithm and multiple algorithms can later on
be compared on exactly the same data.

Key press < 1000 ms red = 80°

T" / = rotation of 90° to the left

yellow = 60°

to-be-rotated figure —

% green = 30°
red = 80° ) \ % Key press < 1000 ms
= response possible for max. 1000 ms _—» \ = rotation of 60° to the left
ISl = 300 ms, hi f col % : :
successful trial = figure fades out, 300 ms

181 \ unsuccessful trial = figure shrinks, 300 ms
550-650 ms l
=

to-be-rotated figure changes colour
yellow = 60°

= response possible for max. 1000 ms m

181 = 300 ms, no change of colour

Figure 1: Experimental task of the RLR paradigm, section of one sample trial.

2.1 Experimental task and setup

The experimental task was to rotate a letter with left or right key press until it corresponded to
a target figure. This was either the letter L or R, indicating both left or right key press (Ctrl
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keys, standard keyboard) and direction of rotation (left- or right wise) (Figure 1). Change of
stimulus colour was an indicator for different angles of rotations: red indicating 90 degrees, yellow
60 degrees and green 30 degrees. Every 1000 ms the letter changed colour indicating the possibility
of rotation. The stimulus would not rotate automatically, but only if a key was pressed. Therefore,
participants were able to build up a strategy, in order to achieve the goal: to rotate the starting
stimulus as fast as possible to the target stimulus. After rotation, the letter remained in its colour
for 300 ms, changed into grey for a variable inter-stimulus interval (ISI) of 550 to 650 ms, while
no key press was possible. The inter-trial interval (ITI) was 1000 ms. Faulty trials were defined
rotating the stimulus too far or pressing the non appropriate key. Mapping rules of colours and
size of rotations were kept constant until loss of controllability via a wrong mapping of colours
and angles was introduced, leading to machine errors and thus faulty trials.

Experimental setup: The first block (LR, 5 minutes) was a typical BCI calibration measure-
ment, for left/right keypresses prompted by letters L/R, which was not used for online control,
but served as a baseline for subsequent comparisons [7]. Afterwards, a short practice block (P)
of two minutes duration was introduced (RLR paradigm). The following sessions were divided in
three blocks (A1,A2,B). For each block, the RLR paradigm had to be performed. A pause of 5
minutes each was inserted. The first two blocks (A1,A2, 12 minutes duration each) were identical.
During the third block (B, 29 minutes duration) LoC was introduced. After 7 minutes, LoC was
gradually raised from 0-30 percent (transition of four minutes). This probability of error was held
constant for another 7 minutes (Buc) and recovered in a second transition phase. Another final
phase of 7 minutes of correct feedback followed (Ba2).

Experimental Paradigm: The new RLR paradigm parallels features of typical online feedback
scenarios in BCIs (e. g. Basket Feedback [7]), as it mimics an asynchronous BCI (internally paced,
user-initiated) [9], there is an iterative decision process within each trial, and it has a defined goal
and therefore provides motivation for participation in the game.

Recording: In this study 22 healthy subjects (age range 19-40) took part. EEG was recorded
from scalp with multi channel EEG amplifiers (BrainAmp DC by Brain Products), using Ag/AgCl
electrodes (reference at nasion), sampled at 1000 Hz, with a band pass filter from 0.05 to 200 Hz.
The electrodes were distributed on standard 10/20 based caps with 32 positions. Electromyogram
(EMG) and electrooculogram (EOG) data, as well as ambient temperature and noise level have
been recorded, controlling for external effects such as measurement artifacts and for class correlated
eye movements.

2.2 Analysis of EEG data

As formerly stated, we follow an approach which is widely known as offline analysis. This is
realized by crossvalidation (CV) [10]. The continuous EEG data for a session is segmented into
a set of blocks, one for each trial. The recorded trials are repeatedly partitioned into disjoint
training and corresponding testing sets, used to train an instance of a classifier and then estimate
its performance on the unknown data of the test set. We used a 10x(10,5)-fold nested CV.

Features and Feature Extractors: The EEG features that allow left and right hand movements
to be discriminated fall into two categories: Slow Cortical Potentials (SCPs) and Event-Related
Desynchronization (ERD) features.

SCP feature extraction: SCPs are low-frequency changes (1-5Hz) [11], in this case localized
over motor cortex. A slow negativity can be observed prior to a movement, and the relative
strength of this negativity in the channels over the left versus right cortical hemisphere can be
used to infer the laterality of the upcoming movement [12].

The CSP Algorithm: As ERD feature extractor the Common Spatial Patterns (CSP) algorithm
was utilized. A variant of this algorithm, CSP for SCP (CSP{SCP), was used for the SCPs [8]. CSP
aims to find linear combinations (patterns) of EEG channels such that the variance (deflection in
the SCP case) of each trial projected according to these patterns is most discriminative (i. e., differs
maximally between the two classes).

The SpecCSP algorithm: For the extraction of ERD features we used Spectrally Weighted CSP
(SpecCSP) [13]. SpecCSP iteratively alternates between optimizing spatial and spectral criteria.
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This way, the algorithm calculates a set of subject-specific spatial projections together with a set
of frequency filters.

LDA was used as a classifier for all of the above feature extractors, as it was shown to be well
suited for them [13, 8].

2.3 Dependent measures of nonstationarities

To assess the impact of LoC on the classifier’s performance, we calculated pseudo online classifica-
tion rates (POC) over time. POC rates were calculated by offline analysis serving as estimation for
online classification results. POC was determined as following: The appropriate CSP derivate was
used, with a time window of 300ms, six patterns and a band-pass filter of [7—30] Hz. A classifier
was trained on the initial calibration block (LR). Then, this classifier was applied to every key
press, which happened over the course of the main experiment (i.e. blocks A1,A2 and B). An
average of approx. 100 gradual classifier outputs in a one-second window before each key press
was averaged and taken as the classifier’s decision for this key press. The sign of this decision
value (by default, left keys were assigned — 1, right keys +1) was remapped according to the key
actually pressed, such that correct decisions were assigned positive values and wrong decisions
were assigned negative values. By this, we got a real number for each key that was pressed by
the subject. The plot in Figure 3 shows the aggregation of all values over all 22 subjects. The
classifier outputs were forward/backward — filtered with a moving average window of 25 seconds,
to obtain smooth plots. Therefore, positive values in the plot indicate overall correct classifier de-
cisions, while values close to zero or negative indicate overall wrong decisions. We also calculated
the Kullback- Leibler divergence (KLD) (for details see [3]) of the classifier’s feature distributions.
All measures were calculated relative to the training data’s distribution of the initial calibration
measurement, the LR-block. We used the KLD to measure the divergence of the CSP feature
distributions as they build up over the course of the main experiment. Note that these KLD
results have been determined in a classical offline fashion, i.e. one for each key press.

3 Results

Class correlation of the eye movements during the RLR sessions were all below r» = 0.012, showing
no significant difference to the class correlation of the LR design. This ensures that the result
of the classifier output is not contaminated by class correlated eye movements. In RLR-designed
sessions the well known « -rhythm is less pronounced than in the standard LR-Training. It slightly
increases through the course of time Figure 2. T-tests were calculated for the CSPfSCP and for the
SpecCSP features for the blocks A1, A2 and B (including LoC). For the SpecCSP features based
on the Event Related Desynchronization, phases including the LoC (Buc, Block uncontrollable)
showed a significant (p = 0.0083) increase in KLD of the SpecCSP features. Also the pseudo-online
classification rate shows a decrease over time and it correlates significantly (p = 0.0092) to that of
the KLD in block B (Figure 3). For the CSPfSCP there was no significant change for the phases
with Loss of Controllability (Figure 3).

Figure 2: Topographical plots: spatial distribution of 10 Hz activity (one subject) over all blocks.
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4 Discussion

Due to the new experimental design of the RLR paradigm, we were able to isolate one factor
responsible for BCI relevant nonstationarities. With increasing LoC the KLD increases, disclosing
nonstationarities in the EEG signal. But LoC has only a significant impact on features extracted
with SpecCSP. This effect could not be found in features based on CSPfSCP. Hence, the choice
of feature extraction methods is crucial for controlling the impact that nonstationarities have on
the classification results. We are able to replicate the change in background activity of the brain,
typically occurring in the transition from offline to online session. This change manifests itself
in a less pronounced o -rhythm during the online session than in the calibration measurement
(e.g. LR-Training). Shenoy et al. [3] identified this shift of data in feature space as a main
cause for statistical nonstationarities and traces this change back to the fact that the calibration
measurement is more monotonous than the online session. Our results ensure that our RLR-design
mimics typical online sessions, also showing a less pronounced « -rhythm. Hence we were able
to discriminate this effect from our new factor of investigation — LoC — which had an additional
influence, giving rise to statistical nonstationarities.
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Figure 3: (A,B,C,D): Smoothed versions of the grand average. Figures A and B show POC
accuracy, figures C and D show KLD. Left hand is ERD based, right hand is SCP based.

5 Conclusion

The LoC study reveals that the two systems taking part in BCI sessions — the translation algorithm
and the brain — can diverge while trying to optimize for better results. Here, simulated errors of
the computer lead to an attempt by the subject to adapt, causing a change in brain patterns. As
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an unavoidable consequence, with proceeding interaction, classification is getting more and more
problematic, leading to even more errors by the computer. Hence, this loop contains a significant
portion of positive feedback, which leads to steadily increasing classification errors once a certain
threshold is passed. By identifying starting points for this viscious cycle, there will be new possible
solutions of online adaptation. LoC could serve as an indicator for statistical nonstationarities and
thereby overfitting would be avoided, while providing an additional theoretical basis for adaptation.
This adaptation is characterized by a passive approach, with no need for an active action of the
subject directed towards the BCI. Anyhow, it provides relevant informations about the current
mental state of the user, making an improved interaction possible. The RLR paradigm can be
utilized for recording signals from executed movements without generating a parietal o -rhythm.
It gives the opportunity to manipulate BCI relevant factors in a controlled way, EEG allowing for
the investigation of yet unknown other influences.
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Abstract

The introduction of methods from statistical machine learning [1] to the field of brain-
computer interfacing (BCI) had a deep impact on classification accuracy. It also minimized the
effort needed to build up the skill of controlling a BCI system [2]. This enabled other fields of
research to adapt methods from BCI research for their own purposes [3, 4]. Team PhyPA| the
research group for physiological parameters of the chair for Human-Machine Systems (HMS) of
the Technical University of Berlin, focuses on enabling new communication channels for HMS.
Especially the use of passive BCIs (pBCI) [3, 4], not dependent on any intended action of the
user, showed a high potential for enhancing the interaction in HMS [5]. Additionally, as actual
classification rates are still below the threshold for efficient primary control [6, 7] in HMS, we
focus on establishing a secondary, BCI based communication channel. This kind of interaction
does not necessarily disturb the primary mode of interaction, providing a low usage cost and
hence a efficient way of enhancement. We have designed several applications following this
approach. Here we are going to present briefly the results from two studies, which show the
capabilities arising from the use of passive and secondary BCI interaction. First, we show that
a pBCI can be utilized to gain valuable information about HMSs, which are hard to detect by
exogenic factors. By mimicing a typical BCI interaction, we have been able to identify and
isolate a factor inducing non-stationarities with a deep impact on the feature dynamics. The
retained information can be utilized for automatically triggered classifier adaptation. And
second, we show that pBClIs are indeed capable to enhance common HMS interaction outside
the laboratory. With this, we would like to feed back our experiences made with passive
interaction to the BCI community. We hope to povide new and useful information about
brain dynamics which might be helpful for ongoing BCI research.

1 Introduction

Team PhyPA aims at the combining the technologies from Brain-Computer Interfacing (BCI) [8, 9,
1] and those from the context of Human-Machine Systems (HMS). HMS is the science of interaction
between humans and technical systems. Therefore, an interdisciplinary team of mathematicians,
psychologists and engineers works on currently seven projects investigating non-stationarities,
efficiency and general applicability of feature extraction methods, single trial detection of motor
and non-motor patterns e.g. error-responses and defining support systems enhancing HMS. As
we focus on the applicability of BCI while interacting in typical HMS environments we augment
the field of Brain-computer Interfaces to the field of Brain-Computer Interaction. Therefore, we
have developed several tools allowing us to detect intended and non-intended user states and
integrate them into existing and new HMS. We categorize the methods derived from BCI research
into active and reactive. By the term active BCI (aBCI) we denote BCIs which utilize brain
activity of direct correlates of intended actions as input. This includes the detection of motor
imagery or execution as well as the control over slow cortical potentials. A reactive BCI (rBCI)
is still controlled via intended actions. In contrast to the aBCI features are not derived from
direct correlates to these actions, but from cognitive reactions on exogenic stimuli, as e.g. in
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Type of BCI Based on features from Used for

Active intended generated cognition direct control

Reactive unintended changes in cognition by direct control,
voluntary focussing on exogenic stimuli  brain switch

Passive unintended changes in cognition supporting systems,
induced by common interaction user-state detection

Table 1: Categorization of BCI Systems and their fields of of application.

the P300 speller. The rBCI features seem to be more robust in general. This might be due to
the fact, that they usually depend on automatic processes of cognition which are not as easily
modulated by conscious processes. According to this line of thought [3, 4], we now define passive
BCI (pBCI). pBClIs are based not on intended actions of the user, but instead on reactive states
of the user’s cognition automatically induced while interacting in the surrounding system. Hence,
the underlying features used by pBClIs are mostly independent of the primary mode of interaction
within an HMS, be it BCI based or not.

2 Methods

2.1 Specifications of our BCI system and experimental design
2.1.1 Recording

The EEG system has 32 channels of Ag/AgCl conventional (EasyCap) or impedance optimized
(ActiCap) electrodes. Signals are amplified by a BrainAmp DC system and recorded by the
BrainVision Recorder (BrainProducts). The electrodes are distributed on standard 10/20 based
caps with 128 positions. Depending on the type of experiment they are placed over according parts
of the cortex. Additionally, we record electrooculogram (EOG) for controlling feedback-induced
correlated eye movements, and electromyogram (EMG) on the relevant limbs, for protocolling
correlated movements. Both are bipolarly multiplexed by a BrainAmp (ExG) system and derived
with Ag/AgCl electrodes. In order to retain information on exogenic factors, we also record
ambient temperature and noise level within the laboratory.

2.1.2 Analyses

For offline analyses, all feature extraction methods, especially methods for filtering and resampling,
are applied in a strictly causal way. Classifiers are chosen from several linear (LDA, RDA, SVM)
and non-linear (kernel SVM, rQDA, GMM) methods. In all analyses presented subsequently,
(regularized) LDA was the best performing classifier and was therefore selected. Classification
accuracy was estimated by 10x(10[x5]) [nested] crossvalidation if not otherwise stated. Results
from offline analysis are derived from strictly separated training and test blocks. Significance
statements are substantiated by standard T-Tests and F-Tests without assumptions on the type
of underlying distributions.

2.1.3 Experimental design

The stimulus presentation in calibration phases before online feedback is designed for providing
high control over exogenic and correlating factors besides the one of interest. This control is relaxed
in certain online feedback sessions to allow for a more realistic mode of interaction. Notice, that
this decrement of control might allow for a higher number of artifacts but does decrease the signal
to noise ratio. Subjects have been introduced to the main factor of investigation by an instructor.
Experimental tasks have been presented in a standardized way on the screen of the Feedback
Unit. The course of the experiments contained several breaks for relaxation and recovering of the
subjects. Subjects gave information on their overall state and their impressions on different blocks
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of the experiment by answering questionnaires. All subjects are from age 18 to 45 with german
as primary language. All groups of subjects are of balanced or selected sex. After all sessions the
subject has been paid (20 Euro).

2.2 The RLR paradigm and its directed restriction, the RLR-Game

In the Rotation-Left-Right (RLR) paradigm [10] a stimulus on a starting position has to be rotated
left- or rightwise (by a left or right key press) until it corresponds to a given target figure. The
stimulus is either the letter ”L” or ”R”, indicating the direction of rotation. While the colour of
the stimulus is grey, it can not be rotated. However, every 1000 ms it changes into one of three
colours, indicating A) the possibility to be rotated by a keypress and B) the degree of rotation. If
the stimulus lights up in red, the stimulus will rotate 90 degree, if it is yellow 60 degree and if it
is green 30 degree. Please notice, that each rotation has to be triggered, which only can be done
once per colour change. The subject has to build up an efficient strategy for reaching the target:
to rotate the starting stimulus as fast as possible on the target stimulus without rotating too far.
A derivate of the RLR paradigm is the RLR-Game, defined in two modes: The first was restricted
to standard states and the second with additional error states. The standard states are restricted
to the colours green and red. The mapping of angles in the error states is directed downwards,
hence an error induces a smaller angle of rotation than indicated by the colour. Goal of the game
is to reach the target stimuli as fast as possible. Two players can play against each other. Their
performance is measured and fed back in points. A player get a point when hitting the target
earlier than his opponent.

3 Experimentel setups

3.1 A pBCI for retaining interaction relevant endogenic information
3.1.1 Motivation

Shifting BCI applications from laboratory environment to interactive scenarios enforces losing
the control over most of the interfering factors. Hence, one faces problems connected to the
interaction between man and machine. The use of pBCI might give insights into the correlation
between mental states and system states which are hard to infer from exogenic factors.

3.1.2 Factor of investigation

One class of problems is that of non-stationarities resulting from shifts in cognitive states, which
have not been represented in the data of the calibration phase. These might be induced by changes
in the mode of interaction or mental processing of exogenic factors. As stated by Dornhege, Shenoy
and Krauledat (see www.bbci.de) the loss of controllability (LoC) might be one of these factors.

3.1.3 Experimental design

By utilizing the RLR paradigm we have been able to artificially induce phases of reduced contro-
lability (BUc, see Figure 1) in experiments with 24 subjects by permuting the mapping between
colours and angles of rotation. We tracked features representing the primary mode of interaction,
pressing a key, in the EEG data. One representing the event-related desynchronization (ERD)
and one representing a slow cortical potential (SCP) prior to the movement. Details on this study
can be found in [10].

3.1.4 Features

Features have been extracted by Common Spatial Patterns for SCP (CSP{fSCP) [11] and Spectrally
Weighted CSP (SpecCSP) [12] for ERD from 200 ms of data prior to the button press.
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A1l i A2

Figure 1: Grand average of the KL divergence using features for ERD (dark) and SCP (light).

3.2 Applicability of a pBCI for enhancement of efficiency in HMS
3.2.1 DMotivation

Errors in communication are highly relevant factors regarding the efficiency of HMS. Especially in
automated adaptation of the machine to the interaction mode of the user [13]. A wrong decision
induces effects of surprise and frustration and in this respect, adaptation reduces the performance
and the safety in HMS [14]. Additionally it triggers a correction action which enforces a shift in the
intention focus of the user. According to this it reduces the overall acceptance of the adaptation
and of the whole system.

3.2.2 Factor of investigation

In this study we have shown that pBCIs are capable of enhancing such an adaptation. For this we
have designed the RLR-Game which mimics the interaction in an HMS and allows for modelling an
unexpected and negative effect, the error states. While this game is based on common interaction
channels we have added a secondary and passive BCI channel capable of correcting the effect of
error states. This correction was triggered by an event related potential reflecting the mental
processing of an error trial. If it is correctly detected by the pBCI during an error trial, the
rotation angle was set to the correct mapping. In case of a false positive the angle was reduced
to that of an error state. Hence, each correct detection of an error speeds the player up and
a false positive slows him down. Therefore, if the classifier works properly, it will enhance the
performance of the player and it will reduce it otherwise.

3.2.3 Experimental design

For keeping the environment as realistic as possible, we have chosen the Open House of the TU
Berlin (LNdW 2007) as the setting. Four times two different players from the audience played the
game against each other. Each pair played three sessions of 50 trials. One for user training, without
error states. In the second session we introduced the error trials. The automatic adaptation has
been applied in the last session, only for one player.

3.2.4 Features

Features have been extracted by a derivate of the pattern matching algorithm ([15]) extended for
detection of several extrema of SCPs. 600 ms of data after the rotation have been selected.

4 Results

The results of the LoC study (Figure 1) show that in phases with full control (A1, A2, Bal, Ba2)
the variance of the averaged Kullback-Leibler divergence (KLD) of both features is bounded. In
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Results from LNdW 2007

Difference in points
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Figure 2: Differences of points from two opponents playing the RLR-Game at the Open House
2007.

contrast, the phases of reduced controlability (BUc) shows an significant increase of the KLD for
ERD based features. Hence, the KLD of these features is a measure representing the perception of
controlability. Figure 2 shows the results from the sessions from the open house of the TU Berlin
2007. In the third session one player has been supported by the pBCI. While the points have been
equally distributed between session 1 and 2, the performance of all pBCI supported players has
been increased significantly.

5 Discussion

Here we gave examples of two types of pBCIs. One establishing an information flow from the
human brain to the HMS reflecting user states correlated to current modes of interaction. The
other one extracting the actual interpretation of dedicated system states from the users cognition.
Both can be applied in the context of BCI for enhancing classification accuracy. First, for an
automated adaptation of the classifier and second, for correcting machine errors as proposed
in [15, 16]. Also, for application in the field of HMS, it provides information about the user,
which can only hardly be inferred by typical information channels in HMS. Especially the idea of
utilizing the human brain as sensory for the subjective interpretation of current states within the
HMS seems to be very promising. These studies are hopefuly a starting point for a whole series of
new approaches. Currently we are investigating pBCls for detection of mental workload, cognitive
interpretation of the perception of human movements [17] and information on driver intentions.
Please, see www.phypa.org for details.

6 Conclusion

Our experiences with pBCIs show, that these enable new channels of information within the in-
teraction between man and machine. These can be utilized for both BCI and HMS research.
Additionaly it seems to be very fruitful to exchange experiences between these two fields of re-
search, which will hopefully will be done extensively in the near future.
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Abstract

An EEG-based BCI (brain-computer interface) system named “Brain Switch” was devel-
oped which detects motor imagery of subjects’ own limbs by the increase of beta band power
from one-channel EEG data. In this paper, the effect of long-term on-line feedback training
on two healthy subjects using the Brain Switch is reported. Two subjects with normal motor
ability took part in the experiments which consisted of screening sessions without feedback
and training sessions with feedback. In the screening sessions, 32 channel EEG, 3 channel
EOG and 4 channel EMG were measured simultaneously to review the EEG activation due to
motor imagery and to choose one EEG channel related to limb motor imagery and one proper
frequency band as a source of feedback training. In the feedback training session, EEG was
measured from the selected channel. The length of a bar graph, presented on-line on an LCD
as a feedback, was proportional to the EEG band power in the pre-defined frequency band.
Training were executed for 50 or 40 sessions within 6 or 7 months, and a screening session was
executed every 10 training sessions for checking and changing conditions for feedback. The
EEG band power and the results of threshold-based command detection are investigated and
discussed.

1 Introduction

A brain-computer interface (BCI) is a non-muscular communication channel which allows phys-
ically disabled people to re-establish interaction with their surrounding environment. One way
to realize such a BCI is to detect motor imagery of users’ limbs from the electroencephalogram
(EEG) [1].

The BCI presented in this work is based on the detection of changes in oscillatory EEG
components (event-related synchronization/desynchronization, ERS/ERD) induced by motor im-
agery [2]. From an engineering point of view, the simplest way to transfer information is to use
binary control signals. For the realization of this binary signal, the authors have developed the
system named “Brain Switch”, which detects the presence of a user-specific motor imagery. This
system detects the enhancement of EEG activities in a user-specific frequency component (ERS)
in a user-specific bipolar EEG channel on a threshold basis [3, 4]. The Brain Switch has already
successfully been employed to restore the grasp function of a spinal cord injury patient [3].

However, one crucial issue to gain control of a BCI is the training protocol. It is known that
the feedback training, in which information on target brain activation is presented to the subjects
during the task, is effective to modulate neuronal activities on motor imagery [3]. Due to the non-
stationarity and inherent variability of brain signals, the user has to learn to reliably generate the
requested patterns by feedback training. For the best feedback effects, the three above mentioned
parameters (frequency range, EEG channel, threshold) need to be specifically selected for each
user.
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In this paper, the process and effect of long-term on-line feedback training on two healthy
subjects using the Brain Switch is reported. The EEG band power during experiments and the
results of threshold-based command detection were investigated by off-line analyses.

2 Methods

2.1 Subjects

Two able-bodied subjects (male, 23 and 24 years old) took part in the experiments, which con-
sisted of EEG screening and BCI feedback training sessions (experiments with additional subjects
are in progress). The study was reviewed and approved by the Ethics Committee on Clinical
Investigation, Graduate School of Engineering, Tohoku University.

2.2 Screening sessions

Screening sessions were used to collect EEG activity from subjects during cue-guided motor im-
agery and to set up the parameters for the feedback training. Thirty-two EEG channels were
recorded from Ag/AgCl electrodes placed over positions AFZ, FZ, F1, F2, F3, F4, FCZ, FC1,
FC2, FC3, FC4, FC5, FC6, CZ, C1, C2, C3, C4, C5, C6, CPZ, CP1, CP2, CP3, CP4, CP5,
CP6, PZ, P1, P2, P3, and P4 (reference and ground were left and right earlobe, respectively).
Additionally, 3 EOG channels and 4 bipolar EMG channels (left forearm, right forearm, left leg,
right leg) were recorded. The measured signals were bandpass-filtered between 0.5 and 100 Hz and
sampled at 250 Hz.

The subjects were sitting in a comfortable armchair in an electromagnetically shielded room
watching a computer screen from a distance of about 2m. In each trial, a fixation cross was
displayed at time Os until the end of the trial at time 8s. A short warning tone occurred at 2s,
and one second later (3s), an arrow pointing either to the left, right or down representing one of
three different motor imagery tasks (left hand, right hand, both feet, respectively) was displayed
for 1.25s. The period between trials varied randomly between 5 and 6s. The subjects were
instructed to perform the indicated motor imagery task up to time 8s, while remaining relaxed
and avoiding any motion during performance. The number of trials in one run was 10 for each
limb (totally 30 trials per run), and three runs were conducted in one session. Within each run,
the order of the tasks was randomized.

Time-frequency ERS/ERD maps [5] of monopolar recordings and bipolar re-referenced channels
(pairs of nearest neighboring electrodes) were computed and visually inspected. The following
three conditions were selected for feedback experiments: motor imagery task (left hand, right
hand or both feet), single bipolar EEG channel (one pair of electrodes) and frequency band with
major ERS activity during motor imagery as a source of feedback information. These conditions
were chosen manually by experimenters, and if the target activity was weak and not significant, a
default frequency band (25-30 Hz) was adopted.

Screening sessions were recorded on the first and after every tenth feedback training session.
The identified conditions were fixed and the same conditions were used during the following 10
training sessions.

2.3 Training sessions

In feedback training sessions, the length of a bar graph, continuously presented on a computer
screen, was proportional to the power in the chosen frequency band. The subjects were requested
to extend the length of the bar graph by performing the selected motor imagery task. The band
power was estimated by bandpass filtering (Butterworth order 5) of the found EEG channel,
squaring the samples and averaging over the past 1s period.

In each trial, a scale consisting of two lines appeared at time 0s until 6s. During the presence
of the scale, the subjects were instructed to perform the pre-defined motor imagery. The number
of trials in one run was 20, and three runs were conducted in one session. In addition, two
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asynchronous (self-paced) runs in which subjects were allowed to imagine at free will, were executed
at the beginning of each session (5 minutes per run).

After each session, time-frequency ERS/ERD maps were computed and an off-line Brain Switch
simulation was calculated to evaluate the effect of feedback training. A Brain Switch accepts a
command each time the power in the pre-defined band exceeds a threshold for a certain period
of time (dwell time [6]). After a detection, a refractory period follows with the aim to reduce the
same command a second time.

These parameters for command detection (threshold, dwell time, and refractory period) were
optimized by ROC analysis [6], and the command detection was simulated. If the band power
exceeded the threshold in the motor imagery period (time 0s until 6s) and it resulted the detection
of the first command in each trial, it was counted as a desired command detection (true positive),
otherwise detected command were treated as an unexpected one (false positive). The number
of true and false positives (NTP and NFP, respectively) were calculated and evaluated by the
simulation.

3 Results and discussion

Subject 1 and 2 participated in 50 and 40 training sessions within 6 and 7 months, respectively. All
the raw data to be analyzed and its power spectrum were carefully reviewed to avoid contamination
by EMG or other artifacts. The epoch data with excess artifacts or noise was excluded from further
analysis and simulation.

3.1 Initial conditions for feedback training

Data taken from the first screening session (day 1) was analyzed to determine the initial conditions
for feedback training. ERS with large magnitude was not observed at the beginning from both
subjects. In Subject 1, a weak ERS component was observed at 18-23 Hz on bipolar montage
CZ-C3 by motor imagery of right hand, and they were set as initial conditions for feedback. In
Subject 2, the initial conditions were set to: motor imagery of feet, CZ-FCZ and 25-30 Hz.

3.2 ERS changes during training sessions

The results of time-frequency analysis on training sessions in both subjects are shown in Figure 1.

In Subject 1, no significant ERS response was observed by motor imagery of right hand during
the first 10 training sessions. In the second screening session (day 12), ERS was induced by motor
imagery of feet at 25-35 Hz on bipolar montage CZ-FCZ. Then the condition for feedback training
was changed to feet, CZ-FCZ and 25-35 Hz from 11*} training session (day 13).

It was observed that the frequency band of such narrow-band ERS during motor imagery
increased as training went on. The ERS elicited by motor imagery initially appeared at around
28-30Hz in about 15" to 17" training session (Figure 1(b)). The frequency band gradually
increased to around 30 Hz and finally went up to about 35 Hz (Figure 1(h)). Due to such increase
of frequency band of target ERS, the frequency band for feedback was changed to 30-35Hz, 32—
37 Hz from 211, 49'h session, respectively (limb for imagery and EEG channel location were fixed
from 11*" session). It seemed that the change at 21" training session was quite effective for
feedback training.

In Subject 2, ERS on vertex at 30-35 Hz was observed during feet motor imagery on the first
few training sessions (Figure 1(i)). The observed ERS frequency band was 5 Hz higher than that
for feedback (25-30Hz) which was initially set by the results on first screening session (day 1).
This ERS was gradually reduced during the first 10 training sessions, and such decrease of ERS
was supposed to occur because the frequency band used for feedback training was different from
that of the target ERS activation.

Based on the results of the second screening session (day 12), the frequency band for feedback
was changed to 25-35Hz from 11" training session. From 11" training session, stronger ERS on
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Figure 1: Result of time-frequency analysis of the data on training sessions on Subject 1 (a)—(h) and

Subject 2 (i)—(1). Only significant ERS and ERD responses from reference period (—1.5...

—0.55)

are shown. Source of analysis and object of motor imagery were: CZ-C3, right hand (a, b),
and CZ-FCZ, feet (c)—(1). Open dashed boxes denote ERS activities during motor imagery (time

0-6s).

30-35 Hz appeared and the frequency band for feedback was finally changed and fixed to 30-35 Hz

from 15*" training session.

3.3 Performance of command detection

The number of true positives and false positives on each training session are shown in Figure 2.
The three parameters for command detection were set by ROC analysis. As the total duration
of the resting state was much longer than that for the imagery state (6s per trial), NFP was

corrected to that in the same duration of imagery state.
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Figure 2: Result of command detection on training sessions. Number of true and false posi-
tives (bop), frequency band for feedback training, task of motor imagery and frequency band
for command detection used (bottom) are shown. The number of trials in each training session
(i. e. possible maximum NTP) was 60.
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In Subject 1, NTP increased from the 21*" training session, nevertheless the NFP did not
change. It was found from interviews after each training session that the subject sometimes had
a feeling that he could control the length of the bar graph displayed on a computer screen during
experiments. As there were no significant ERS responses for this subject before taking part in
this experiment, it was found that this subject gained the ability to generate ERS on motor area
voluntarily by motor imagery of feet.

In Subject 2, NTP decreased until the 10" training session. By the result of the second screen-
ing session (day 12) which was executed between 10" and 11*} training sessions, the condition
on the frequency band was changed to 30-35Hz from the 11*" training session. From the 11t}
training session, more NTP was obtained and was kept during the training session.

For this subject, the feedback training was executed regularly until 24" training session. But
due to his schedule, there were two long distances between 234 and 24*", and 30" and 315 training
sessions (about 4 and 3 weeks, respectively). The performance of command detection deteriorated
by such a distance during training sessions for this subject.

4 Conclusion

In this study, the process and effect of long-term feedback training for BCI based on motor imagery
were investigated in two subjects. The information on band power in specific frequency bands was
presented to the subjects during training sessions as a feedback. From the result of one of the
subjects, such a feedback could enhance the band power in the same frequency band. It was
found that subjects where no EEG response related to motor imagery was observed initially could
acquire the ability to produce enhancement of EEG band power during motor imagery.

In this study, the conditions for feedback training (especially the target frequency band) were
chosen empirically by experimenters by taking the results of previous sessions into account. More-
over, the present training paradigm was rather boring for the subjects. The proposal of efficient
training strategies and protocols to boost the effects of feedback training is left for further studies.
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Abstract

In a novel protocol of a sensorimotor rhythm (SMR)-based brain-computer interface (BCI),
the so-called “scanning protocol”, the participant views a screen that shows four choices in
a linear array with one marked as the target. The four choices are highlighted in succession
for 2.5s each. When a target is highlighted, the user could select it by modulating the
SMR. Participants trained for ten 30 min sessions over five weeks. The results demonstrated
that the frequency of correct selections was inversely related to the target position. The
reanalysis of the data of three participants showed that this effect can be led back to the
sequential selection of the target positions which results in a dependence of correct selections
of the target positions from each other. If the correct selections are calculated relatively to
how often the scan actually highlights the target, there is no difference in correct selections
between the first and the fourth target position anymore. The detailed analyses of the false
alarms showed that for each position the non-target box just before the target box was selected
most often. This result indicates that the reason for the false alarms is very likely a problem
of anticipation that causes the users to desynchronize the brain rhythms slightly too early no
matter which position is marked as target.

1 Introduction

A brain-computer interface (BCI) provides people with severe motor disabilities, such as amy-
otrophic lateral sclerosis (ALS), spinal cord injury or brainstem stroke, with a new non-muscular
channel for communication and control [1]. In this study, the brain’s electrophysiological signals
were recorded from the scalp with electroencephalography (EEG) and the users were asked to
control the task by modulation of mu (8-12Hz) or beta (18-25Hz) rhythms over sensorimotor
cortex (i. e. sensorimotor rhythms (SMR)) [2, 3]. Previous studies showed that participants were
able to do so and to achieve control of a computer cursor in order to select targets at the edge of
the screen [4, 5, 6]. Recently, a novel protocol of a SMR-based selection task was implemented that
allowed users to select multiple alternatives by modulating a single EEG feature [7]. The work
showed that the so-called “scanning protocol” could be useful and effective but still faces some
problems. The main issue was the impact of the target positions. So the aim of this study was to
analyze the problem of sequential selection and the resulting dependence of the target positions
more detailed. For these analyses the data of the 8™ 9*" and 10*" session of three participants
who achieved significant control of the scanning protocol was taken.
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Figure 1: Scanning protocol.

2 Methods

2.1 Scanning protocol

The used four-choice one-dimensional scanning protocol is illustrated in Figure 1. At 0s, four
square-box choices were presented on the screen. The target appeared in red (black in Figure 1A)
and the non-targets appeared in blue (white in Figure 1A). At 1s, the scan started at the left
edge of the screen and successively highlighted each choice in yellow (striped in Figure 1B) for
2.5s. The scanning sequence was repeated without pause until a selection was made or until the
time-out occurred after 30s (i. e. after a total of three full scans). The participants were instructed
to relax while the scan advanced automatically and to make their selection by motor imagery when
the target choice was highlighted (Figure 1C). If the selection was correct, the target turned green
(checkerboard pattern in Figure 1D) for 1s while the other choices disappeared and a “hit” was
registered. If a choice other than the target was selected, the screen immediately turned blank for
1s and a “false alarm” was registered. The 1s disappearance of the other choices after a “hit” or
the blanking of the screen after a “false alarm” provided post-trial feedback to the user. One time
passing a target without its being selected was counted as a “miss” and three full scans of the
four choices without a selection being made (30s total time) was called “time out”. The screen
remained blank for 1.5s (Figure 1E) before the start of the next trial (Figure 1F). Each session
contained eight three-minute runs (containing 7-29 trials) with one-minute breaks in between.

2.2 Participants

For this study, the data of three naive users (ages 39-61, 2 women and 1 man), who achieved
control within ten sessions, was taken from the original sample of 10 naive participants. Each
user participated in one screening and ten 30 minutes sessions of the scanning protocol. The
participants performed the task on average twice a week over a period of 4—6 weeks. All gave
informed consent for the study, which had been reviewed and approved by the New York State
Department of Health Institutional Review Board.

2.3 Procedure and EEG recordings

First, each of the participants performed the standard BCI screening [2]. The users sat back in
a reclining chair facing a 38 x 28 cm monitor at a distance of 2m, and wore an elastic electrode
cap seeded with tin scalp electrodes in the 64 positions standard for EEG recording according to
the modified 10-20 system [8]. The data was referred to the right earlobe, grounded at the right
mastoid, filtered (0.1-50 Hz), amplified (20.000 times) and digitized (160Hz). While EEG was
recorded, the users were asked to perform several motor actions or to imagine performing them.
Based on the analysis of this screening, the centrally located electrode position over sensorimotor
cortex and the frequency band between 8 and 28 Hz with the highest r? (Pearson’s correlation
between the amplitude of the EEG signal at the feature and the class information whether the
stimuli was or was not the target choice) was determined as the feature for the online control of
the following ten sessions of the scanning protocol.
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Figure 2: Percentage of correct selections relatively to how often the box was marked as target.

2.4 Signal processing and data analyses

The task was implemented in the BCI2000 software platform [9], and all recorded data were stored
for offline analysis. Online, one selected channel over sensorimotor cortex was filtered with a large
Laplacian spatial filter [10]. Every 50ms, the most recent 400 ms segment from each channel was
analyzed by a 16*"-order autoregressive model (MEM) to determine the amplitude in a 3 Hz-wide
mu or beta frequency band. The used feature locations and center frequencies of the features of
these three users in their last three sessions were CP3 and 16 Hz, CP4 and 15Hz and C1 and
25 Hz.

The selection was based on one feature varying among users and across sessions. The selection
was made by reduction in feature amplitude. A selection was determined by whether feature
amplitude was under a proportion of the threshold. This threshold was defined as the average of
the feature amplitudes for the last three 2.5s periods of each target position in which a choice was
highlighted. In this study, the proportion was 0.9 in the first and 0.8 in the subsequent sessions
for all participants regardless of their performance.

3 Results

These results were based on the data of the last three sessions (8" to 10" session) of three par-
ticipants (A, C and D) who achieved control in the scanning protocol. First, the percentage of
correct selections (%) for each target position was calculated as the ratio between the number of
correct selections of a target position achieved by the users and the total number of how often this
position was marked as target. In general, the frequency of correct selection was inversely related
to the target position. This means that the first target position (farthest to the left of the screen)
was selected most often, whereas the last target position (farthest to the right of the screen) was
selected least often (see [7]). Individual analyses of the data showed that there were some excep-
tions: User A selected the fourth target position in three out of the ten sessions approximately
as often as the first one correctly (within a range of 5 percentage points) and user C selected the
fourth target position even slightly more often (1 percentage point difference) than the first one in
one session. Figure 2 shows that the three participants selected on average the first target position
with an accuracy of 92 %, the second with an accuracy of 79 %, the third with an accuracy of 74 %
and the fourth with an accuracy of 57 % in their last three sessions.

However, these results do not take the unequal a priori probabilities of the different target posi-
tions into account. To select the first target position correctly, just one correct selection is required,
whereas for the fourth target position, four correct selections are required, because the scan has
to pass the first three non-target boxes correctly before a selection of the fourth target position
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Figure 3: Percentage of correct selections relatively to how often the scan highlights the target
position.

gets possible. So the correct selection of one target position can not be seen independent from
the others. Therefore, the correct selections were additionally calculated as the ratio between the
number of correct selections (%) of a target position achieved by the users and the total number
of how often the scan actually highlighted this target position. Relatively to how often the scan
actually highlighted the target, the participants selected the first target with an accuracy of 83 %,
the second and third with an accuracy of 75 % and the fourth with an accuracy of 81 % (Figure 3).

Each position was marked as target on average 32-34 times per session. Of these about 132

possible correct selections per session, the participants made on average about 31 false alarms and
27 misses. Generally, the further the target position was to the right, the less often the target
position was actually highlighted and the more false alarms were made. However, the scan passed
all three non-target positions and highlighted the fourth target position about 23 times on average
in one session and got selected correctly then about 19 times. Furthermore, the fourth target
position was missed least often in comparison with the other target positions. That shows that
performance was clearly above chance level for all target positions [11].
The detailed analyses of the false alarms showed that for each target position the non-target box
just before the target box was selected most often (Figure 4). The number of false alarms was not
distributed randomly upon the first, the second and the third position when the fourth box was
marked as the target, for example, but more false alarms were made on the third position than on
the other two non-target positions. Even if the first box was the target, slightly more false alarms
were made on the fourth position. Thus the first target was missed at the beginning and after
the fourth position the scan would have highlighted the first position again and a selection of the
target would have been possible again.

4 Discussion

The target position had a considerable influence on performance. Although the individual analyses
showed that in some few cases the target positions were selected correctly equally often (which
can be seen as proof that it is practically possible for the users to select the fourth target position
as often as the first one), generally the first target position was selected most often, whereas the
last target position was selected least often (see [7]). This effect can be led back to the sequential
selection of the target position which results in a dependence of correct selections between the
target positions. If the correct selections are calculated relatively to how often the scan actually
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Figure 4: Mean number per user and session of false alarms per each position

highlighted the target, there is no difference between the first and the fourth target position
anymore. The problem is that the scan did not always reach the last position due to early false
alarms, whereas the first was always highlighted.

The performance of these three users in their 8" to 10*" session was clearly above chance level
for all target positions [11]. They achieved very good control, made about as many false alarms
as misses and the scan came in 71 % to the last box position if it was marked as target.

The non-target box just before the target was selected erroneously more often than the other non-
target boxes. This result suggests that the false alarms were not the result of random selections
but demonstrate a certain level of control. Even if the first box was the target, slightly more
false alarms were made on the fourth position. This indicates that the reason for the false alarms
might not be that users found it hard to relax long enough and wait for the scan to pass the
non-target boxes, but a problem of anticipation that causes the users to desynchronize slightly
too early [12]. Of course, these results have to be interpreted carefully due to a small number of
cases and this effect might not be seen in the first sessions of participants or in users who did not
achieve sufficient control, because they were mainly selecting only the first position. However, one
solution could be to take only the first second of the 2.5s selection window into account for the
decision if a selection is made or not for online control instead of the mean value of the whole
2.5s. This suggestion is based on the analyses of the 2.5s selection window that showed that
the amplitudes at the feature of a user during a target box were most distinguishable from these
during a non-target box (e.g. the highest r? was displayed) in the period between 0.4 to 0.8s
after stimuli onset (see [7]); replicated on these three sessions of these three participants as well).
Further studies could implement this suggestion and try to decrease the number of false alarms due
to the too early start of desynchronization of brain rhythms for the next position. Another very
important aspect concerns the training of the participants. A pre-training to prepare the users
with the ability to make a difference between relaxation and selection before they are confronted
with a complex task might be useful.
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5 Conclusion

The sensorimotor rhythm-based scanning protocol might become a promising option for a BCI
communication for people with severe motor disabilities. Therefore further studies should address
to the problem of sequential selection and the resulting dependence of the target positions.
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Abstract

A necessary step in the data processing of a BCI is to extract temporal segments of the
EEG data which contain the desired information, and preferably only that information. In
most BClIs, the time boundaries of these segments are determined by some form of data-driven
optimization, e.g. via automated parameter search, or ad hoc by experience. Though, it is
known that data-driven parameter optimization suffers from a heightened risk of overfitting
on the training data, e. g. coincidential noise patterns or training conditions. The worst case
in this respect, and also the most commonly used, is when the optimization criterion is the
actual discrimination performance of the classifier being trained. Therefore, our goal was
to find a different subject-specific criterion for the determination of EEG time boundaries,
orthogonal to classifier performance. We have identified aspects of the mental information
processing of presented stimuli, particularly the timing of the event-related N400 component,
as a possible source for such a heuristic. This potential, known to indicate the processing
of linguistic stimuli, allows for the temporal delimitation of the preparation and execution of
the class-specific task against the stimulus processing. This makes the approach immediately
applicable in the stimulus-driven BCI calibration phase, but potentially for online phases in
synchronous BCls, too. Another benefit of this method is that it is unlikely to waste valuable
information directly following the stimulus processing, by the choice of the time boundary.
A preliminary offline study with 9 subjects, instructed to perform imagined movements, was
carried out. In this, we could show that the presented method leads to classification error
rates which are well contained in the expected range of error rates of that paradigm. This
suggest that our method does not obviously affect the BCI performance in a negative way
and is in fact practically applicable.

1 Introduction

A major goal of Brain-Computer Interface (BCI) research is the robust discrimination of electroen-
cephalogram (EEG) patterns correlated to different mental states. The application of ideas from
statistical machine learning to this problem has proven to be very practical for efficient online con-
trol via EEG signals, especially for naive subjects [1]. Nevertheless, the machine learning approach
suffers from the problem of overfitting on the training data, typically coincidential noise patterns
or conditions. This behaviour effectively degrades the possible online BCI performance. Based
on experience, several common techniques do increase the danger of overfitting, most of them
involving the data-driven optimization of one or more meta-parameters, subject to classification
performance. According to machine learning theory [2], this effect can be mitigated by optimizing
parameters based on different criteria instead, which are less directly related to discriminability, a
popular application being crossvalidation (CV) guided parameter search. Still, the scope of that
method is limited since its goal remains to be the classification performance, just in a different part
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of the training data. For example, learning on experimental conditions which just coincidentially
but consistently improve the classification performance in the training set cannot be avoided by
CV.

One such classification parameter which must be determined in almost every BCI application is
the temporal location of the EEG segments which contain the desired information. The classical
approach of determining this parameter is to either optimize it in a data-driven way, or to specify
it ad hoc based on experience. In the latter case, in stimulus-driven BCls, it is typically set to be
several hundred miliseconds past the stimulus presentation.

The focus of this paper is therefore to find a different criterion based on which this parameter
— the beginning of the discriminative EEG segment — can be determined. We found the human
information processing of presented stimuli to be applicable for this challenge. The N400 com-
ponent, which is correlated to the processing of linguistic stimuli, can be used to infer the time
at which the stimulus processing is finished (see Section 1.1 for more details). Consequently, this
time is also the best conservative estimate for the beginning of the subsequent task execution, and
thus of the EEG segment of interest.

As an example application for our method, we considered the BCI calibration phase, which usually
relies on stimulus-based instructions. Two different experimental sessions have been carried out.
The first to find out whether typical BCI training stimuli are in fact able to induce stimulus pro-
cessing ERPs, and to identify ERP components which best represent the completion of stimulus
processing. In the second experiment, the new method was applied to the classical paradigm of
training on imagined movements. Here we used SpecCSP/LDA [3] as a representative feature ex-
tractor /classifier in order to assess the quality of the windows which are estimated by our heuristic.
See Section 2.1 for details.

1.1 Neurophysiological background

It is well known that aspects of the human information processing can be examined by means
of event-related potentials (ERPs). These potentials not only reflect direct brain activity with a
latency and precision in the range of milliseconds, but also allow for a qualitative discrimination
of various stimulus-related cognitive processes. Consequently, a suitable choice of stimuli may
induce ERPs indicative of information processing. In particular, the ERP N400 is assumed to be
correlated to the processing of linguistic stimuli. This ERP is a negative polarity component whose
maximum amplitude is found over the centro-parietal cortex. It usually begins at around 250 ms
after the presentation of the stimulus and reaches its maximum amplitude at around 400 ms.
Further studies in this field revealed that the processing of any type of semantic information is
accompanied by an N400 [4, 5, 6]. In the context of language comprehension, another hot topic
of ERP components is the P600. Following the N400, this positive polarity ERP component with
maximum amplitude at around 600 ms relative to the stimulus can be observed in linguistic ERP
experiments. Such waveforms were reported in association with syntactic anomalies and ambi-
guities [7, 8]. It can be assumed that the brain distinguishes between semantic and syntactic
representation and processes.

The literature also suggests that the process of normal language comprehension may rely on at
least two complementary neural processing streams: a semantic memory-based mechanism, and
a combinatorial mechanism that identifies the structure of a sentence [9]. Consequently, both
components might be useful to some degree for temporally separating the instruction comprehen-
sion from the task performance, and it has to be determined which of them is best suited for our
approach.

Although both amplitude and latency of the P600 component depend on the processing of lin-
guistic stimuli, other studies have shown that the basal ganglia — intricately involved in the task
execution — seem to play a crucial role in the modulation of the P600 [10], an indication that its
interpretation with respect to the stimulus processing and task execution is not yet sufficiently
understood.
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2 Methods

Current BCIs allow for control over devices by discriminating, or classifying, different mental
states. These states could be intentional thoughts like e. g. movement imagination, mathematical
calculations or mental rotations, as in active BCIs (see [11] for a definition). Both of our experi-
ments were cases of typical BCI calibration phases for active BCIs, in which a series of stimuli is
presented to the subject in randomized order. In these, the subject is instructed to immediately
carry out the task indicated by the type of the stimulus. This phase is crucial for machine learning
based BClIs, since in it, the training data for building the classification model is collected.

2.1 Experimental designs
2.1.1 Preliminary ERP experiment — executed movements

In a preliminary ERP experiment with one subject, a suitable kind of stimulus presentation was
identified. The brain activity was recorded with 32 Ag/AgCl impedance-optimized electrodes
(ActiCap, Brain Products), referenced to the nasion, sampled at 1000 Hz and wide-band filtered.
Electromyogram (EMG) was recorded from both forearms. No data was rejected due to artifacts.
The task was to move upper limbs according to a preceding instruction, which was drawn from
one of the investigated stimulus sets {‘Left’, ‘Right’} and {‘L’, ‘R’}. In both cases the instruction
was to close the appropriate fist. At this stage we analyzed the EEG data of subject A for the
selection of a set of linguistic stimuli suitable for ERP induction. Also, the temporal relation of
the P600 component to the movement execution was to be explored based on this data. Another
focus of this experiment was to infer the duration of the movement executions according to the
EMG channels, as a preparation to the subsequent imagined movement experiments.

2.1.2 ERD experiments — imagined movements

In the following experiments we collected EEG data from “classical” BCI calibration phases — the
instructed imagination of left and right upper limb movements [12]. These were used to apply our
parameter estimation method in a subsequent offline analysis. Nine healthy subjects took part
in the EEG measurement, which consisted of three blocks, separated by a d2 test and a pause of
several minutes each. In each block, a different kind of movement imaginations was to be performed
to capture much of the spectrum of possible imaginations. The chosen types of imaginations were
closing the left/right fist, moving the left/right thumb and bending the left/right arm. A block
was structured as a randomized sequence of trials, each lasting for 4 seconds, with stimuli chosen
from the set {‘L’, ‘R’, ‘X’}. ‘L’ and ‘R’ prompted for the appropriate movement imagination, while
‘X’ allowed for relaxation. In each block there were 45 trials per class (i.e. 45 x 3). Furthermore,
subjects performed 15 trials of physically executed movements in the beginning of each block, in
order to facilitate the subsequent imaginations.

The brain activity was recorded using 59 Ag/AgCl electrodes (reference to the nasion) in an
extended 10-20 system sampled at 1000 Hz with a band-pass filter going from 0.05 to 200 Hz.
Additionally, EMG was recorded from both forearms and thumbs as well as the horizontal and
vertical electrooculogram (EOG). The EMG channels were used to monitor for physical limb
movements that could correlate with the mental task, and thus influence the EEG signals in this
part. Though, again, no trials had to be rejected due to artifacts.

Based on this data we applied the well-known SpecCSP classifier [3], in order to assess the quality
of our window estimation. SpecCSP is a recent variant of the known Common Spatial Patterns
(CSP) feature extractor [13]. It pinpoints relevant oscillatory features in time, space and frequency
and has only two free scalar parameters: the beginning of the class-specific time window and the
window length.

The beginning of the time window was estimated according to the proposed method, specifically by
averaging the subject’s ERP over Cz relative to the stimulus presentation, applying a [0.1-15] Hz
band-pass filter, and taking the time of the minimum amplitude in the interval of [250-450] ms as
the value of interest.
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The duration of the movement was set to be 1.75 times the duration of an executed movement,
as measured in the first experiment. LDA was chosen as the classifier for SpecCSP, as this was
shown to be effective on this type of features [3]. Also, the data that was fed into SpecCSP was
subsampled to 200 Hz for efficiency reasons.

3 Results

3.1 Preliminary ERP experiment - execution of movements

Figure 1 shows the averaged EEG signal over 270 trials of the preliminary experiment (subject A)
at the electrode Cz, superimposed with the left EMG channel. Note that negative voltages are
plotted above the zero line. Stimuli were presented as words, though a very similar figure can be
derived from the other condition (single-letter stimuli). Clearly pronounced and detectable N400
and P600 peaks are visible in the ERP. It is interesting to note that the EMG onset (dashed line)
begins at the same time as the P600 component peak. Also, it has to be noted that the N400
appears relatively early, at 340 ms after the stimulus presentation.
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Figure 1: Subject A: Average (270 trials) of the N400 effect elicited by target words, followed by
the execution of upper limb movements at electrode Cz and the corresponding EMG signal [L]
(preliminary ERP experiment).

3.2 ERD experiments - imagination of movements

To define the time point where the subjects began to perform the imagination of movements, the
ERP peak locations were determined from each subject’s averaged EEG data. For seven out of
nine subjects, a negative and positive component around 320 ms and 470 ms, respectively, were
found. A standard deviation of 97 ms in the latency of the N400 components across subjects was
measured. For two subjects, no clear peaks could be found by averaging. Table 1 shows the

leave-one-out cross-validation test error rate for all remaining seven subjects. The mean error rate
is 22.49 %.
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Subject | loo-cross-validation test error | Imagined movement
1 33.00 % thumb
2 24.44% arm
3 20 % arm
4 16.67 % arm
5 28.89 % thumb
6 24.44% fist
7 10% fist
Average 22.49 %

Table 1: Leave-one-out cross-validation test error for SpecCSP and estimated epochs by N400
(peak) and a duration of less than the double of a corresponding executed movement.

4 Discussion

The early appearance of the observed N400 peak (Figure 1) can in part be explained by over-
learning the given semantic stimuli. The EMG onset shows that the movement execution starts
after the N400 and directly after the P600 component peak. Consequently, the movement prepa-
ration phase must be overlapped with the P600 component, as we anticipated. This underpins
the decision to estimate the ending of the stimulus processing phase directly at the N400 peak.
Since the ERP is also clearly pronounced, this component is a viable basis for the separation of
stimulus processing from movement preparation and execution or imagination.

The fact that the classification results are very well contained in the expected range for SpecCSP
on imagined movemements backs up the theoretical claim that the method should be sane and
shows that it is also practically applicable. From a machine learning standpoint, this method has
the inherent benefit that it only takes information into account which is in some way orthogonal to
that embedded in the discriminative features, and is therefore thought to be less prone to classifier
overfitting. A practical example for the possible benefits of this method in e.g. the calibration
phase of an asynchronous BCI is that it can help to train only on the relevant features — in par-
ticular, it can help to prevent feeding uncorrelated or even falsely correlated information from the
stimulus processing, such as stimulus-evoked visual potentials, into the training function. And on
the other hand, valuable information following the stimulus processing is retained, a guarantee
that cannot be provided by the ad-hoc approach. In fact, the high variance of stimulus processing
duration across subjects shows that no a priori window can be optimally suited for all subjects.
Another, totally unrelated benefit compared to the CV-guided optimization method is its relative
computational simplicitly, which can save costly time in the critical machine training phase.

5 Conclusion

The presented idea allows for estimating the beginning of movement imagination within a stan-
dard BCI calibration session using a heuristic model. We believe that this approach provides
a substantial improvement with respect to overfitting. Furthermore, this heuristic has a lot of
potential for an automated estimation of designated time windows in the context of BCls.

The next step will be an extensive comparison to the most prevalent contemporary window estima-
tion procedures, potentially in an online setting, in order to ultimately measure the effectiveness
of our method compared to established practices. The results from the calibration example can
then in principle be carried over to synchronous BCI applications, except that in these cases the
stimuli do not encode the actual type of the following task, but instead just mark its beginning.
Another interesting future direction is to use the results the other way round, and instead identify
the time window of the stimulus processing, in order to supplement BCIs based on such features,
e. g. passive BCIs [11].
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Abstract

The present study has been carried out by graduate students of the Berlin Institute of
Technology. After attending an introductory lecture about Brain-Computer Interfaces (BCI)
in the department of Human-Machine Systems the task was to develop a BCI experiment to
gain hands-on experience. It has been decided to develop an experimental design concerning
the observation of human motion. It is a well-known phenomenon that motor imagery causes
desynchronization of the p-rhythm. This phenomenon has been used in the BCI context
to develop a new communication and control modality for individuals with severe motor
deficits. According to Neuper et al. and Hammon et al. desynchronization of the p-rhythm
can be enhanced when motor imagery and movement observation are combined. In the
experiment presented here it was tested, if movement observation alone leads to p-rhythm
desynchronization that is detectable on a single trial basis. For averaged trials this has been
shown by Ulloa and Pineda. They showed that desynchronization of the p-rhythm is stronger
during the observation of feasible and meaningful human motion than during the observation
of unfeasible and useless human motion. In the presented study this difference has been
classified using point-light human animations versus scrambled versions of these animations
as stimuli. Although this is work in progress, preliminary results for three subjects indicate
that it is possible to detect the observation of point-light human motion on a single trial basis.

1 Introduction

It has been shown that the p-rhythm in the alpha-band (7-13 Hz) over the sensorimotor cortex is
modulated by execution, imagination and observation of movements [1]. In the BCI context motor
imagery is commonly used to discriminate different imagined movements that lead to lateralized
modulations of the p-rhythm [2]. Neuper et al. [3] as well as Hammon et al. [4] have shown that
motor imagery combined with the observation of movement leads to better classification rates in
BCI experiments than solely motor imagery. Furthermore there is evidence that the observation of
movement leads to modulations of the p-rhythm [5]. The idea of the experiment that is presented
here was to combine the above mentioned findings and to test if g-rhythm modulations that are
based on the observation of movements are detectable on a single trial basis.

To realize this idea point-light videos were used. A couple of studies deal with the question up to
what degree human motion can be defamiliarized so that it is still recognized as a feasible human
motion. A detailed review of these studies can be found in Blake and Shiffrar [6].

It has been discovered that point-light videos showing human motion can be identified correctly
even under hard conditions [6]. Section 2.4 provides further information about point-light videos.
The common assumption is that due to the lack of additional information about the shape of the
moving persons, the bare movement has a huge effect in the perception of these videos.

Studies involving point-light animations usually use scrambled defamiliarized versions of those an-
imations that provide the same amount and the same kind of information, but are not recognized
as feasible human motions.
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Grossman et al. [7] investigated that disturbance of the spatio-temporal coherences of dots makes
it most difficult to identify human motion. According to Pavlova [8] rotations between 180 and
490 degrees makes it even harder. These empiric findings were used as a base for the creation of
the point-light animations in the presented experiment.

In an fMRI study Saygin et al. [9] discovered that activity in sensorimotor areas of the prefrontal
cortex can be found during the observation of normal human motion and during the observa-
tions of point-light human motion as well. They also compared point-light videos showing natural
movements to scrambled versions of the same movements (cp. 2.4). They discovered lateral and
inferio-temoral areas that are more responsive to point-light videos showing natural movements
than to scrambled versions of those.

Ulloa et al. [5] presented five point-light videos based on those of Saygin et al. to subjects of an
EEG study. Two of them showed normal human motion, while two showed scrambled versions of
these movements and one showed white noise as the baseline (cp. 2.4). They examined modula-
tions of the p-rhythm while subjects were observing these videos. Their results revealed a strong
desynchronization of the pu-rhythm during the observation of the point-light videos that showed
normal human motion and a much lower desynchronization for scrambled versions of these videos.
In the present experiment it was tested if the findings of Ulloa et al. [5] could be transferred to
a BCI experiment, meaning that the observation of human motion can be discriminated from a
scrambled version of this human motion on a single trial basis.

2 Methods

2.1 Subjects

The experiment was carried out with three subjects (two female and one male). The age of the
subjects was between 29 and 38 years. Two of the subjects were students of the Berlin Institute of
Technology and knew about the hypothesis. All subjects were paid 20 euros for their participation
in the experiment.

2.2 Experimental setup

The experiment took place in the EEG laboratory of the Berlin Institute of Technology. Subjects
were placed in a sound insulating cabinet to avoid background noise. They viewed the point-light
animations on a projection screen that was placed approximately 80 cm in front of their main field
of view. The animations consisted of three different conditions that appeared in random order.
Detailed information about the stimuli can be found in Section 2.4. The animations were shown
for three seconds and the inter-stimulus interval lasted five seconds. In total, subjects viewed 80
animations for each condition in blocks of 5 minutes. The three different conditions appeared in
randomized order. In between these blocks there were short breaks that could be aborted any
time the subject was feeling ready to continue. In order to keep the subjects motivated, target
stimuli have been introduced. While the dots of the point-light animations usually were yellow,
their color was changed to green for 10 % of all stimuli after 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5 seconds
after stimulus onset respectively. The target stimulus appeared for half a second. The subjects
had been instructed to press a button (SPACE of a standard keyboard) as quickly as possible after
the target had been discovered. Since this target stimulus was only for motivational purposes all
trials containing the target were removed before classification.

2.3 DMaterials

EEG data was recorded from 32 scalp electrodes, which have been placed on a standard 10/20 cap
with 128 positions focusing the motor cortex. The Acticap system of the company Brainproducts
was used. Additionally horizontal and vertical eye movements were recorded with two bipolar
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electrodes. Furthermore arm movements were recorded from both arms with two additional bipolar
electrodes (EMG). All EEG data was recorded with the Brain Vision Recorder.

2.4 Stimuli

Videos showing point-light animated figures have been used as visual stimuli. Point-light fig-
ures are common visual stimuli showing distinct positions of joints of the human skeleton that
have been used for several experiments concerning the presentation of movements (cp. Saygin et
al. (2004) [9], Blake and Shiffrar (2007) [6] and Ulloa and Pineda (2007) [5]).

The motion capturing data used for the presented study was taken from the CMU Graphics Lab
Motion Capturing Database of the Carnegie Mellon University that can be found on the internet.!
Three conditions can be differentiated (‘Running Condition’, ‘Scrambled Condition’ and ‘Noise
Condition’). The first condition, which stood for the feasible human motion showed an animated
point-light figure running.

Figure 1: Example of three frames of the point-light animations for the ‘Running Condition’.

The second condition was based on the same movement data as the first condition. However the
initial positions of the dots were randomized as well as their direction of movement was changed,
i.e. the x- and y-components of the positions of randomly selected positions were swapped.

Figure 2: Example of three frames of the point-light animations for the ‘Scrambled Condition’.

The third condition, which was used as a control condition showed Gaussian noise. Since every
two frames of this animated Gaussian noise were pairwise independent, a discontinuous animation
arose, which led to a ‘flickering’ subjective visual impression, that was completely different from the
other two conditions. In order to compensate this ‘flickering’, the number of dots was dynamically

Thttp://mocap.cs.cmu.edu/
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altered from at least one up to a maximum of eleven dots per figure. Furthermore the number of
frames per second for these animations was 15, i.e. half of the number of frames per second for
the other two conditions. Thus, the general subjective visual impression has been brought much
more in line with the other conditions. Examples of pictures of the point-light animations used
are shown in Figure 1, 2 and 3.

Figure 3: Example of three frames of the point-light animations for the ‘Noise Condition’.

2.5 Data analysis

Analysis of the data was carried out with the PhyPA Toolbox? in MATLAB. In a preprocessing
step the data was reduced to epochs of 3 seconds. Starting point of each epoch was the marker po-
sition that was set when a point-light sequence appeared on the screen. Furthermore the data was
filtered to a frequency spectrum of 7-30 Hz using an FFT-bandpass filter. Epochs were weighted
with a Gaussian window function so that the data in the center of each epoch became most rele-
vant for classification.

After preprocessing of the data the ‘Running Condition’ was tested against the ‘Scrambled Con-
dition’ and against the ‘White Noise Condition’ for separability. To maximize the discriminable
information between conditions the Spec-CSP algorithm by Tomioka et al. [10] was used. The
algorithm is an extension of the CSP algorithm by Ramoser et al. [11]. Spec-CSP is a spatio-
temporal filter that maximizes the difference of the variance between classes. Until now it has
mainly been used to discriminate lateralized ERD/ERS. Nevertheless the algorithm can be ap-
plied to other phenomena as well. In the next step we defined a linear classifier based on linear
discriminant analysis (LDA) that was validated on the data. The method of validation that was
used was a leave-one-out crossvalidation. A search for optimal parameters was included in the
procedure. The parameters included in this search were the time frame and the number of pattern
pairs generated by the Spec-CSP algorithm®. Examples for the spatio-temporal filtering of the
Spec-CSP algorithm are shown in Figure 4. Three different time frames were tested and three
different combinations of pattern pairs.

3 Results

The ‘Running Condition’ was tested against the ‘Scrambled Condition’. The mean classification
error was 29.63 (standard deviation 1.45). The classification error for subject 1 was 31.25%. The
optimal parameters for subject 1 were a timeframe of 0.5-2.5 seconds and two pairs of Spec-
CSP patterns. The classification error for subject 2 was 29.17%. Optimal parameters for this
subject were a timeframe of 0.5-2.5 seconds and two pairs of Spec-CSP patterns. For subject 3
the classification error was 28.47 %. Optimal parameters were a timeframe of 0.8-2.2 seconds and

2The PhyPA Toolbox was developed by Christian Kothe and Thorsten Zander at the Berlin Institute of Tech-
nology. It consists of various functions that support data analysis in the BCI context.
3Detailed information about how the patterns were generated can be found in Tomioka et al. [10]
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Figure 4: Spatial and temporal filters for subject 1 (left), subject 2 (middle) and subject 3 (right)
computed by Spec-CSP. Both, the spatial and the temporal filters are weighting factors and
therefore unit-less. Upper row: ‘Running Condition’. Lower row: ‘Scrambled Condition’.

three pairs of Spec-CSP patterns. The patterns of subject 2 are shown in Figure 4.

The ‘Running Condition” was also tested against the ‘White Noise Condition’. For these two
classes the results are not clear-cut. The classification errors were 38.62 % for subject 1, 35.41 %
for subject 2 and 47.22 % for subject 3.

4 Discussion

First results indicate that the ‘Running Condition’ and the ‘Scrambled Condition’ are separable by
our BCI system. Clearly a larger number of subjects is needed to further validate these findings. In
most of the patterns electrodes over sensorimotor areas are highly weighted. Especially the results
of subject 2 are clear-cut. This indicates that a desynchronisation of the p-rhythm might be
involved in the classification process. Furthermore frequencies in the alpha- and in the beta-band
are highly weighted. Since the p-rhythm consists of these two frequency-bands, this weighting
further enhances the assumption that a modulation of the y-rhythm is involved in classification.
The ‘Running Condition’ and the ‘White Noise Condition’ were separable for two of the three
subjects, but the Spec-CSP patterns for this classification were less clearly distributed than those
of the first classification.

5 Conclusion

The results of the presented experiment are in line with other findings which have shown that
the observation of human motion evokes a desynchronisation of the p-rhythm [5]. Furthermore
it has been shown that the observation of feasible human motion causes different modulations
over sensorimotor areas than the observation of motion that is not feasible [5]. In the presented
experiment these findings were advanced by showing that it is possible to detect this difference on
a single trial basis. An experiment with a suitable number of subjects is going to be carried out
during the next two months.

The subjects in this experiment were not instructed to imagine the human motion they were ob-
serving. This indicates that the observation of human motion per se is dectectable on a single-trial
basis. Whether the classification is based on modulations of the p-rhythm has to be verified with a
band power analysis that has not been carried out yet. Nevertheless the highly weighted electrodes
over sensorimotor areas, as well as the highly weighted alpha and beta frequency-bands strongly
indicate that the classification is based on modulations of the p-rhythm.

In contrast to the study of Hammon et al. [4] the observation of human motion is not used to
further enhance classification rates of a BCI system that is based on motor imagery. The single
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trial detection of an observed human motion could be used in a so called passive BCI system.
Such a system is designed to extract information of the subject’s brain activity, without the need
of any intended action by the subject. Possible applications for passive BCI systems are currently
being researched in Team PhyPA at the Berlin Institute of Technology.

Although this study is work in progress and our results are preliminary, we can conclude that
it seems to be possible to distinguish between feasible and non-feasible movements. We can not
assume to have based our classification on the gy-rhythm only. There are wide inter individual
differences in classifiability as well as in the patterns of the topo plots.
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Abstract

The aim of the present study is to investigate the influence of various experimental param-
eters and features for future use in motor-imagery based BCI. Three types of movement are
investigated: index tapping, sustained clenching and repetitive clenching. Real and imaginary
movement executions are also compared. Finally, interindividual variability is addressed by
comparing features common to all subjects with individually optimized ones. Results show
that individual features, namely in the spatial and frequency domain, yield on average sig-
nificantly enhanced differences between experimental conditions that could be exploited to
optimize a future motor-imagery based BCL.

1 Introduction

Motor imagery is one of the most investigated process to implement an efficient and direct brain-
computer interface (BCI) (see [1, 2] for a review). These BCI are generally based on mu rythm
(8-12 Hz) desynchronization as observable with EEG over motor areas during motor imagery, in
a similar way as in movement preparation or execution. Although a lot of studies have focused
on signal processing techniques to reduce classification error in motor-based BCI, very few studies
have provided insights on the role of movement types.

In the present study, we compare mu power desynchronization during the realization or imag-
ination of three different movements: index tapping (IT), sustained clenching (SC) and repetitive
clenching (RC). Movements are performed either with the right or the left hand. Our main goal
is to identify crucial guidelines for optimizing a future motor-imagery based BCI. Therefore and
since BCIs are meant to be optimized for individual usage, we investigate signal feature space,
namely in the spatial and frequency domain. Hence we focus on subject differences in terms of
scalp region of interest (ROI) for data acquisition and mu frequency range. In a multi-subject
statistical analysis, we compare those individual features with some literature-based definitions of
classical motor related ROIs and mu rhythms.

In this paper, we focus on the quantitative comparison between different possible features to
discriminate between movement types. It tackles the preliminary question: do the considered
movements exhibit significant differences at the single trial level, on average? We address this
question with a classical factorial design and analysis of variance. We hoped the answer would
be positive so that we can contemplate building a BCI paradigm based on the identified features.
Evaluation of such a BCI will be the focus of future work that will then tackle the following
question: how well can we classify single trial responses based on those features? This is typically
addressed using cross validation.
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2 Methods

2.1 Subjects

Six healthy right-handed female subjects (range age: 21-29 years, mean age: 22.7) participated in
the experiment. They were all free of neurological diseases and had no previous experience with
motor-imagery paradigms. All subjects signed an informed consent approved by the local Ethical
Committee and received monetary compensation for their participation. Because she failed in
performing the imaginary movement task, one subject was excluded from the analysis.

2.2 Experimental paradigm

During the recording, subjects were sitting in a comfortable armchair in an electrically shielded
room. Task execution was monitored with the PsyScope software [3], using an Apple Macintosh
G4 computer for visual display of instructions and cues within the acquisition room. Each subject
started the experiment with a short training session to ensure they correctly understood the task.
Then, the actual experiment was divided into 12 blocks whose order was randomized. Each block
was made of 16 trials of 20 seconds each and was dedicated to one of the three movement types
only. Each trial consisted in 2 seconds of rest (R), followed by 5 seconds of actual movement
(M), 5 seconds of rest (R), 5 seconds of motor imagery (I) and 3 seconds of rest (R) (Figure 1).
Within trial, imagery was always performed after the exact same real movement in order to ease
the imaginary task. The hand to be used was randomly chosen and equally balanced within block.
It remained the same within trial and was indicated by a right or left arrow during the whole task
periods (M and I). The subject was also asked to fixate a cross at the middle of the screen to
minimize eye movements. In total each participant underwent 192 trials, hence about one hour of
experiment.

R M R | R
3y % 3 F ; F 1P
2s 5s Ss. 5s 3s

Figure 1: Timing of a trial.

2.3 Data acquisition and preprocessing

EEG activity was recorded from 32 scalp active electrodes (actiCAP, BrainProduct GmBH, Mu-
nich, Germany) placed at standard locations of an extended 10-10 international system (Figure 2).
All electrodes were referenced to the nose and grounded to the forehead. Horizontal and vertical
electrooculograms (EOG) were recorded from the right eye. Ag/AgCl bipolar electrodes were
used on both arms and located in order to get EMG signals for each movement type. Electrode
impedances were kept below 10kQ2. EEG was amplified (BrainProduct GmBH, Munich), filtered
(0.1-150 Hz), and digitized online with a sampling frequency of 1000 Hz.
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Figure 2: Electrode montage.
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Subject Mu band (Hz) Left ROI Right ROI
1 9-12 CP1,P3  C4, CP2, P4, CP6
P 810 CP1, P3, CP5 C4, CP2, P4
3 913 (3, CP1, CP5 (4, CP2, CP6
4 79 C3, CP1 C4, CP2
5 12-14 C3, CP5 C4

Table 1: Individual features.

Figure 3: (a) Grand mean time-frequency plots over C3 and C4 for subject 3. The most important
mu desynchronization can be observed between 9Hz and 13 Hz. (b) Topographical distributions

of the averaged mu power during actual movement. Mu desynchronization can be observed over
the C3, CP1 and CP5 electrodes (left ROI) and over the C4, CP2, CP6 electrodes (right ROI).

After epoching, all trial data with large muscular activity were rejected from further analyses.
The eye blink component was automatically removed using ICA [4]. This preprocessing step left
at least 26 clean trials for each participant, each hand and each movement type.

2.4 Data analysis

Data analysis focused on mu power during movement (desynchronization) relatively to mu power
during rest. For each condition, the averaged time-frequency transform across single trials [5]
was computed for both real and imaginary movements, using a three-second-length time win-
dow (from 1 to 4 seconds after movement cue onset). Data from the same trial were baseline
corrected using the same initial resting period (from 1500 to 500ms before the real movement
cue onset). Two different spectral analysis were performed from the time-frequency representa-
tions: a common-feature based analysis and an individual-feature based one. In the first one,
mu power was computed in the 8-12Hz frequency band from electrodes C3 and C4 [6]. In the
subject specific procedure, individual features (specific mu range and ROIs) were identified from
the averaged time-frequency plots over all conditions (see Table 1). Individual mu range was first
determined from individual time-frequency plots over centro-parietal electrodes (Figure 3(a)) and
then individual ROIs were selected from the ensuing mu power topographies (Figure 3(b)).
Using R software [7], linear mixed effect modeling [8, 9] was applied to both data sets, with
Movement Type (real vs. imaginary movement), Movement (IT, RC and SC), Hand (left vs. right)
and ROI (left vs. right) as fixed effects and Subject as random effect to account for between subject
variability. An analysis of variance was then computed separately on both estimated fixed effects.
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Figure 4: Two-way interaction (Hand x ROI) when considering the common mu-range definition.

3 Results

3.1 Towards a routine-based BCI

From spatial and frequency features common to all subjects, results showed a main effect of Hand
(p < 0.001), with lower mu power during left hand compared to right hand movement. The
interaction between Hand and ROI factors proved also significant (p < 0.05; Figure 4), showing a
larger decrease in mu power on C4 than on C3 for left hand movements. Surprisingly, a similar
pattern was observed for right hand. No other significant main effects or interactions were found,
suggesting no significant differences in mu power due to movement type or between real and
imaginary movements.

3.2 Towards a subject-specific BCI

Here considering individual features in terms of both mu frequency range and ROIs, a significant
mu desynchonization was again observed for left hand movements (p < 0.0001). Furthermore,
significant interactions were observed: Hand x ROI (p < 0.01) and ROI x Movement (p < 0.05).
Contrary to what was evidenced from the use of common features, a clear controlateralization for
each hand is revealed (see Figure 5(a)). This suggests that common features may fail to extract
informative signals that can be revealed by subject specific features.

Moreover and contrary to the previous analysis, the ROI x Movement interaction proved
significant here (see Figure 5(b)). Indeed, while RC and SC movements reveal a similar pattern
of relative mu power from left to right ROI, this pattern is inverted for IT movements. This may
be due to the difference in either the movement effectors (index vs. full hand movement) or the
kind of movement (tapping vs. clenching).

On the other hand and as revealed by a significant main effect of Movement (p < 0.01), a
global mu power was found greater for SC compare to both IT and RC, and for IT compare to
RC. This may be explained by the difference in performing a sustained versus repeated movement.

Finally, a significant main effect of Movement Type was found with individual features (p <
0.01), due to lower mu power values for real compare to imaginary movements. Note however that
mu power values are all negative (compare to resting periods), suggesting that the motor-imagery
task was well performed.

4 Discussion and conclusion

Although more subjects would need to be tested in order to confirm our findings, the present study
provides clear evidence in favor of the use of individual features to optimize a motor-imagery based
BCIL.

Indeed, our comparison of common and individual features in the spatial and frequency domains
revealed the following statistical differences. The difference between controlateral and ipsilateral
mu desynchronization was only significant when considering individual features, as observed with
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Figure 5: Plot of the two-way interactions (a) Hand x ROI and (b) ROI x Movement in the mu
band for individual features.

both the left and right hand movements. This is probably due to the optimization of the ROI since
C3 did not appear to be informative for both subjects 1 and 2 (see Table 1). This finding holds
true for either real or imaginary movements. Note also, that in all cases, left movements induced
a larger mu desynchronization than right movement, maybe reflecting the right-handedness of the
subjects.

This study suggests, whatever the strategy (see e.g. [10] for a binary-command BCI based on
the contrast between bilateral imagery and rest) that subtle and carefully indentified individual
features or preferences (e.g. in the type of movements) could optimize motor-imagery based BCI
in a significant way [6, 11]. According to our results, lateralization of imaginary movements as well
as movement type (e. g. clenching vs. tapping) are relevant parameters to be looked at individually.

To further assess the differences between conditions, we contemplate to analyze the dynamics
of mu desynchronization during movements. It might be that the full period between 1 and 4
seconds after movement cue onset is not specific enough or subject dependent and could be also
individually optimized. Indeed, the visual comparison of time-frequency plots during real and
imaginary movements indicate a less stable mu desynchronization during motor imagery. This
may be due to the fact that all the subjects were untrained and naive regarding motor imagery.

Although it was designed in the perspective of optimizing a BCI application, the current ex-
periment was performed offline and involved a classical factorial design with several-second-long
trials. In BCI practice, decision would need to be taken more rapidly, on a few hundred of millisec-
onds basis. Therefore, studying and exploiting the temporal structure of the identified features
will be crucial. One possible direction we are currently investigating is temporal integration in
probabilistic decisions using dynamical classification models (see [12]).

Finally, we focussed the current analysis on mu rythm and motor related electrode sites.
Further improvement could be obtained from including other locations and frequencies, such as
beta (around 1624 Hz) desynchronization, or faster rythms as proposed in [13].

Acknowledgments: The authors are grateful to Amélie Da Costa for her valuable contribu-
tion in collecting the data. This work was supported by the French National Research Agency
and the National Network for Software Technologies within the Open-ViBE project and grant
ANRO5RNTLO01601.

References

[1] G. Pfurtscheller and C. Neuper. Motor imagery and direct brain-computer communication.
IEEE J. Proc., 89:1123-1134, 2001.

178



4th Int. BCI Workshop & Training Course 2008

2]

3]

J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan. Brain-
computer interfaces for communication and control. Clin. Neurophysiol., 113:767-791, 2002.

J. D. Cohen, B. MacWhinney, M. Flatt, and J. Provost. Psyscope: A new graphic interactive
environment for designing psychology experiments. Behav. Res. Methods, Instruments and
Computers, 25:257-271, 1993.

A. Delorme and S. Makeig. Eeglab: an open source toolbox for analysis of single-trial eeg
dynamics including independent component analysis. J. Neurosci. Methods, 134:9-21, 2004.

C. Tallon-Baudry and O. Bertrand. Oscillatory gamma activity in humans and its role in
object representation. Trends Cogn. Sci., 3:151-162, 1999.

G. Pfurtscheller, C. Neuper, D. Flotzinger, and M. Pregenzer. Eeg-based discrimination be-
tween imagination of right and left hand movement. FElectroencephalogr. Clin. Neurophysiol.,
103:642-651, 1997.

R Development Core Team. R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria, 2005. ISBN 3-900051-07-0.

J. C. Pinheiro and D. M. Bates. Mized-Effects Models in S and S-Plus. Springer, 2000. ISBN
0-387-98957-0.

J. Pinheiro, D. Bates, S. DebRoy, and D. Sarkar. nilme: Linear and nonlinear mized effects
models, 2006. R package version 3.1-78.

J. Mellinger, G. Schalk, C. Braun, H. Preissl, W. Rosenstiel, N. Birbaumer, and A. Kiibler.
An meg-based brain-computer interface (bci). Neuroimage, 36:581-593, 2007.

C. Neuper, R. Scherer, M. Reiner, and G. Pfurtscheller. Imagery of motor actions: differential
effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res. Cogn.
Brain Res., 25:668-677, 2005.

J. Mattout, G. Gibert, V. Attina, E. Maby, and O. Bertrand. Probabilistic classification
models for brain computer interfaces. In 14/th Annual Meeting of the Organization for Human
Brain Mapping, 2008.

R. Grave de Peralta Menendez, Q. Noirhomme, F. Cincotti, D. Mattia, F. Aloise, and S. Gon-
zalez Andino. Modern electrophysiological methods for brain-computer interfaces. Comput.
Intell. Neurosci., 2007:56986, 2007.

179



4th Int. BCI Workshop & Training Course 2008

Repeated BCI sessions without new training

M. Tangermann!, M. Krauledat!, B. Blankertz!, K.-R. Miiller!

!Machine Learning Laboratory, Berlin Institute of Technology, Germany
2Intelligent Data Analysis Group, Fraunhofer FIRST, Berlin, Germany

schroedm@cs.tu-berlin.de

Abstract

In this paper we suggest a new method that overcomes the requirement of time-consuming
calibration recordings at the start of every new Brain-Computer Interface (BCI) session for
long-term users. The method takes advantage of knowledge collected in previous sessions
about spatial filters and classifiers: By a novel technique, prototypical spatial filters are
determined which have better generalization properties compared to single-session filters. In
particular, they can be used in follow-up sessions without the need to recalibrate the system.
This way the calibration periods can be dramatically shortened or even completely omitted
for these “experienced” BCI users. The feasibility of our novel approach is demonstrated with
a series of online BCI experiments. Although performed without any calibration measurement
at all, no loss of classification performance was observed.

1 Introduction

In the machine learning approach to BCI ([1]) a statistical analysis of a calibration measurement
is used to adapt the system to the specificities of the user’s current brain signals at the beginning
of each session. This approach allows for an effective performance from the first session on without
user training ([2]). As the signals vary between sessions even for the same user, BCI systems rely
on the calibration procedure for an optimal performance (machine training).

Besides the montage of the EEG cap, the recording of calibration data is the most time-
consuming preparational step at the beginning of every new session. It will be addressed by the
so-called the Zero-Training method in the present online study.

The basic idea of the method is as follows: In the case of long-term BCI users, who repeatedly
perform BCI sessions with the same mental tasks, one can exploit data from previous sessions in
order to learn most of the calibration parameters. In more detail, we show how to learn good
spatial filters and classifiers from data of previous sessions which eliminates the necessity of going
through a new calibration phase during each new session (see Figure 1).

In the current work, we expand the work of Krauledat et al. [3] to the online scenario. The
Zero-Training method is tested against the standard approach where spatial filters and classifiers
are trained anew on the calibration data of a new session.

2 Methods

The exact location, the exact frequency band of the sensorimotor rhythm and the way it can
be influenced by motor imagery (resulting e. g. in event-related desynchronization (ERD) or syn-
chronization (ERS) [4]), is subject-specific. Hence individually optimized filters can increase the
signal-to-noise ratio dramatically [5]. To this end, the Common Spatial Patterns (CSP) technique
has proven to be a useful tool for BCI.

Common Spatial Pattern and its extensions (e.g. [6, 5]) is a technique to analyze multi-
channel data based on recordings from two classes (conditions). It is, e.g. used in BCI systems
based on the modulation of brain rhythms. CSP filters maximize the EEG signal’s variance under
one condition while simultaneously minimizing it for the other condition. In the example of left
vs. right hand motor imagery, the CSP algorithm will find two groups of spatial filters. The first
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Figure 1: Sessions 1 to N-1 follow a standard BCI procedure: spatial filter and classifiers are
learned each session anew from a calibration recording before they are applied during a feedback
application. The new Zero-Training method eliminates the calibration recording: spatial filters
and a classifier are predetermined before session N starts. The spatial filters for session N are
extracted from old filters (blue), the classifier for session N is calculated from old calibration
recordings (red). The feedback application of session NNV is preceded by a quick bias adaptation.

will show high band power during left hand motor imagery and low band power during right hand
motor imagery, and the second vice versa.

Let 3; be the covariance matrix of the trial-concatenated matrix of dimension [C' x T (where
C' is the number of electrodes and T is the number of concatenated samples) belonging to the

respective class ¢ € {1,2}. The CSP analysis consists of calculating a matrix W € RY*Y and a
diagonal matrix D with elements in [0, 1] such that
WS W=D and W' EZ,W=I-D (1)

where I € IR®*Y is the identity matrix. This can be solved as a generalized eigenvalue problem.

The projection that is given by the i-th column of matrix W has a relative variance of d; (i-th
element of D) for trials of class 1 and relative variance 1 — d; for trials of class 2. If d; is near
1, the filter given by the i-th column of W (i.e., the ith spatial filter) maximizes the variance for
class 1, and since 1 — d; is near 0, it also minimizes the variance for class 2. Typically one would
retain projections corresponding to two or three of the highest eigenvalues d;, i.e., CSP filters for
class 1, and projections corresponding to the two or three lowest eigenvalues, i.e., CSP filters for
class 2. For a detailed review of the CSP technique with respect to the application in BCI see [5].

Krauledat et al. [3] showed in an offline analysis on data from repeated sessions for a number
of subjects, that spatial filters computed via CSP can be clustered into physiologically relevant
groups using a specialized metric [7] in the CSP filter space.

Extracting prototypical CSP filters from regions with a high density of CSP filters and applying
them to data of an unseen new session of the same user, those prototypical filters result in very
good offline classification performance. For the present online study, we used the same methods
for creating the CSP filter space and for determining cluster prototypes.

3 Experimental setup

To demonstrate the feasibility of the Zero-Training approach, a BCI feedback study was designed to
compare the proposed approach with the classical CSP approach in terms of feedback performance.
The specific construction of the two classification setups is described in Section 3.1.

The BCI experiments were performed with 6 healthy subjects, aged 26-41 who previously
had performed at least 5 motor imagery BCI sessions with the Berlin Brain-Computer Interface
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F#chan- #past  #train FQ band Interval
Subject nels sessions trials  Classes (CSP) (2T) (CSP) (2T)
2q 46 7 845 LR [914] [925  [810 4460] [500 3000]
ay 46 4 324 LR [822] [925 [7102650] [500 3000]
p 46 5 704 LR [1025] [925 [2750 5000] [500 3000]
al 44 9 684 FR [1125] [925] [1600 4690] [500 3000]
aw 44 13 1075 LF [1117] [1025 [1500 4500] [500 3000]
& 46 7 240 LR [831] [925  [9204390] [500 3000]

Table 1: Subject-specific parameters for CSP and Zero-Training (ZT)
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continuous feedback during trials
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CSP or Zero-Training (block-rand.)
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Figure 2: Sequence of the 11 runs and the two methods used for calculating feedback.

feedback run no.

(BBCI). The availability of a large amount of experimental data is a prerequisite for the extraction
of prototypical CSP filters, since the cluster density in the CSP filter space can only be estimated
reliably with a sufficient number of sample points.

The visual feedback of horizontal cursor control was given in 11 runs of 100 trials each (50 per
class). The runs were grouped in five experimental blocks (see Figure 2). In three runs of block I,
continuous feedback was given by a classifier that had been pre-computed with the Zero-Training
method, see Section 3.1. Data collected in these runs were used to determine spatial filters and a
classifier using the ordinary CSP method as described in Section 3.1 for use in some runs of the
following blocks. Blocks II to V each contained one run with Zero-Training feedback and one run
with CSP feedback. Within a block, the order of the two feedback methods was chosen randomly
and remained unknown to the subject. To represent two different widespread approaches, the
use of continuous visual feedback and no continuous visual feedback alternated regularly between
blocks II to V, as indicated in Figure 2.

During the experiment the subjects were sitting in a comfortable chair in front of a computer
screen. EEG was recorded with 64 Ag/AgCl electrodes, downsampled to 100 Hz, bandpass-filtered
at a subject-specific frequency band (see Table 1) and spatial CSP filters, as described in Section 2,
were applied. Finally, the logarithmic band power of the spatially and temporally filtered signals
was estimated by calculating the logarithm of the squared sum of the filter outputs. These features
were fed into a linear classifier. We used least squares regression (LSR). At a rate of 25 Hz, graded
LSR outputs were calculated for the last 1000 ms, and averaged over 8 samples. A scalar factor
was multiplied to the result, and finally a real-valued bias term was added.

CSP filters are not adapted during the online operation. The system allows for a stable perfor-
mance even for several hours ( [8]), but the bias of the classifier might need to be adjusted. Guided
by our experience with non-stationary bias, a bias adaptation was performed at the beginning of
every run. Therefore, the subject controlled the cursor for 20 trials (10 per class), and the bias
was adapted at the end of this period. The procedure corresponds to the initial calibration of the
bias as presented in [9]. A thorough investigation of this topic can be found in [10].
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3.1 Construction of classifiers

Both approaches, the proposed new Zero-Training approach and the classical CSP use only a small
number of spatial filters (two or three per class) from the total set of filters provided by CSP, as
the restriction to a small number of filters per class is known to be helpful [5].

The Zero-Training filters and classifier

For every subject, we performed the following: for each class and for each historic session of the
subject, we calculate the three filters with the largest Eigenvalues using the CSP algorithm in
Section 2. Depending on the number of past sessions, this procedure creates a larger set of filters.
Then 6 so-called prototype filters are chosen from the set by applying the clustering method
described in [3]. Those filters constitute the first 6 dimensions of the final feature space for the
Zero-Training method. In addition we pool all data from past experiments of the subject and
calculate the ordinary CSP filters on this collection. The resulting CSP filters (3 per class) are
concatenated to the 6 prototype filters gained from the clustering approach.

With this approach, filtering the EEG data of the pooled data set (all past sessions of the
subject) results in a 12-dimensional feature space. Finally, a linear LSR classifier is calculated on
the features. If necessary we could also use nonlinear classification here (cf. [11]).

The ordinary CSP filters and classifier

For each subject, we also build a set of ordinary CSP filters and a corresponding classifier. In
contrast to the Zero-Training solution, they can not be prepared beforehand. Their construction
is done on the fly during a new experimental session and does not involve data from past sessions.
For the training of a regular CSP classifier, we first record three runs of feedback data (with
feedback provided by the output of the Zero-Training classifier), totalling to more than 150 trials
per class. According to the cross-validation error on this data, the optimal frequency band is
selected, as well as some additional parameters like length and starting point of the training time
interval for estimating the band power. The Common Spatial Patterns are computed on this data
and the two spatial filters representing the most extreme eigenvalues are chosen for each class.
Finally a LSR classifier was trained using the preprocessed data from the first three runs.

4 Results

The first three runs of feedback showed that all subjects under study were able to operate the BCI
with the pre-computed classifier at a high accuracy (only 10 trials per class from the current day
were required to update the bias for the classification scenario). For every subject Fig. 3 shows
the percentage of successful (“hit”) trials from each run. After the third run, the subjects could
not know in advance, which one of the two classifiers (Zero-Training or ordinary CSP) was used
for the generation of the feedback.

For subjects zq, al and zk, the CSP feedback performed better than the Zero-Training feedback.
In ay and aw, the feedback performance on the four blocks is very similar with both classifiers,
whereas in subject zp, the Zero-Training feedback even outperformed the CSP feedback.

The performance over all subjects is shown in Fig. 4, where the feedback performance in each
run of the four blocks is collected in a single boxplot for each classifier. The CSP performance is
slightly higher on average, although this difference is not very significant: a Wilcoxon ranking test
yields a significance level of p = 0.05.

Extensive offline tests, that simulated different levels of bias adaptation between runs, showed
that the bias adaptation was indispensable for two of the six subjects and did not degrade the
performance for the other subjects. This result matches with results of previous studies [9, 10].

No systematic difference in performance could be observed between the continuous visual
feedback in blocks IT and IV compared to no continuous visual feedback in blocks IIT and V.
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Figure 3: Feedback results for the six subjects and 100 trials per run. Three initial runs (block
I), were done with the Zero-Training classifier. In following blocks II-V the order of the classifiers
was randomly permuted. The shift of the blue curve relative to the green curve within the shaded
areas indicates the order of the classifiers within each block.
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Figure 4: Feedback performance of CSP and Zero-Training over all subjects and runs.

5 Discussion

The final validation of BCI algorithms can only be provided in online experiments. However,
in contrast to offline evaluation, only one classifier can be applied to the same data set. This
makes a comparison especially hard, since the differences between data sets (high inter-subject
and inter-session variability) add to the variability of the performance. Therefore it is required
to record all data sets under similar conditions. All presented online experiments for one subject
were therefore carried out on the same day. We evaluated the performance of our new classifier
by comparing it to the standard CSP method that is typically used for the classification of band
power features in motor imagery paradigms (see e.g. [2]).

The aim of this study was to construct and evaluate a classification method that can be applied
without a lengthy calibration measurement. We could show, that the features chosen via Zero-
Training are discriminative for the classification task at hand, but also that the bias adaptation
was indispensable for two of the six subjects.

It has been shown in recent publications [5], that the optimization of spatial and temporal
parameters can result in a significantly increased classification accuracy. For the training of the
Zero-Training classifier however, some of the parameters were not specifically optimized, such as
the frequency band, the training window for parameter estimation on the previous sessions, and
the movement type combination used for the feedback. These parameters were fixed beforehand.
In contrary to this, the subject-dependent parameters of the standard CSP method were selected
individually based on the same day’s training data. We are fully aware, that this comparison
strategy may have resulted in a slight advantage in favor of the standard CSP method, but we
accepted this advantage in order to have a maximally strong adversary method available for the
comparison with our new Zero-Training method.
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6 Conclusion

In this contribution we went one step further towards the goal of avoiding subject training al-
together and proposed novel algorithms to transfer knowledge between BCI sessions. Our study
shows that the results from prior off-line analysis, successfully carry over to the present set of
online experiments, where subjects use decoders that were constructed from past data instead
of calibrating anew. Our findings thus show that information from prior session can indeed be
used profitably for constructing better individual mental state decoders. Note that the loss in
performance (bitrate) is negligible when contrasted to employing a fully calibrated decoder (after
30 minutes of training) in a blind protocol.

Our work opens therefore a highly promising path for the ultimate goal of Zero-Training.
While the proposed methods work well for session to session transfer for an individual subject, it
remains still open, whether inter-subject information could also be successfully transferred. Ideally
a data base consisting of individualized decoders could be appropriately combined as an ensemble
decoder and thus help to avoid training completely. In combination with dry electrodes, Zero-
Training would again provide a large step forward when striving towards more general applicability
of BCI technology for daily use in man machine interaction.
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Abstract

Two important issues for Brain-Computer Interface-based (BCI) communication are the
information transfer rate and user training. While the former needs to be maximized, a
minimization of the latter is mandatory to enhance usability and practicality. In this pa-
per we analyze the relationship between communication speed and classification accuracy of
electroencephalographic (EEG) signals recorded during cue-guided left hand and right hand
motor imagery. The methods of common spatial patterns (CSP) and Fisher’s linear discrimi-
nant analysis classifier (LDA) were applied off-line to EEG recordings of sixty-nine (N = 69)
naive subjects. The results suggest that 2000 ms of EEG data is required to get the best
possible discrimination (average accuracy of about 80 %) for the majority of user (61 %).

1 Introduction

A Brain-Computer Interface (BCI) allows users to interact with the surrounding environment
without the need of any peripheral nerve or muscle activity. Compared to communication aids
operated by muscular activity, the information transfer rate (ITR) of a BCI is low. Furthermore,
to gain direct brain-computer control, both the human brain and the machine need training. The
former to reliably generate distinctive brain patterns and the later to detect them. Depending on
the experimental strategy, such a training may require hours or, when working with patients, even
days or months. To increase the user acceptance it is therefore crucial to increase the ITR and at
the same time to reduce the training period.

The Graz-BCI is based on the single-trial classification and detection of transient oscillatory
changes, modulated by motor imagery (MI), in the ongoing electroencephalogram (EEG) [1]. For
such a MI-based system one obvious question related to the above mentioned issues is “How much
time is required to induce MI modulated brain patterns?” or in other words “How much time is
required to reliably discriminate between different mental MI tasks?” The aim of this paper is
to research the relationship between classification speed and classification accuracy of MI induced
brain patterns in EEG signals. Results of an extensive off-line analysis based on cue-guided trials
recorded from sixty-nine (N = 69) naive subjects during left hand and right hand MI are presented.

2 Methods

2.1 Subjects and signal recording

Sixty-nine naive volunteers between 19 and 51 years old (26 + 5 years, 32 female and 37 male)
participated in this study. The volunteers were right handed, had normal or corrected to normal
vision and and gave informed consent after the experimental procedure had been explained to
them.
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Figure 1: (a) EEG electrode placement. Reference was placed on the left and ground on the right
mastoid. (b) Timing of the experimental paradigm used to collect motor imagery related EEG
signals. (c) Definition of examined segments.

Each volunteer was seated in an armchair placed about 0.80 m in front of a computer monitor.
Nine sintered Ag/AgCl electrodes were placed over sensorimotor areas. The electrode locations
included the position C3, Cz and C4, as well as positions 3.5 cm anterior and posterior to these
(Figure 1(a)). The EEG was analog band pass filtered between 0.5 and 100 Hz (60 dB/decade,
dynamic range £100 1V, notch at 50 Hz) and sampled at a rate of 250 Hz.

2.2 Experimental paradigm

Following a fixed repetitive time scheme, subjects had to imagine left hand and right hand move-
ments. Each trial started with the presentation of a blank screen. After two seconds a fixation
cross was displayed in the middle of the screen and an acoustical warning tone was presented.
Subjects were told to fixate the cross, avoiding eyes and body movements. One second later, an
arrow (cue) pointing to the left (left hand) or to the right (right hand) specified the motor imagery
task to perform. Volunteers had to perform motor imagery repetitively for 4s, until the screen
content was erased. After a random inter-trial interval (0-2s) introduced after second 8 the the
next trial started (Figure 1(b)). Each training run consisted of 40 trials with 20 trials per class
(left /right) presented in randomized order. Five training runs were recorded for each subject.

2.3 Data analysis

All trials were visually inspected for EEG artifacts and trials containing (task-related) EMG or
EOG activity were omitted from further analysis. The mean (median) + SD (standard deviation)
number of trials left for analysis were 81.0(85.0) £ 11.6 and 80.8 (83.0) +£12.3 for left hand and
right hand motor imagery, respectively.

In order to identify the optimal time interval needed to induce Ml-related EEG rhythms and
thus achieving best possible discrimination between left hand and right hand MI, the method of
Common Spatial Patterns (CSP) was applied. CSP designs spatial filters in such a way that the
variances of the filtered time series are optimal (in the least squares sense) for discrimination. For
more details refer to [2, 3, 4]. The recorded EEG signal was band pass filtered between 8 and
30Hz (5" order Butterworth) and segments Sll)%ns of the length len were extracted with the same
time lag pos to the begin of a trial (Figure 1(c)). For the analysis the time lag pos was varied from
pos = 2.0s to pos = 9.0s in steps of Apos = 0.125s. For each pos the segment length len was
changed from len = 250 ms to len = 4000 ms in steps of Alen = 250 ms. Independent CSP analyses
were performed for each combination (pos,len) by using a 10 x 10-fold cross validation statistic.
This means that 90 % of the segements were used to compute the CSP projection matrix W. The
m = 2 projections resulting form the m largest and m smallest eigenvalues were retained (Wa,,),
the logarithm of the normalized variance (log NV'®") over the segment length len was computed and
a Fisher’s linear discriminant analysis (LDA) [5] classifier was trained. The computed projection
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Figure 2: (a) Individual (gray), mean+SD (bold) and median (dotted) curves of the classification
accuracy for different segment window lengths. (b) Accuracies of subjects which performed better
than random for at least 2s out of the 4 s of motor imagery (3.0,...,7.0s). (¢) Number of subjects
over time which were better than the individual random level.

matrix Wa,, was applied to the remaining 10 % of the segments, log NV'®® was computed and
classified. The performance for each Sps1en Was computed by averaging the individual accuracies.

3 Results

Exemplarily the discriminative power between left hand and right hand MI as function of time
for four different window lengths len are plotted in Figure 2(a). Individual results, as well as the
mean + SD (standard deviation) and median curves are shown. Independently of the segment
length len, the maximum average classification accuracy over time is about 70 %. Furthermore,
one can see that for five subects the performance was higher than average independently of len.
Table 1 summarizes results for subjects (column 2) which maximum accuracy within the MI-
period was higher than the chance classification level (computed according [6] and a significance
level a = 0.01). Most subjects, i.e., 59 out of 69 achieved accuracies better than random when
using a segment length of 1250 ms. Highest accuracies were computed by using a 2500 ms window.
The average level of chance classification for all subjects was approximately 61 %.

Figure 2(b) shows only the curves of subjects which performance was better than random for
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Accuracy pos
len N (%) Mean (Median) £ SD  StdError Mean (Median) £ SD
250 55 (80) 74.81 (73.60) + 8.39 1.13 4.323 (4.000) £ 0.791
500 58 (84) 76.09 (75.53) £ 9.34 1.23 4.373 (4. 125) + 0.609
750 58 (84)  76.78 (75.93) £ 9.45 1.24 4.666 (4.375) £ 0.718
1000 58 (84)  77.08 (76.77) £ 9.62 1.26 4.957 (4.688) £+ 0.727
1250 59 (86) 77.04 (76.61) £ 9.84 1.28 5.121 (4.875) £ 0.702
1500 57 (83)  77.88 (77.06) % 9.62 1.27  5.338 (5.125) & 0.686
1750 57 (83) 77.88 (75.84) + 9.64 1.28 5.540 (5.375) £ 0.610
2000 55 (80)  78.47 (75.76) + 9.58 1.29 5.743 (5.625) £ 0.623
2250 55 (80)  77.64 (76.20) £10.00 1.35 5.828 (5.875) + 0.677
2500 53 (77) 79.05 (78.47) £+ 9.25 1.27 6.061 (6.125) £ 0.466
2750 54 (78)  78.67 (78.02) £ 9.47 120 6.229 (6.375) £ 0.658
3000 53 (77) 78.54 (78.52) + 9.77 1.34 6.377 (6.500) + 0.560
3250 55 (80)  77.89 (78.29) +£10.17 1.37 6.464 (6.750) £ 0.803
3500 54 (78)  77.49 (77.07) £10.27 1.40 6.600 (6.875) £+ 0.810
3750 51 (74)  76.96 (77.23) £ 9.73 1.36 6.792 (7.000) £ 0.463
4000 51 (74)  75.40 (75.78) £ 9.48 1.33 6.664 (6.875) + 0.497

Table 1: Mean (median) £ SD of the maximum accuracies (in %) which are better than the
subject-specific chance classification level. Additionally the standard error (StdError) and mean
(median) £+ SD time (in s) are presented.

at least 2s out of the 4-s MI period. Since subjects were told to perform continuous MI for 4s
this criteria reflects the task to perform better than single peak values. Table 2 summarizes the
mean peak accuracies of the curves and corresponding time for all segment lengths. Most subjects,
i.e. 42 out of 69 (61 %), achieved best results by using a 2000/2250 ms time window. The last
column represents the percentage of time during MI (from 3.0s to 7.0s) in which subjects were
better than random. Figure 2(c) illustrates the underlying distribution. The highest value was
achieved by using a 1250 ms time window.

4 Discussion

The aim of the study was to research the relationship between speed and accuracy of MI-based
BCIs. The method of CSP was selected because default parameters achieve satisfying results over
subjects [3] without the need of computational demanding optimization. Additional channels or
user-specific optimization, however, potentially increase the classification accuracy [4].

Interesting and already demonstrated is the early classification peak about one second after
cue-onset. This peak, clearly visible in Figure 2(a) for segment length len = 250 ms, results very
likely from an early contralateral dominant event-related desynchronization (ERD) at electrode
positions overlaying the hand representation area. Miiller-Gerking et al. [2] reported such an early
ERD in a delayed movement task and Pfurtscheller and Neuper [7] during right vs. left hand motor
imagery.

Average classification accuracies of approximately 70 % (Figure 2(a)) give evidence that ba-
sically each of the analyzed segment lengths can be used to operate a BCI. Longer segments
obviously delay the time of highest classification which is varying from about 1s to approx. 4.5s
after cue-onset. The individual curves show that only a minority of subjects (< 10 %) are able to
achieve very good control (about 90 %) from the very beginning and during the whole MI-period.

From Table 2 and the mean curves in Figure 2(b) it is visible that the time window needed
to obtain a good discrimination, i.e., about 80 %, is best for most subjects by analyzing EEG
segments of 1250 ms to 2500 ms length. Table 2 suggests that the best choice in terms of speed,
accuracy and number of subjects is a window length of 2000 ms: Forty-two subjects (61 %) achieved
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Accuracy
len N (%) Mean (Median) £ SD  StdError  pos > RND
250 16 (23)  79.90 (77.86) + 9.46 237 4000 3211
500 28 (41)  77.69 (76.78) + 9.71 1.84 4125  39.90
750 35 (51)  78.36 (78.46) + 9.35 158 4375 43.89
1000 36 (52)  79.15 (78.76) + 9.13 152 4.625  45.97
1250 39 (57)  79.05 (78.65) % 9.42 151  4.875  47.46
1500 40 (58)  79.87 (79.46) & 9.17 145 5125  47.01
1750 40 (58)  80.24 (78.83) + 9.01 1.42 5.375 46.06
2000 42 (61)  79.92 (78.23) £ 8.80 1.36 5.625 45.52
2250 42 (61) 80.01 (79.32) £ 9.34 1.44 5.875 44.75
2500 40 (58)  80.84 (81.51) + 9.15 145 6125  43.93
2750 34 (49)  80.80 (80.91) + 9.45 1.62 6375 42.39
3000 32 (46) 81.65 (82.22) £ 9.18 1.62 6.500 41.03
3250 30 (43) 81.35(83.32) £+ 10.55 1.93 6.875 40.04
3500 28 (41) 82.00 (82.12) £ 10.01  1.89  7.000  37.77
3750 24 (35) 82.22 (81.69) £+ 9.78 2.00 7.000 35.82
4000 22 (32)  80.95 (78.91) + 9.96 2.12 7.000 33.74

Table 2: Mean (median) + SD classification accuracy (in %), standard error (StdError in %) and
time (in s) are reported. Only subject which performed better than random in < 2s out of the 4-s
motor imagery period were considered (N). Column RND shows the percentage (over all subjects)
within the 4-s MI period in which the performance was higher than random.

an average classification accuracy of about 80 % approximately 2.6 s after cue-onset.
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Abstract

Classification of MEG brain signals has been used in the past to drive brain-computer
interfaces with healthy subjects. We present a multi-class study with offline results. We
investigate which combinations of classes are suitable for classification and show that this
result is subject-specific, although a general trend to particular combinations of patterns
exists. For the current set of offline results, information transfer rate increases in eight of ten
subjects going from 2-class to 3-class communication.

1 Introduction

Brain-Computer Interface (BCI) research is largely concerned with increasing the communication
speed, or bit rate. Attempts to increase the bit rate of BCIs based on spontaneous brain activity
by increasing the number of classification tasks naturally suffer from a higher misclassification rate.
In an experiment with 10 subjects and 7 classification tasks, we find the best trade-off concerning
the number of tasks for each subject.

High signal quality and sensor resolution inspired us to use MEG. Other BCIs based on MEG
using binary classification have already been presented [1, 2]. The work presented here is a multi-
class approach.

An extensive multi-class investigation is performed in [3]. A 3-class asynchronous BCI using
three motor tasks for spelling was shown to produce an average of 1.99 letters/minute [4], but is
difficult to compare with synchronous BCIs. A study using two motor and two non-motor imagery
tasks concludes that non-motor task pairs can be discriminated easier than others [5].

The following sections explain our experimental setup and artifact analysis. Thereafter, a
summary of the results obtained so far is given. The aim of this work is to find combinations of
imagination tasks particularly well-suited to multi-class BClIs.

2 Methods

2.1 Experimental paradigm and data acquisition

Data was recorded with the BCI2000 software [6] at a sampling rate of 586 Hz from 10 subjects
aged between 24 and 34 on two different days for each subject. Each of the two sessions included
3 runs of data acquisition, with 7 imagination tasks being presented in a block-randomised order.
Cues were given in textual form on a screen positioned in front of the seated subject. Subjects were
instructed to focus on a cross in the centre of the screen during the imagination phase to prevent
movement artifacts. The trial structure is as follows: display of a fixation cross (“get ready”, 0.7s)
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Category Class Task Description

Motor 1 Foot Rotate both feet

Motor 2 Left hand Open and close hand in repetitive motions

Motor 3 Right hand ~ Open and close hand in repetitive motions

Motor 4 Tongue Lick ice-cream with tongue in repetitive motions
Non-motor ) Subtraction  Start at 99 and repeatedly subtract 7 from answer.

Do not visualise numbers, do the calculation each
time. Start at a new number once the sequence has
been memorised too well.

Non-motor 6 Navigation =~ Walk around a well-known location (e.g. the house
you grew up in). Recognise objects in the rooms.

Non-motor 7 Visual scene Imagine a green scene, e.g. a lawn or green land-
scape.

Table 1: Categorisation of the imagination tasks.

Subject BCI experience EMG measured Handedness Hardest task

A 0 Session 1 RH 5
B 0 Session 2 RH -
C 0 - RH -
D 4 Session 1 RH 7
E 0 Session 2 RH 6
F 0 Session 1 RH 7
G 0 Session 2 RH 7
H 0 — RH —
I >5 Session 1 RH —
J 0 Session 2 LH 5,6

Table 2: Subject details. The second column indicates the number of times the subject had
participated in previous BCI experiments. The “Hardest task” column lists the task that the
subject reported as the most difficult to perform.

— text cue overlayed on fixation cross (“prepare for task”, 2s) — fixation cross (“mental imagery”,
4s) — blank screen (“inter-trial interval”, 2s). Due to the exploratory nature of this study, no
feedback was given. A 275-channel whole-head MEG-system (VSM MedTech Ltd.) was used.

We chose 7 imagination tasks as a trade-off between high number of classes (to test which
tasks work best for the participants) and being able to collect enough data for each task to train a
classifier. With 7 tasks we were able to collect 102 trials per class and keep each recording session
around two hours. Each of the three runs per session lasted 17 minutes, enough to make most
subjects feel tired after every run. A description of the imagination tasks is given in Table 1. As
suggested in [5], functional motor tasks (some related to a subject’s specific skills) were endorsed
to make the task more interesting.

Some subject-specific details are given in Table 2. The only female subject was F. Note the high
number of first-time BCI users. EMG was measured for 8 subjects in only one of the two recording
sessions due to the increased preparation time. Head position was measured before each run. To
recreate the previous session’s or run’s head position, the subject was given the opportunity to
reposition his/her head according to an online head position display (CTF Systems).

2.2 Artifact rejection

Artifacts could be a major contributor to the fact that healthy subjects mostly achieve higher
bit rates than patients when using BCIs. We precluded the outer MEG channels close to eyes
and neck muscles and focussed on the inner 168 channels. Additionally, we investigated the effect
that trials containing electromyographic (EMG) hand movement artifacts had on classification
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Subject | Total perrun | 1| 2 3| 4 5 6 7 Total
A 20 11 21| 8| 4 8| 7 8 8 9 52

B 7 14 3 3 4 2 4 2 4 5 24

D 7 9 5 0|16 2 0 2 1 0 21

E 1 6 8 0| 2 2] 3 3 3 2 15

F 1 1 6/ 1 0 o] 1 O 3 3 8

G 4 7 5/ 11 0 1] 3 5 6 0 16

I 7 16 9| 7| 4 5| 2 7 2 5 32

J 13 12 T 7| 2 4] 1 5 5 8 32
Mean | 60 76 64 | 27|32 24|21 32 32 32 200

Table 3: Number of artifacts, listed separately for runs 1-3 of the EMG session (columns 2-4) and
for each task. Note the tasks 2 and 3 are the hand motor imagery tasks.

performance.

In the sessions shown in Table 2, one pair of EMG electrodes was placed on each forearm on
either the lateral or medial antibrachial muscle. The EMG time series was high-pass filtered at
0.5 Hz.

To find trials containing EMG artifacts, we used a threshold-based algorithm on the EMG
time series. Because the noise level of the EMG signal varied with time (due to stress on electrode
cables and other effects), we used a sliding window to determine the noise level for each trial
separately and standardised it accordingly. The window size was 250 samples (0.43 s) and the step
size was 50 samples. Each window’s score was computed as the average of the 10 highest peaks.
The window with the lowest value was assumed to be free of artifacts and therefore used as noise
level for the scaling. If the maximum peak in the standardised signal of a particular trial was
further than n standard deviations from the mean, the trial was labelled as an artifact. After a
visual inspection of some artifacts, n was set to 3 for most subjects.

The contaminated trials found by this method are listed in Table 3. Refer to Table 2 to see in
which sessions the EMG was measured.

2.3 Feature extraction and classification

Multiple cross-validation runs were done with the following features extracted from the data: Au-
toregressive (AR) coefficients (model order 2) exclusively, spectral bandpower features exclusively,
phase locking features exclusively, AR coefficients combined with bandpower features, AR coef-
ficients combined with phase locking features, bandpower features combined with phase locking
features.

The feature selection algorithm worked independently of the type of feature in those validations
where multiple feature types were used. Using all the 168 inner channels, there were 336 AR
coefficients in total. The mean number of features selected was 7.7 (£5.4) in the 2-class case and
44 (£27) in the 3-class case.

The best results were obtained by using solely the AR features and will be presented in the
next section.

We performed a nested cross-validation (CV) with a feature selection in the inner loop (re-
cursive feature elimination, 10-fold CV) and 5 outer folds, similar to the method described in [1].
The outer fold consisted of a random split of the data into 80 % train and 20 % test set. To obtain
3-class results, we used the MATLAB spider toolbox [7] implementation of the one-vs-all SVM
with ridge regularisation.

3 Results

The information transfer rate (ITR) measured in bits/minute (we use the Wolpaw bit rate [8]) for
all the binary combinations of the 7 classification tasks are shown in Figure 1. It is interesting
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that the ITR is three times higher after feature selection.
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Figure 1: ITR in bits/minute (mean over 10 subjects) for each 2-class combination shown for all
features and a feature subset. The error bars depict standard error. Bars are labelled with the
class combination.

Subject-specific results for the 3-class and 2-class error estimates can be seen in Table 4. The
column description “Inner channels” refers to the fact that we did not include the outermost MEG
sensors. We do not expect the outer MEG sensors to contribute class-discriminative information,
except possibly for artifacts, which we wanted to preclude anyway. The feature selection is needed
for the online case, where processing speed is important.

3-class 3-class 2-class 2-class
Inner channels Subset of features Inner channels Subset of features

Subject | Error Comb. | Error Comb. ITR | Error Comb. | Error Comb. ITR
A 0.34 1-5-6 | 0.40 356 1.50 | 0.19 3-6 0.23 3-6 1.53
B 0.16 2-5-6 | 0.23 1-2-6  4.00 | 0.08 26 0.11 3-5 3.37
C 0.29 1-5-7 | 0.29 1-5-7 298 | 0.15 2-5 0.21 2-5 1.77
D 0.32 2-3-6 | 0.39 3-5-6 1.61 | 0.22 3-5 0.24 3-5 1.41
E 0.25 2-5-7 | 0.23 2-5-6  3.94 | 0.10 1-5 0.14 2-5 2.90
F 0.23 4-5-6 | 0.23 1-5-6  3.94 | 0.10 3-5 0.15 3-5 2.65
G 0.16 1-5-6 | 0.21 456 4.39 | 0.06 2-5 0.10 2-5 3.68
H 0.16 1-5-6 | 0.20 2-5-6  4.70 | 0.05 3-5 0.09 5-7 3.90

I 0.48 2-3-5 | 0.50 3-5-6 0.59 | 0.26 3-5 0.31 2-5 0.75

J 0.09 3-5-6 | 0.12 3-5-6  6.47 | 0.03 3-5 0.06 3-6 4.64
Mean | 0.25 0.28 3.41 | 0.12 0.16 2.66

Table 4: Results for the best combination of three classes per subject, in terms of classification
error (and ITR when applying feature selection). The error estimate is by 5-fold cross-validation.
The 2-class results are given as a comparison.

Removal of artifact-trials increased the offline classification error to 0.11 (subject J) and 0.35
(subject D) using all inner channels, and to 0.125 (subject J) and 0.41 (subject D) with feature
selection.

A comparison with other multi-class BCI results is shown in Table 5. The results shown for
our study are after feature selection (which we require for online operation of the BCI). The error
using all inner channels is slighty lower.
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ITR: bits per trial ITR: bits per min
Study Classes | worst best mean | worst best mean | N
Dornhege et al. [3] 3 0.5 1.15 0.78 | 6.7 153 1032 | 5
Dornhege et al., feature comb. 3 0.6 1.19 092 | 8.0 15.9 12.2 5
This study 3 0.09 095 0.5 0.59 647 341 10

Table 5: Comparison of 3-class results. The three columns for the bit rates are worst/best/mean
result of the subject population, whose size is given in the final column. Each subject’s best
combination is regarded.

4 Discussion

The analysis of artifacts showed that, with the exception of subject D, the EMG hand movement
artifacts were evenly distributed across all tasks. This implies that hand movements did not
unfairly bias the classifier during the offline analysis. However, we cannot rule out the possiblity
that eye or head movement artifacts could have influenced the result. Furthermore, there is no
guarantee that the subject did not move his/her tongue or feet during the recording.

The error estimates using feature selection are higher than without feature selection in the
2-class as well as the 3-class setting (Table 4). Feature selection is needed for the online BCI to
reduce the computational load, especially if combinations of various feature types are to be used.
The ITR estimates with feature selection are higher in the 3-class setting for all except the worst
two subjects. An online spelling session was performed with one subject up to now.

The task combinations shown in Table 4 are the best on a per-subject basis. It is interesting
to see that for most subjects, a motor task combined with the two non-motor tasks “subtraction”
and “navigation” was the best combination (even though subjects reported difficulties with the
non-motor mental tasks, see Table 2). This might have to do with the fact that cortical activation
for these tasks is spatially far apart - we plan to investigate this in more detail. The best 2-class
pairs were “subtraction” together with a motor task in eight of ten cases. This is in contrast
to [5], where the most discriminable pair consisted of two non-motor tasks. The difference could
be explained by the fact that (1) we did not include the “auditory” task, or (2) we allowed
functional motor tasks (subjects A, B, F, H, J used functional motor tasks for the hand imagery).
Our results suggest that some patterns of class combinations exist that generally lead to a higher
discriminability (motor/non-motor task combination).

We acknowledge the fact that measuring MEG in people from the current target group for
BClIs, namely paralyzed patients, is expensive and time-consuming. However, the focus of this
study was to explore the multi-class paradigm. Furthermore, future BCIs may be based on a
contactless measuring technique similar to MEG.

5 Conclusion

The bit rates found for the 3-class setting presented in this study are an improvement over the
2-class results, yet must still be compared with other studies. Additionally, a comparison with
existing 3-class BCIs based on motor imagery alone has to be undertaken. This could show whether
there is an advantage to using non-motor tasks combined with motor tasks, as suggested by the
results presented here.

We found that it is possible to select a subset from a larger group of mental tasks individually
to obtain a higher bit rate for each BCI user. In the offline analysis, eight subjects benefit by
using a 3-task combination instead of binary decision tasks. The mean improvement in the ITR
for these eight subjects is 32 % when using 3 classes instead of 2. This motivates us to continue
measurements where the subjects spell a word by selecting letters from a ternary decision tree.

Acknowledgments: The authors thank J. Hill for providing analysis software and M. Spiiler for
his assistance in preparing the results and programming the online interface.

195



4th Int. BCI Workshop & Training Course 2008

References

[1]

T. N. Lal, M. Schroder, N. J. Hill, H. Preissl, T. Hinterberger, J. Mellinger, M. Bogdan,
W. Rosenstiel, T. Hofmann, N. Birbaumer, and B. Schélkopf. A brain computer interface with
online feedback based on magnetoencephalography. In ICML, pages 465-472, 2005.

J. Mellinger, G. Schalk, C. Braun, H. Preissl, W. Rosenstiel, N. Birbaumer, and A. Kiibler.
An MEG-based Brain-Computer Interface (BCI). Neuroimage, 36:581-593, 2007.

G. Dornhege, B. Blankertz, G. Curio, and K.-R. Miiller. Boosting bit rates in non-invasive
EEG single-trial classifications by feature combination and multi-class paradigms. IEEFE Trans.
Biomed. Eng., 51(6):993-1002, 2004.

R. Scherer, G. R. Miiller, C. Neuper, B. Graimann, and G. Pfurtscheller. An asynchronously
controlled EEG-based virtual keyboard: Improvement of the spelling rate. IEEE Trans.
Biomed. Eng., 51(6), 2004.

E. Curran, P. Sykacek, M. Stokes, S. Roberts, W. Penny, 1. Johnsrude, and A. Owen. Cognitive
tasks for driving a brain computer interfacing system: a pilot study. IEEE Trans. Rehabil.
Eng., 12(1), 2003.

G. Schalk, D. McFarland, T. Hinterberger, N. Birbaumer, and J. Wolpaw. BCI2000: a general-
purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng., 51:1034-1043,
2004.

J. Weston, A. Elisseeff, G. Bakir, and F. Sinz. The spider machine learning toolbox.
http://www.kyb.mpg.de/bs/people/spider/, 2005.

J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk,
E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan. Brain-computer interface
technology: A review of the first international meeting. IEEE Trans. Rehabil. Eng., 8:164—173,
2000.

196



4th Int. BCI Workshop & Training Course 2008

Simultaneous real-time detection of motor imagery and
error-related potentials for improved BCI accuracy

P. W. Ferrez!? and J. del R. Millan'+?

'IDIAP Research Institute, Martigny, Switzerland
2Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

{pierre.ferrez, jose.millan}@idiap.ch

Abstract

Brain-computer interfaces (BClIs), as any other interaction modality based on physiological
signals and body channels (e. g., muscular activity, speech and gestures), are prone to errors
in the recognition of subject’s intent. An elegant approach to improve the accuracy of BCls
consists of a verification procedure directly based on the presence of error-related potentials
(ErrP) in the EEG recorded right after the occurrence of an error. Two healthy volunteer
subjects with little prior BCI experience participated in a real-time human-robot interaction
experiment where they were asked to mentally move a cursor towards a target that can be
reached within a few steps using motor imagery. These experiments confirm the previously
reported presence of a new kind of ErrP. These “Interaction ErrP” exhibit a first sharp
negative peak followed by a positive peak and a second broader negative peak (~270, ~330
and ~430ms after the feedback, respectively). The objective of the present study was to
simultaneously detect erroneous responses of the interface and classifying motor imagery at
the level of single trials in a real-time system. We have achieved online an average recognition
rate of correct and erroneous single trials of 84.7% and 78.8 %, respectively. The off-line
post-analysis showed that the BCI error rate without the integration of ErrP detection is
around 30 % for both subjects. However, when integrating ErrP detection, the average online
error rate drops to 7%, multiplying the bit rate by more than 3. These results show that
it’s possible to simultaneously extract in real-time useful information for mental control to
operate a brain-actuated device as well as correlates of cognitive states such as error-related
potentials to improve the quality of the brain-computer interaction.

1 Introduction

People with severe motor disabilities (spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS),
etc.) need alternative ways of communication and control for their everyday life. Over the past
two decades, numerous studies proposed electroencephalogram (EEG) activity for direct brain-
computer interaction [1, 2]. EEG-based brain-computer interfaces (BCIs) provide disabled people
with new tools for control and communication and are promising alternatives to invasive meth-
ods. However, as any other interaction modality based on physiological signals and body channels
(e. g., muscular activity, speech and gestures), BCIs are prone to errors in the recognition of sub-
ject’s intent, and those errors can be frequent. Indeed, even well-trained subjects rarely reach
100 % of success. In contrast to other interaction modalities, a unique feature of the “brain chan-
nel” is that it conveys both information from which we can derive mental control commands to
operate a brain-actuated device as well as information about cognitive states that are crucial for
a purposeful interaction, all this on the millisecond range. One of these states is the awareness
of erroneous responses, which a number of groups have recently started to explore as a way to
improve the performance of BCIs [3, 4, 5, 6, 7].

In particular, [6] recently reported the presence of error-related potentials (ErrP) elicited by erro-
neous feedback provided by a BCI during the recognition of the subject’s intent. In this off-line
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Figure 1: Timing of the protocol.

study, six subjects were asked to mentally drive a cursor towards targets that can be reached
within a few steps using motor imagery. However, since the subjects had no prior BCI experience,
the system was not moving the cursor following the mental commands of the subject, but with a
20 % error rate, to avoid random or totally biased behavior of the cursor. The main components
of these “Interaction ErrP” are a negative peak 290 ms after the feedback, a positive peak 350 ms
after the feedback and a second broader negative peak 470 ms after the feedback. This study shows
the feasibility of simultaneously and satisfactorily detecting erroneous responses of the interface
and classifying motor imagery for device control at the level of single trials. Indeed, the recognition
rate of correct and erroneous single trials are 81.8% and 76.2 %, respectively while the average
recognition rate of the subject’s intent is 73.1%. Finally, the average theoretical increase of the
BCI performance (in terms of bit rate) when integrating ErrP detection is over 100 %.

The objective of the present study is to simultaneously detect erroneous responses of the interface
and classifying motor imagery at the level of single trials in a real-time BCI system. In this paper
we report new experimental results recorded with two healthy volunteer subjects with little prior
BCI experience during a simple real-time human-robot interaction that confirm similar results
obtained off-line [6], as explained above. We have achieved online an average recognition rate of
correct and erroneous single trials of 84.7 % and 78.8 %, respectively. The off-line post-analysis
showed that the BCI error rate without the integration of ErrP detection is around 30 % for both
subjects. However, when integrating ErrP detection, the average online error rate drops to 7%,
multiplying the bit rate by more than 3. These results confirm that it’s possible to simultaneously
extract in real-time useful information for mental control to operate a brain-actuated device as
well as correlates of cognitive states such as error-related potentials to improve the quality of the
brain-computer interaction.

2 Materials and methods

To test the ability of BCI users to concentrate simultaneously on a mental task and to be aware
of the BCI feedback at each single trial, we have simulated a human-robot interaction task where
the subject has to bring the robot to targets located 3 steps away, either to the left or to the right.
This virtual interaction is implemented by means of a green square cursor that can appear on any
of 20 positions along a horizontal line. The goal with this protocol is to bring the cursor to a
target that randomly appears either on the left (blue square) or on the right (red square) of the
cursor. The target is no further away than 3 positions from the cursor (symbolizing the current
position of the robot). This prevents the subject from habituation to one of the stimuli since the
cursor reaches the target within a small number of steps. Each target corresponds to a specific
mental task. Subjects were asked to imagine a movement of their left hand for the left target and
to imagine a movement of their right foot for the right target.
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Subject 1 (Cz, C2, C4 and 12Hz, 14 Hz)
I II 111 IV | Average SD

ErrP detection Error trials [%)] 74.8 83.7 76.1 67.5 75.5 6.6
Correct trials [%] | 88.3 821 91.1 81.6 85.8 4.7

. Error rate [%] 33.0 275 343 39.0 33.5 4.7

BCL without ExrrP | g o ction rate [%] | 0.0 0.0 0.0 0.0 0.0 0.0
. Error rate [%] 83 45 82 127 8.4 3.4

BCL with ErtP | g iection rate [%] | 325 360 320 37.6 | 34.5 2.7
BpT initial 0.09 0.15 0.07 0.04 0.09 0.05

Performance BpT final 0.31 0.41 0.32 0.17 0.30 0.10
Increase [%] 244 173 357 325 275 83

Subject 2 (Cz, C4, CP4 and 12 Hz, 24 Hz, 26 Hz)
I II IIT IV | Average SD

ErrP detection Error trials [%)] 94.8 76.6 76.5 80.2 82.0 8.7
Correct trials [%] | 68.0 885 86.1 914 83.5 10.6

. Error rate [%)] 31.3 30.2 311 292 30.5 1.0

BCL without ExrP | p o ction rate [%] | 0.0 00 0.0 00 0.0 0.0
. Error rate [%)] 16 76 76 58 5.7 2.8

BCL with BrrP | g jection rate [%] | 51.6 325 331 295 | 36.7  10.1
BpT initial 0.10 0.12 0.11 0.13 0.12 0.01

Performance BpT final 0.38 0.36 0.33 042 0.37 0.04
Increase [%)] 280 200 200 223 226 38

Table 1: Classification rates and performance increase. For both subjects, this table presents
the classification rates for ErrP detection (error and correct single trials) for the four groups of
recordings and for the average of them. It also shows the error rates and the rejection rates for
motor imagery, with and without ErrP detection. Finally the increase in performance is also
shown. The ErrP detection rate is around 80 % and the error rate of the standard BCI is around
30 %. When integrating ErrP detection, this error rate is below 10 % with an acceptable rejection
rate of 30-35%. Finally, for both subjects the bit rate is multiplied by more than 3 when using
ErrP detection.

After the presentation of the target, the subject focuses on the corresponding mental task until
the cursor moves. The system uses a 1 second window to determine the subject’s intent. Then
the system uses a 400 ms window to detect the presence of ErrP just after the presentation of the
feedback (movement of the cursor). If no ErrP are detected, nothing happens and about 600 ms
later, the system starts to accumulate data for the next classification of motor imagery. If ErrP are
detected, the movement is canceled, and again after about 600 ms the system starts accumulating
data for the next step. Figure 1 illustrates this timing. At ¢ = 0, the target is 3 steps on the right
of the cursor. The subject is therefore imagining a movement of his right foot. At ¢ = 1 second,
the system makes a mistake and moves the cursor to the left while the subject was imagining a
movement of his right foot. At ¢ = 1.4 second, the system detects ErrP and cancels the wrong
movement. It is to note that the system is only canceling the movement, not replacing the wrong
command (left) by the opposite one (right). After a delay of about 600ms, the system starts
accumulating data for the next motor imagery classification, i.e. for the next single trial.

In any case, the cursor is moving on average every 2 seconds, and some movements are canceled
if ExrrP are detected. When the cursor reached a target, it briefly turned from green to light green
and then a new target is randomly selected by the system. If the cursor didn’t reach the target
after 10 steps, a new target is selected. Two healthy volunteer subjects performed 10 sessions of
15 targets (~ 90 single trials per session) on 2 different days, the delay between the two days of
measurements was about 2 weeks. The 20 sessions were split into 4 groups of 5. For the first
day (Groups I & II) we used classifiers built with data recorded during a previous off-line study
described above [6], and for the second day (Groups III & IV) we used the data of the first day
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to build classifiers. This rule applies for both motor imagery classification and for ErrP detection.
The data acquisition and processing as well as the classification procedures can be found in [6].
For both subjects we used a 150 ms window starting 250 ms after the feedback for channels FCz
and Cz for ErrP detection. For motor imagery classification, we used EEG channels Cz, C2, C4
and frequencies 12 Hz, 14 Hz for Subject I and EEG channels Cz, C4, CP4 and frequencies 12 Hz,
24 Hz, 26 Hz for Subject II.

3 Results

3.1 Performances

For both subjects, Table 2 shows the classification rates for ErrP detection (error and correct
single trials) for the four groups of recordings and for the average of them. It also shows the error
rates and the rejection rates for motor imagery, with and without ErrP detection. Finally the
increase in performance expressed in bits per trials (BpT) is also shown. For both subjects, ErrP
detection rate is around 80 % and pretty stable over the different groups. Without the use of ErrP
detection, Subject I shows a stable error rate of 34 % for motor imagery, whereas for Subject II
this rate is just above 30%. These rates are relatively high for a two tasks BCI, but keeping in
mind that the subjects had very little BCI experience and that these are real-time experiments
performed using classifiers built with data from previous sessions recorded several weeks before,
they are satisfactory. When integrating ErrP detection, the error rates drop below 10 % for both
subjects with acceptable rejection rates around 35 %. This clearly shows the benefit of using ErrP
detection to filter out wrong decisions. This benefit is clear in term of performance, the bit rate
is multiplied by more than 3 for both subjects.

3.2 Motor imagery

Subjects were asked to imagine a movement of their left hand when the left target was proposed
and to imagine a movement of their right foot when the right target was proposed. The most
relevant EEG channels and frequencies were selected by a simple feature selection algorithm based
on the overlap of the distributions of the different classes. The data recorded during the off-line
study [6] mentioned in Section 1 and 2 was used to select the relevant features (EEG electrodes
and frequencies) for motor imagery classification as well as to build the initial statistical classifier
used for these real-time experiments. For Subject I the relevant features are EEG channels Cz, C2,
C4 and frequencies 12 Hz, 14 Hz whereas for Subject II we used EEG channels Cz, C4, CP4 and
frequencies 12Hz, 24 Hz, 26 Hz. Previous studies confirm these results. Indeed, alpha and beta
rhythm over left and/or right sensorimotor cortex have been successfully used for BCI control [8].
Event-related de-synchronization (ERD) and synchronization (ERS) refer to large-scale changes in
neural processing. During periods of inactivity, brain areas are in a kind of idling state with large
populations of neurons firing in synchrony resulting in an increase of amplitude of specific alpha
(8-12Hz) and beta (12-26 Hz) bands. During activity, populations of neurons work at their own
pace and the power of this idling state is reduced, the cortex has become de-synchronized [9, 10].
In our case, the most relevant electrodes for both subjects are in the C4 and Cz area. These
locations confirm previous studies since C3 and C4 areas usually show ERD/ERS during hands
movement or imagination whereas foot movement or imagination are focused in the Cz area [9, 10].

Figure 2 shows the discriminant power (DP) of frequencies (top) and electrodes (bottom) for
both subject. The DP was calculated off-line after the real-time recordings to check the stability of
the selected features. For Subject I, the best frequencies are 12 Hz and 14 Hz, whereas for Subject
IT the best ones are 12 Hz, 24 Hz and 26 Hz. This matches exactly the selected frequencies. For
both subjects, the best EEG electrodes are located around C4, matching relatively well the selected
ones. These results indicates that the relevant features are stable over time.
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Figure 2: Top: Discriminant power (DP) of frequencies. Sensory motor rhythm (12—
16 Hz) and some beta components are discriminant. Bottom: Discriminant power
(DP) of electrodes. The most relevant electrodes are in the central area (C4 and Cz)
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Figure 3: Grand averages of error trials, of correct trials and the difference error-minus-correct for
channel FCz for both subjects. Both subjects show similar ErrP time courses whose amplitudes
slightly differ from one subject to the other.

3.3 Error-related potentials

Figure 3 shows the grand averages of error trials, of correct trials and the difference error-minus-
correct for channel FCz for both subjects). A first small positive peak shows up about ~ 200 ms
after the feedback (t = 0). A negative peak clearly appears ~ 270ms after the feedback. This
negative peak is followed by a positive peak ~ 330 ms after the feedback. Finally, a second negative
peak appears ~ 430ms after the feedback. Both subjects show very similar ErrP time courses
whose amplitudes slightly differ from one subject to the other. These experiments seem to confirm
the existence of a new kind of error-related potentials [7].

4 Discussion

In this study we have closed the loop using a previously described protocol [6] for real-time
experimentations, i. e. with statistical classifiers for motor imagery and ErrP detection running in
real-time and simultaneously. Two subjects were able to control the cursor using motor imagery
with an average accuracy just below 70 %. In parallel, the system was able to detect the presence
of ErrP with an accuracy above 80% to improve the quality of the brain-computer interaction.
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Indeed, in terms of bit rate, the integration of ErrP detection multiplies the performance by a
factor 3. The features used for classification were those selected in [6]. They show a relatively
good stability, in particular the potentials used for ErrP detection.

More generally, the ErrP potentials described in this study are relatively similar for all subjects.
We could therefore maybe build a general ErrP classifier that we would use for all subjects.
This would simplify the training sessions, since no preliminary ErrP recordings to build classifiers
would be needed anymore. The duration of the window used for motor imagery classification was
1 second. This could probably be shortened to 0.5 second or maybe even less without decreasing
performances, so that if we reduce the delay after ErrP detection, we could be able to deliver
a feedback almost every second. In this study, ErrP detection was used to filter out erroneous
responses of the system. ErrP could also be used as learning signals for an unsupervised online
adaptation of the BCI classifier. Finally, the work described in this paper suggests that it could be
possible to recognize in real-time high-level cognitive and emotional states from EEG (as opposed,
and in addition, to motor commands) such as alarm, fatigue, frustration, confusion, or attention
that are crucial for an effective and purposeful interaction. Indeed, the rapid recognition of these
states will lead to truly adaptive interfaces that customize dynamically in response to changes of
the cognitive and emotional/affective states of the user.
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Abstract

Multi-class EEG-based BCIs (brain-computer interfaces) usually use a set of different
mental tasks to generate different commands. This study shows that, after training with a
specially designed BCI paradigm using one motor imagery, humans can learn to predict the
time course of band power features of the EEG signals. With this newly-obtained prediction
skill, subjects can use only one motor imagery to select one of the four targets on screen
in each trial that lasts 3.4 seconds on average, which is functionally analogous to a 4-class
synchronous BCI.

1 Introduction

Most of the current EEG (electroencephalogram)-based BCI systems use various mental tasks,
which are classified and translated into different computer commands using various pattern clas-
sification algorithms. An increased number of mental tasks or brain patterns, if classified reliably,
can potentially boost the communication speed of the BCI systems. This is because as the number
of classes grows, the potential number of class combinations grows exponentially. Unfortunately,
with the number of classes increased, the accuracy of the BCI decreases evidently because every
additional EEG pattern to be classified brings up more difficulty to the classifier. Most BCIs use
synchronous paradigms, where the control is externally paced. In each trial, there is a cue telling
the user to start the desired mental state/task and keep it for some predefined length of time. The
EEG phenomena and the system are time-locked to the cue. A trial lasts a relatively long period,
from 4 to 10 or more seconds, because the EEG phenomena need time to develop and recover. In
this study, we have designed a new synchronous BCI paradigm that can realize the function of a
4-class BCI but use only one motor imagery. The study presented in this paper shows that, after
training with a specially designed BCI paradigm, humans can learn to predict the time course of
band power feature of the EEG signals. It is also shown that, with this newly-obtained prediction
skill, subjects can use one motor imagery only to choose one of the four targets on screen in each
trial that lasts 3.4 seconds on average. The BCI paradigm in this study is different from other
synchronous BCls in that it explicitly depends on subjects’ prediction skill in the control of the
EEG pattern.

2 Synchronous experiments

There are two BCI paradigms used in this study. One is a conventional synchronous paradigm
which is used to collect offline data for each subject. The other is our specially designed prediction
paradigm which will be described later in the next section. Before taking part in the motor
prediction experiment, three healthy subjects (one is female) participated in two-day synchronous
experiments.
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2.1 The first day synchronous experiments

In each experiment, the subject sat in a comfortable arm chair, one meter away from a 19 inch
screen. EEG signals were recorded from 5 channels of bipolar electrode positions with respect to the
international 10-20 systems: FC3-PC3, FC1-PC1, Cz—Pz, FC2-PC2, FC4-PC4. The recording
was made with a 16-channel EEG amplifier from g.tec. The EEG was sampled at 250 Hz. The
first-day synchronous experiment consisted of 8 runs with 20 trials each. In each trial, from ¢t = 3s
an arrow pointing to down or a circle was displayed on the screen. The subject was instructed to
imagine feet movement or relax until ¢ = 8. This paradigm is similar to that reported in [1]. The
band power of each channel is calculated using the same method of [2].

The time-frequency maps of the band power were calculated using the data collected from the
first-day synchronous experiment for each subject. By visually checking these maps, we chose the
band power of one or two frequency bands for each subject as the features. These band power
features of the recorded EEG data were used to train an LDA (Linear Discriminant Analysis)
classifier for each subject, which can be described as

F=> WB;+C (1)

where F is the LDA score, Wj is the weight for the i*" band power feature, B; is the band power
of the selected band of a channel, and C' is a constant. The value of F' calculated online will be
used as the online feedback in the second day experiments and the motor prediction experiments
later on. For each subject, after trained with the data of the first-day synchronous experiments,
the values of W; and C were fixed in all subsequent experiments of this subject.

2.2 The second day synchronous experiments

On the second day, the subjects continued to take part in synchronous BCI experiments. The
paradigm was similar to that of the first day and each trial still lasted 8 seconds. But, this time,
a feedback bar was displayed on the screen from ¢ = 3s to ¢t = 8s. Its length was proportional
to the band power calculated online from the single frequency band of the single channel chosen
for the subject. In each trial, at second 3, a cue appeared on the screen. The cue was randomly
chosen by the system to be an arrow or a circle. If the cue is an arrow, the subject should start a
motor imagery of feet immediately and try to make the feedback bar over the threshold as soon
as possible. If the cue is a circle, the subject should relax and perform no motor imagery.

The threshold for the feedback of each subject is calibrated daily in all experiments. Before
experiments on a day, the subject was instructed to keep relaxing without performing any motor
imagery for 3 minutes. The band power of the selected single band from the single channel was
calculated sample by sample using the data recorded from this 3-minutes idling period. Then the
mean, m, and standard deviation, S, of the band power were calculated. The threshold for that
day’s experiments, T, was set to:

T=m+a-S (2)

where « is a constant and is manually set by trial and error in experiments, which were chosen
to be 3.5 in the second-day experiments and all later experiments using the motor prediction
paradigm.
The aim of the synchronous experiments is to make the subject familiar with how fast the feedback
bar responds to his motor imagery of feet. The time course of the LDA score averaged from 80
or 60 trials of motor imagery of feet of each subject in the second-day experiments is shown in
Figure 1. Tt can be seen that the averaged LDA score (feedback) needs about 1.5-2.1 seconds after
the cue to reach the threshold. This time- length for the development of band power features is
in agreement with experimental results of other BCI studies involving motor imagery of feet in
healthy subjects [3, 4] and a tetraplegic patient [5].
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Figure 1: The time course of the LDA score of the second-day experiments (averaged over 80 trials
for subjects 1 and 3, and 60 trials for subject 3) : (A) Subject 1, (B) Subject 2, (C) Subject 3.
The red line is the threshold.
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Figure 2: The feedback bar, the cursor, and the target areas (A, B, C, D) shown on the screen.
The target selected by the system in a trial (here, it’s the “C” area) was highlighted.

3 Prediction experiments

On the third day, the subjects participated in online motor prediction experiments. In this
paradigm, a straight horizontal line with a triangle cursor on it was displayed on the screen
(see Figure 2). The straight line was equally divided to 6 areas. The 3™, 4*h 5%h and 6" areas
were labeled with A, B, C, D, respectively, and used as the four target areas. Beside the straight
line there is a feedback bar whose height is proportional to a weighted combination of the band
power of the 5-channel EEG signals (see Equation 1), which is the same as the feedback bar in
the second day experiments.

In this online prediction training experiments, each trial lasts no more than 4.8 seconds, and
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