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 PREFACE

This book contains the scientific contributions to the
3rd International Brain-Computer Interface Workshop
and Training Course 2006, held in Graz, Austria.
From the very beginning about 15 years ago, a growing
number of research groups around the world started
to develop and investigate Brain-Computer Interfaces
(BCIs). To date, alternative approaches or pro-
totypes, using different types of electrophysiological
brain signals or metabolical changes in the brain,
training/control paradigms or operating modes, are
available and to be evaluated in practical use.
Exemplarily, the use of an asynchronous BCI, which
analyses the brain signals sample by sample and there-
fore, produces a decision sample by sample is manda-
tory for a real world application. The challenge here is
to define a system which deals not only with the inten-
tional control (e. g., motor imagery-related brain pat-
terns), but also to handle the non-control state. Dur-
ing non-control the same pattern may occur as during
the control-state leading to an unwanted control sig-
nal. Therefore the minimization of false positives is
the main challenge in asynchronous BCIs. With such
a system users gain full control over timing and speed
of communication.
The rapid progress in this field became possible due
to advances both in methods of signal analysis and
in information technology, allied to a better under-
standing of the psychophysiological correlates of the
crucial parameters. It is important to note that im-
provements in the emerging field of BCI research and
development depend largely on cooperation between
scientists and research groups of different fields. The
interdisciplinary co-operation among neuroscientists,
engineers, psychologists, and rehabilitation specialists
is a necessary requisite. But also constructive collab-
oration and exchange of experiences and information
between the involved research groups as well as creat-
ing the right community of young people are essential
for a field like this.
After the positive responses to the 1st and 2nd BCI
meetings in 2002 and 2004, we were encouraged to
organize a third meeting in Graz. In this 3rd In-
ternational Brain-Computer Interface Workshop and
Training Course 2006 we tried to distinguish more be-
tween the Training Course, which is especially for new
researchers in the field, and the Workshop, the sci-

entific part of the meeting. The Training Course is
completely separated from the meeting and partici-
pants should learn to set up a BCI system beginning
with electrode montage, paradigm design, feature ex-
traction and classification up to realize online and
real-time feedback. The current Workshop was de-
fined as a scientific conference where researchers can
present their own work either in form of a talk or a
poster presentation. For this purpose we encouraged
the participants to submit short papers, which were
peer-reviewed and are published in this issue. The
BCI meetings held in Graz, Austria, may be consid-
ered as an European initiative in the field of EEG-
based Brain-Computer Interfaces that contributes to
a stronger orientation towards scientific cooperation.
We are lucky that outstanding experts in the field,
Theresa Vaughan (Wadsworth Center, USA), José del
R. Millán (IDIAP, Switzerland), Riita Salmelin (HUT,
Finland) were able to accept our invitation to present
keynote addresses at the Workshop.
This issue is devoted to the scientific contributions of
the participants. As can be seen, these contributions
cover a wide range of topics, including methods of
signal processing and feature extraction, new methods
of classification, different types of presenting feedback,
and software/hardware development. Aside from re-
ports on healthy volunteers, also studies in disabled
people are reported. With respect to the brain signals
used, a variety of different approaches on how to de-
tect user-initiated or evoked changes in EEG signals
have been taken.

We gratefully acknowledge the support of the Graz
University of Technology for providing the facilities
and thank the staff of the Institute of Knowledge Dis-
covery, BCI-Lab, for their dedicated assistance.

We hope that the content and scope of our program
may contribute to a successful and constructive 3rd In-
ternational Brain-Computer Interface Workshop and
Training Course 2006!

The editorial board

Group of the 2nd International Brain-Computer Interface Workshop and Training Course 2004.
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 THEORETICAL AND EXPERIMENTAL BASIS FOR THE DEVELOPMENT OF
DIRECT NONINVASIVE BCI

R. Grave de Peralta Menendez1, J. del R. Millán2, P. Morier2, S. L. Gonzalez Andino1

1Electrical Neuroimaging Group, Geneva University Hospital, Geneva
2IDIAP Research Institute. Rue du Simplon 4, 1920 Martigny, Switzerland

E-mail: Rolando.Grave@hcuge.ch

SUMMARY: This paper proposes the use of non-
invasively estimated local field potentials (eLFP) pro-
duced by ELECTRA as a safe and efficient alternative
to the highly invasive procedures currently in use for
neuroprosthesis control. Here we present theoretical
and experimental evidences justifying eLFP estima-
tion and its advantages. To illustrate the capabilities
of this approach we compare eLFP with intracranial
recordings (IR) for the same task. The results show
that eLFP non-invasively estimated from the EEG are
as informative as invasive IR opening new possibilities
for the design of direct noninvasive BCIs.

INTRODUCTION
Recent experiments have shown the possibility to use
the brain electrical activity to directly control the
movement of robots or prosthetic devices in real time.
Such neuroprostheses can be invasive or non-invasive,
depending on how the brain signals are recorded. In
principle, invasive approaches will provide a more nat-
ural and flexible control of neuroprostheses, but their
use in humans is debatable given the inherent medical
risks. Non-invasive approaches mainly use scalp elec-
troencephalogram (EEG) signals and their main dis-
advantage is that these signals represent the noisy spa-
tiotemporal overlapping of activity arising from very
diverse brain regions; i. e., a single scalp electrode picks
up and mixes the temporal activity of myriads of neu-
rons at very different brain areas. In order to combine
the benefits of both approaches, we propose to rely
on the non-invasive estimation of local field potentials
(eLFP) in the whole human brain from the scalp mea-
sured EEG data using a ELECTRA inverse solution
[1, 2]. The goal of ELECTRA is to de-convolve or un-
mix the scalp signals attributing to each brain area its
own temporal activity. This paper presents the the-
oretical and experimental evidences that support the
irrotational source model of ELECTRA. To illustrate
the capabilities of this approach we compare the classi-
fication results of eLFP non invasively estimated from
the EEG with intracranial recordings (IR) during a
visuo-motor task.

MATERIALS AND METHODS
Basic equations: Poisson equation describes the rela-
tionship between scalp surface EEG and the (primary)
current density vector (Jp) under the quasi-static ap-
proximation of Maxwell equations [2]. Assuming a
simple head model with unitary conductivity and de-
noting by G the Green function, it can be written in
any of the two following forms:

V (r) =
∫
V

∇ · Jp(rv)G(r, rv) (1)

∇ · ∇V = ∇ · Jp (2)

Where V denotes the electrical potential at scalp site
r and rv stand for points that belong to the brain vol-
ume.
Experiment description: We recorded scalp EEG data
and intracranial data in 4 subject and two patients
performing a visuo-motor reaction time task requiring
left or right finger responses as described in [3]. Un-
less otherwise specified, the term data will denote both
EEG and IR data.
EEG recording: The electroencephalogram (EEG) was
continuously monitored at 500 Hz during the whole ex-
periment from 125 scalp electrodes (Electric Geodesic
Inc. system, USA). Recordings were done using a
cephalic reference placed at the vertex. Off-line pro-
cessing of the data consisted of 1) transformation of
the EEG data to the common average reference, 2)
rigorous rejection of trials contaminated by ocular or
movement artifacts through careful visual inspection,
and 3) bad channel selection and interpolation. Four-
teen electrodes from the lowest circle on the electrode
array, i. e., closest to neck and eyes, were excluded a
posteriori because of their likeliness to pick up muscu-
lar artifacts.
eLFP: EEG recordings obtained from previous step
were transformed into local field potential estimates
(eLFP) using the inverse matrix associated to the ir-
rotational source model (ELECTRA) described in [1]
and [2]. This yielded LFP estimates for 4024 brain
voxels distributed all over the gray matter of a realis-
tic head model.
Intracranial recording: Two patients that underwent
intracranial recordings (IR) for presurgical epilepsy
evaluation performed the same visuo-motor reaction
time task as used in the healthy subjects. IR were
recorded at 200 Hz from subdural electrodes covering
motor cortex and parietal and temporal areas of one
hemisphere. The covering of motor areas was assessed
by direct electrical cortical stimulation. The local eth-
ical committee approved the experiments, and written
informed consent was obtained in all cases.
Analysis Window and features computation: Data
from the 111 EEG channels and the 4024 eLFP (vir-
tual) channels were transformed to the frequency do-
main. To avoid muscular artifacts (that might be
present in the EEG) the shortest reaction time of each
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 subject was used to define the eLFP analysis window.
For the IC recording the mean reaction time (what
could favor this modality) was used as the analysis
window.

Classification details: For both modalities the whole
data set was divided in two halves. The first half was
used as a learning set and the second one as the testing
set. The best 150 features (from all possible channels
and frequencies) were selected using the discriminative
power [3] on the learning set. Classification was based
on the linear OSU-SVM and the leave-one-out method
on the testing set.

RESULTS

As for any vector field, the primary current density
vector can be written as the sum of a solenoidal vector
field plus an irrotational vector field plus the gradient
of a harmonic function, i. e., Jp = ∇φ +∇×A +∇H.
Substituting this expression into (1) demonstrates that
only the irrotational part ∇φ can produce the poten-
tial V (i. e., the EEG).

Feeding the irrotational part ∇φ into (2) proves that
the scalar function φ (potential) has the same Lapla-
cian, and thus, the same sources and sinks as V .

Concurrent experimental evidence was provided by
Plonsey [4] who stated that “the fields measured do not
even arise from J but rather from secondary sources
only. These secondary sources, in turn, depend on
both the electrical field and the interfaces, and hence
are related to ∇ · J and the geometry”.

In summary, we can say that the scalar potential field
φ contains valuable information about the potentials
generated inside the brain and that by estimating it we
can: 1) Reduce the number of unknowns by a factor
of three. 2) Facilitate the inclusion of a priori infor-
mation from others scalar modalities. 3) Reduce the
problem to a physical measurable magnitude, i. e., po-
tentials instead of current density vector, which can
be experimentally assessed.

Table 1 shows that the results obtained for invasive IR
in two patients are not better than the results obtained
with non invasive eLFP computed from the EEG in 4
subjects.

Correct classification rate (%)
IR 1 91
IR 2 94
eLFP 1 98
eLFP 2 93
eLFP 3 91
eLFP 4 99

Table 1: Classification results for the two patients
(IR) and estimated local field potentials (eLFP) of

the 4 normal subjects.

CONCLUSION
This paper shows the connection between the external
potential field (EEG) and the potential distribution in-
side the brain volume. The estimation of this potential
field is equivalent to use the irrotational source model
of ELECTRA [1]. As shown by the experimental re-
sults, this non-invasively estimated field (eLFP) per-
forms as well, or better, than the IR obtained with in-
vasive methods during the classification task discussed
here. This suggests that eLFP, might be considered as
a safe and efficient alternative for the development of
direct non invasive BCIs.
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 PARAMETERIZATION OF WAVELETS FOR OPTIMIZED SIGNAL
REPRESENTATION IN THE CLASSIFICATION OF MOVEMENT-RELATED

CORTICAL POTENTIALS

D. Farina1, O. F. do Nascimento1, M. F. Lucas2, C. Doncarli2
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2IRCCyN, École Centrale de Nantes, Nantes, France

E-mail: df@hst.aau.dk

SUMMARY: We present a method for the classifica-
tion of movement-related cortical potentials (MRCPs).
The feature space was built from the coefficients ob-
tained from a discrete dyadic wavelet transformation
(DWT). The parameterization of the mother wavelet,
within the multi-resolution framework, allowed the se-
lection of an infinite number of sets of basis functions
to project the signals. Using this parameterization,
the mother wavelet was optimized in order to mini-
mize classification error. Classification was performed
with the support vector machine approach. A repre-
sentative example of application to the classification of
MRCPs generated by ballistic plantar-flexions at two
force levels is presented. In this example, classifica-
tion error ranged from 5 %, with optimization of the
wavelet, to 34 %, with fixed wavelet in the worst case,
showing the importance of a signal-based selection of
the feature space.

INTRODUCTION
A successful classification depends on an adequate rep-
resentation of the signals in a relevant space (feature
extraction). Many features have been proposed for
classification of electroencephalographic (EEG) signals
for the use in brain-computer interfaces (BCI), such as
parameters of autoregressive models, Fourier transfor-
mation coefficients, and wavelet transform coefficients.
However, to our knowledge, the extraction features
adapted to the characteristics of the signal in order to
minimize classification error, has not been attempted.
Discrete wavelet transform (DWT) coefficients may be
adapted to the set of signals to be classified since they
depend on the choice of the mother wavelet. However,
classification using DWT as projection in the feature
space was previously based on the a-priori selection of
the mother wavelet.
Therefore, our aims are 1) to propose a signal-
dependent wavelet transformation through parameter-
ization of the analysis filters in the multi-resolution
analysis (MRA) framework, and 2) to show the advan-
tage of wavelet parameterization over the selection of
fixed wavelets in a representative example of classifica-
tion of movement-related cortical potentials (MRCP).

MATERIALS AND METHODS
The classification method is based on the represen-
tation of the signal in a feature space built through
the DWT and parameterization of the analysis filter.
The analysis filter, which defines the mother wavelet,

is then optimized with the criterion of minimum clas-
sification error.
Feature extraction: The DWT decomposes a signal
f(x) on a basis where all functions are dilated and
translated versions of a prototype function ψ, called
mother wavelet. The projections of the signal into
these basis functions return detail coefficients

df (j, k) = 〈f(x), ψj,k(x)〉 ,

where
ψj,k(x) = 2−j/2ψ(2−jx− k).

Approximation coefficients ax(j, k) are obtained by
projecting the signal on dilated and translated ver-
sions of the scaling function ϕ,

af (j, k) = 〈f(x), ϕj,k(x)〉 ,

where
ϕj,k(x) = 2−j/2ϕ(2−jx− k).

The set of approximation and detail coefficients can
be alternatively computed by Mallat’s algorithm with
the application of a filter bank [1] (MRA).
In the MRA framework, the scaling function ϕ and its
associated mother wavelet ψ are related to the filters
h and g (used for computation of the DWT through a
filter bank) by the two-scale recursive relations

ϕ(x/2) =
√

2
∑

n

h[n]ϕ(x− n),

ψ(x/2) =
√

2
∑

n

g[n]ϕ(x− n).

For orthogonal wavelets, g can be deduced from h from
the relation g[k] = (−1)1−kh[1 − k], thus h defines ψ.
To generate an orthogonal MRA wavelet, h must sat-
isfy some constraints. For a FIR filter of length L,
there are L/2 + 1 sufficient conditions to ensure the
existence and orthogonality of the scaling function and
wavelets [2]. Thus, L/2− 1 degrees of freedom remain
to design the filter h. The lattice parameterization de-
scribed by Vaidyanathan [3] allows the design of h via
unconstrained optimization. The L coefficients of h
can be expressed in term of L/2− 1 new free parame-
ters. If L = 4, we need one single parameter α and h
is given as:

h[0] = (1 − cos(α) + sin(α))/(2
√

2)

h[1] = (1 + cos(α) + sin(α))/(2
√

2)

h[2] = (1 + cos(α) − sin(α))/(2
√

2)
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h[3] = (1 − cos(α) − sin(α))/(2

√
2)

If L = 6, we need a 2-component design vector and h
is given by:

i = 0, 1 : h[i] = [(1 + (−1)icosα+ sinα) ·
·(1 − (−1)icosβ − sinβ) +

+(−1)i2sinβcosα]/(4
√

2)

i = 2, 3 : h[i] =
1 + cos(α− β) + (−1)isin(α− β)

2
√

2
i = 4, 5 : h[i] = 1/

√
2 − h(i− 4) − h(i− 2)

For other values of L, expressions of h are given in [4].
This parameterization allows the definition of an in-
finite number of wavelet representations through the
selection of a finite set of parameters. While the a-
priori selection of a wavelet for best classification is
not possible, a training set of signals may be used to
estimate the probability of classification error for each
wavelet and thus to select the wavelet leading to the
lowest error.
Feature space: The wavelet coefficients are partly lo-
calized in time and scale. However, localization in time
may be a problem for comparison due to the lack of
alignment of the signals. In order to make the repre-
sentation space insensitive to time alignment, different
features can be selected. One possibility is to use the
normalized marginals of the DWT, defined as:

mf (j) =
N/2j−1∑

k=0

cf (j, k), j = 1 . . . J

cf (j, k) =
|df (j, k)|∑J

j=1

∑N/2j−1
k=0 |df (j, k)|

where J is the deepest level of the decomposition
(J = blog2Nc). In this case, the features represent-
ing the signal f are the components of the vector
Mf = [mf (1), . . . ,mf (J)]. The vector Mf contains
information on the distribution of the wavelet coeffi-
cients over J bands.
Other choices are entropy, root mean square or any
other processing of wavelet coefficients in the different
subbands. In the following, the marginals were used.
Classification: Support vector machine (SVM) algo-
rithm was used for binary classification in the represen-
tative results shown below. The idea is to construct,
in the feature space H, a linear decision function from
the hyperplane with maximum margin, i. e., which is
at maximum distance from all the data points and clas-
sifies them correctly. This corresponds to looking for
a normal vector w and a parameter b corresponding
to the hyperplane whose equation is wΦ(x) + b = 0,
where K(x, x′) = 〈Φ(x),Φ(x′)〉 is the kernel.
For each parameterized wavelet, the classifier was ap-
plied to the training set and optimized for the param-
eters of the kernel. The estimated minimum classifi-
cation error was used to select the optimal wavelet.
Representative example of application: Representa-
tive results are shown for the classification of MRCPs
generated by different force levels in one subject (23

years), who was instructed to perform plantar-flexions
of the right foot reaching torque levels at 40 % or 60%
of maximal force as fast as possible. Each task was
repeated 60 times with inter-trial intervals of 12 s [5].
Epochs of 1.5 s prior the movement from Cz channel
sampled at 500 Hz were used for classification.

RESULTS
The two classes could be separated with a minimum
classification error of 5 % when the optimization of the
wavelet was implemented. With fixed wavelets the
classification error could be as large as 34 % (Figure 1).

Figure 1: Classification error (test set) for the 50
wavelets used in the optimization procedure (left).

Optimal wavelet corresponds to a classification error
of 5 %, worst wavelet to a classification error of 34 %.

Best wavelet in this case is shown on the left.

DISCUSSION
We presented and evaluated a feature extraction
method optimized for the aim of classification. The
DWT allows the selection of an infinite set of basis
functions through a set of parameters. The optimal
parameters can be chosen on the basis of the specific
training set and thus adapted to the subject. The im-
portance of wavelet optimization was shown by com-
parison of the results obtained with different wavelets
(Figure 1). The method can be extended to the multi-
channel case to further improve performance.
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SUMMARY: This paper introduces the use of a Fuzzy
Inference System (FIS) for classification in EEG-based
Brain-Computer Interfaces (BCI) systems. We present
our FIS algorithm and compare it, on motor imagery
signals, with three other popular classifiers, widely
used in the BCI community. Our results show that
FIS outperformed a Linear Classifier and reached the
same level of accuracy as Support Vector Machine and
neural networks. Thus, FIS-based classification is suit-
able for BCI design. Furthermore, FIS algorithms have
two additional advantages: they are readable and eas-
ily extensible.

INTRODUCTION
Most BCI systems use classification algorithms to
identify specific mental activities. Several classifica-
tion algorithms have been used to design BCIs, such
as linear classifiers, Support Vector Machines (SVM)
or neural networks [9]. Surprisingly, fuzzy classifiers
have been scarcely used by the BCI community. How-
ever, fuzzy classifiers were proved efficient for several
classification problems [1], including non-stationary
biomedical signals classification [2] and brain research
[3].
A specific kind of fuzzy classifiers, namely Fuzzy In-
ference System (FIS), has three main advantages: it is
readable, extensible [4], and a universal approximator
[5]. Therefore, in this paper, we propose to use a FIS
for BCI design.
In the following paper we will first describe the FIS
algorithm that we have set-up to classify EEG data
corresponding to motor imagery. Then, we will report
on an evaluation of the FIS classifier as compared with
three other classifiers: Linear Classifier, Neural Net-
work, and SVM.

FIS ALGORITHM USED
The FIS that we used is based on Chiu’s algorithm
[4]. This algorithm is robust to noise and according
to its author, it is generally more efficient than Neural
Networks.
Training of the FIS: As any FIS, our algorithm uses
fuzzy “if-then” rules. Three steps are required to learn
the fuzzy rules from N dimensionnal data:

1. Clustering of training data. First, a clustering al-
gorithm, known as “substractive clustering” [4],
is applied to the training data of each class. This
algorithm is used because it is noise resistant and
can automatically determine the number of clus-
ters. It requires the user to specify the clusters
radius Ra.

2. Generation of the initial fuzzy rules. A fuzzy
“if-then” rule is generated for each cluster found
previously. For a given cluster j, belonging to
class Cli, the generated fuzzy rule is:

if X1 is Aj1 and X2 is Aj2 and . . .
then class is Cli

Xk is the kth element of a feature vector X and
Ajk is a gaussian membership function:

Ajk(Xk) = exp

{
−1

2

(
Xk − xjk

σjk

)2
}

(1)

where xjk is the kth element of the vector rep-
resenting the center of the cluster, and σjk is a
positive constant, which is initialy the same for
all Ajk.

3. Optimization of the fuzzy rules. Last, each mem-
bership function Ajk is tuned according to gra-
dient descent formulas [4]:

xjk ⇐ xjk−λ
∂E

∂xjk
and σjk ⇐ σjk−λ

∂E

∂σjk
(2)

where λ is a positive learning rate and E a clas-
sification error measure. To increase accuracy,
membership functions can be “two-sided” Gaus-
sian functions [4], with a plateau and different
standard deviations on the left and right sides,
as displayed in Figure 1.

FIS Classification: Once trained, the FIS can classify
a new feature vector X using its set of fuzzy rules. The
output class of X corresponds to the class associated
with the rule j for which

∏N
k=1 Ajk(Xk) is the highest.

Thus, the standard multiplication is used as the and
operator.

CLASSIFYING MOTOR IMAGERY WITH FIS
EEG data: The data used corresponds to the EEG
data set IIIb of the BCI competition III. Three sub-
jects had to imagine left or right hand movements.
Hence, the two classes to be identified are “Left” and
“Right”. EEG were recorded using electrodes C3 and
C4, and were filtered between 0.5 and 30 Hz (see [6]
and [7] for further details).

Feature extraction: Band Power (BP) features were
extracted, in a statistically optimal time window, for
both electrodes C3 and C4. The optimal time window
was found to start 0.4 s after the beginning of the feed-
back presentation for subject 1 and 1.4 s for subjects 2
and 3. It was 2.5 s long for subject 1 and 1.5 s long for
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 subjects 2 and 3. The most reactive frequency bands
were selected using a statistical paired t-test which
compared the two classes means for all overlapping
2 Hz frequency bands between 1Hz and 30 Hz. As
expected, the optimal frequencies for discrimination
were found in the α and β bands. This led to a four
dimensional feature vector: [C3α, C3β , C4α, C4β ] in
which Cpy is the BP value for eletrode Cp in the y
band. Naturally, the exact frequency bands depended
on the subject.

FIS Classifier: The FIS algorithm was trained using
the data set and the features described above. For each
subject, two fuzzy rules were extracted. The rules ob-
tained for the first subject are displayed on Figure 1.

if and and and then
C3α C3β C4α C4β class
is is is is is

Rule 1 Right

Rule 2 Left
Figure 1: Fuzzy rules for subject 1

The interpretation of the rules shows that the power
for electrode C3, in the α and β bands, is lower dur-
ing imagined right hand movements than during imag-
ined left hand movements. A symmetric behaviour can
be observed for electrode C4. In EEG research, this
phenomenon is known as contralateral Event-Related
Desynchronisation (ERD) [10]. This proved that FIS
classifiers are readable systems which can be useful to
extract knowledge about the brain dynamics. Another
advantage of FIS is that fuzzy rules, such as rules made
by brain experts, could be easily added as “a priori in-
formation”.

PERFORMANCES EVALUATION
Our FIS was compared to three other popular classi-
fiers widely used in the BCI community [9]: an SVM
with gaussian kernel, a MultiLayer Perceptron (MLP)
which is a neural network and a perceptron as a Lin-
ear Classifier (LC). Implementation of LC, SVM and
MLP was achieved using the Torch C++ library [8].
The optimal values for the hyperparameters of all clas-
sifiers (radius Ra for the FIS, regularization parameter
C for the SVM, etc.) were chosen using 10-fold cross
validation. The four classifiers were compared using
the same test set and the same features as described
above. Table 1 sums up the accuracy obtained by each
classifier.

Table 1: Accuracy of the different classifiers
Subject FIS SVM MLP LC
Subject 1 86.7 % 86.8 % 86.6% 84.1 %
Subject 2 74.7 % 75.9 % 75.5% 71.8 %
Subject 3 75.7 % 75.4 % 74.6% 72.7 %
Mean 79% 79.4 % 78.9% 76.2 %

Our results show that our FIS outperformed LC and
reached the same level of accuracy as SVM and MLP.
Finally, the average computation time to classify a fea-
ture vector using an FIS is 0.008 ms. Thus, the algo-
rithm is suitable for a real-time and online use within
a BCI system.

CONCLUSION
In this paper we have described the use of a Fuzzy
Inference System (FIS) for classification in Brain-
Computer Interfaces. An FIS classifier outperformed a
linear classifier and was found as accurate as Support
Vector Machine or neural networks for the classifica-
tion of motor imagery. Furthermore, FIS classifier is
fast, readable and easily extensible which make it suit-
able and useful for real-time BCI design.
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SUMMARY: The Common Spatial Pattern (CSP) al-
gorithm is a highly successful method for efficiently
calculating spatial filters for brain signal classification.
Spatial filtering can improve classification performance
considerably, but demands that a large number of elec-
trodes be mounted, which is inconvenient in day-to-
day BCI usage. The CSP algorithm is also known
for its tendency to overfit, i. e. to learn the noise in
the training set rather than the signal. Both prob-
lems motivate an approach in which spatial filters are
sparsified. We briefly sketch a reformulation of the
problem which allows us to do this, using 1-norm reg-
ularisation. Focusing on the electrode selection issue,
we present preliminary results on EEG data sets that
suggest that effective spatial filters may be computed
with as few as 10–20 electrodes, hence offering the po-
tential to simplify the practical realisation of BCI sys-
tems significantly.

INTRODUCTION
BCI data sets typically consist of multiple time-series
that are highly correlated, particularly so when mea-
sured by EEG, since EEG signals suffer from a high
degree of spatial blurring. When transduction is based
on a nonlinear transformation of the time-series, such
as one that extracts band-power for the detection of
Event-Related Desynchronisation (ERD), a spatial fil-
tering preprocessing stage that performs source sep-
aration before nonlinear feature extraction will often
improve results (see for example [1]). This can be done
by Independent Component Analysis, or in some cases
by the computationally much cheaper Common Spa-
tial Pattern (CSP) method [2] and related algorithms
[3, 4, 5].
One practical problem with spatial filtering is that it
typically requires a large number of electrodes to be
applied, whereas in everyday clinical application it is
desirable to have to apply only a few. An additional
problem associated with the supervised CSP algorithm
in particular is its tendency to overfit, leading to poor
generalisation (for illustration and discussion of this
effect see [1, 4, 5]). This is a particular problem when
the number of electrodes is large, and when the num-
ber of available trials is small.
Both problems argue for an approach which can spar-
sify the spatial filters that one computes, i. e. to force
them to be based on a small number of electrodes,
and to trade this characteristic off against performance
on the training data. The goal is twofold: firstly to
identify (based on an initial setting with a full EEG
cap) which electrodes should be attached in future ses-
sions and which can be omitted; secondly to regularise
the computation of spatial filters, leading to improved

generalisation in cases where overfitting is a problem.
Regularisation by sparsification is a common approach
in machine learning, and was described in the context
of a CSP-like algorithm by Dornhege et al. [5]. The
latter authors apply regularisation in the domain of
the temporal FIR filters used in their algorithm. Here
we apply the same principle to the spatial filters them-
selves, focusing on the question: what is the tradeoff
between number of electrodes and performance, within
the CSP framework?

THE RCSP ALGORITHM
CSP operates on the covariance matrix ΣT between
the d channels, computed using all trials, and the class-
covariance matrix Σc which is computed using only
trials from a given class c. Each filter is a vector w of
length d, found by maximising the variance in one class
whilst simultaneously minimising the variance in the
other class(es). Equivalently, CSP can be seen as max-
imising the Rayleigh quotient which is the ratio of the
variance of the filtered signal in class c to its variance
overall. In addition to this criterion, we add a reg-
ularisation term incorporating a cost hyperparameter
C. As is common in regularisation-by-sparsification
approaches, our C is a penalty term on the L1-norm
(i. e. the sum of the absolute values of the elements) of
w. Our w is therefore found by solving the following
unconstrained optimisation problem:

arg max
w

w>Σcw

w>ΣT w
− C|w|1√

d|w|2
. (1)

The first term is the Rayleigh quotient: optimising
this alone (i. e. setting C = 0) can be shown to be
equivalent to solving the generalised eigenvalue prob-
lem Σcw = λΣT w, which gives the ordinary CSP so-
lution. We obtain a solution to (1) using the conjugate
gradient method (see [6]). Once each filter is found,
subsequent filters are found by deflating Σc as follows:

Σc ← Σc

(
I − w>wΣT

w>ΣT w

)
(2)

and then iterating the procedure. If C is set to 0, (1)
and (2) together recover the ordinary CSP decompo-
sition in full. With C > 0, we call the algorithm regu-
larised CSP or rCSP, and its solutions are sparser, i. e.
the resulting w vectors have fewer non-zero entries,
meaning that fewer electrodes are used.

EXPERIMENTS
We tested the effect of varying C on the data from a
number of two-class motor imagery experiments with-
out feedback. 39-channel EEG was recorded from each
subject as they performed 400 trials of imagined left-
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 or right-hand movement. Regularised CSP was ap-
plied using the 7–30Hz band, and a linear Support
Vector Machine was used to classify the resulting vari-
ances of the spatially filtered signals. Offline per-
formance was estimated using 2 repeats (with differ-
ent random seeds) of 10-fold cross-validation, and the
SVM’s own regularisation parameter was optimised
using 10-fold cross-validation nested within that (i. e.
within the training subset of each outer fold).
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Figure 1: Classification accuracy for 5 subjects, as a
function of number of electrodes required.

We varied the number of filters we wished to ex-
tract, n ∈ {2, 4, 6, 8}, and the cost parameter C ∈
{0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5}. For each set-
ting, we plot classification accuracy (averaged across
the 20 outer folds) against the number of electrodes
required in total to implement the n computed filters
(also averaged across outer folds). We show results for
5 of the 6 subjects—the sixth subject showed similar
trends, but we omit his results for readability since the
curves overlap those of subjects 1 and 5.
Figure 1 gives a quantitative impression of the effect
of the number of electrodes needed. For some subjects
(for example, subjects 2 and 4) the curves are sur-
prisingly flat: using only two spatial filters, one can
reduce the number of electrodes to around 10 without
any appreciable drop in classification accuracy. For the
others, best performance was achieved with the maxi-
mum available number of electrodes, although close-
to-optimal performance may still be achieved with

around 20. In practice, the optimal choice of C and n
should, as in most CSP implementations, be found for
each subject by cross-validation.
Note that these are only preliminary results—our sub-
jects started with a relatively small number of elec-
trodes, 39, which meant they were widely spaced rel-
ative to those, say, a 128-electrode cap. It is possible
that sparser electrode montages are effective if the can-
didate electrodes are more closely spaced.

CONCLUSION
Formulating the CSP problem as a Rayleigh quotient
optimisation allows us to modify the formulation eas-
ily, with potential applications in both spatial and
spatio-spectral filtering. The current modification,
rCSP, allows automatic selection of a subset of elec-
trodes during the optimisation of the spatial filter,
showing that in some cases the number of electrodes
can be reduced to 20 or fewer with little loss in per-
formance.
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SUMMARY: Non-invasive brain-computer interfaces
are traditionally based on slow, mu or beta rhythms.
However, there is mounting evidence that neural oscil-
lations up to 200Hz play important roles in processes
such as attention, perception, motor action and con-
scious experience. In this preliminary study we pro-
pose to extend the investigations to the complete fre-
quency spectrum and to compare the high frequency
bands with the usual low frequencies. It appears that
the 70–130 Hz band and the 170–230 Hz band performs
better than the traditional 2–40Hz band. In a second
step we applied the same analysis to the estimated lo-
cal field potentials from the scalp EEG. The same fre-
quency bands show the best performances, and the use
of eLFP leads to an increase of performances of ∼5 %.

INTRODUCTION
Recent experiments have shown the possibility of us-
ing the brain’s electric activity to directly control the
movement of robots or prosthetic devices in real time
[1, 2, 3]. For humans, non-invasive methods based on
electroencephalogram (EEG) are preferable because of
ethical concerns and medical risks and it’s widely hy-
pothesized that EEG signals could form the basis of a
brain-computer interface (BCI) in order to provide an
alternative communication channel to paralyzed peo-
ple.
Non-invasive BCIs can be classified according to the
electrophysiological signal they use. With some sys-
tems the subject learns to modulate the amplitude of
mu (8–12 Hz) or beta (16–26 Hz) rhythms [4], while
some other systems use slow cortical potentials [5] or
the P300 event-related potentials [6]. However, there
is mounting evidence that neural oscillations play im-
portant roles in processes such as attention and mo-
tor action. Recent studies in rats and cats report a
correlation between neural oscillations above 100Hz
and extending up to 200Hz with attentive exploration
and visual processing [7]. While human electrophysi-
ology has consistently investigated the functional role
of gamma band oscillations, the range of frequencies
above 80 Hz remains largely unexplored.
The basic question addressed in this paper is to in-
vestigate the potential use of high frequency bands to
improve performance and accuracy of a BCI. There-
fore we enlarged our investigations to the complete fre-
quency spectrum and we compared the performances
of different frequency bands. Furthermore, we also

used the previously introduced non-invasive estimation
of local field potentials (eLFP) in the whole human
brain from the scalp EEG using recently developed dis-
tributed linear inverse solution termed ELECTRA [8].

MATERIALS AND METHODS
We recorded scalp EEG from four healthy volunteers
(25–31 years, 2 women) performing three different
mental tasks. The mental tasks were: imagination
of left arm movement, imagination of right arm move-
ment and word association. Subjects had no prior BCI
training and did not receive online feedback in order
not to bias performance towards any kind of prese-
lected features (i. e. frequency bands or scalp EEG vs.
eLFP). Subjects were asked to fixate a central white
point and to perform the mental task associated to the
visual stimulus that appeared 1.5 s later. In a trial,
subjects performed a single task for 5.5 s but, for the
analysis of the signals, we rejected the first 1.5 s to
avoid the presence of evoked potentials associated to
the appearance of the visual stimulus. Each subject
performed 15 sessions on 2 different days, one session
consisting of 18 trials with a random delay of about
2.5 s in between each single trial.
EEG potentials were recorded at 512Hz with 64 elec-
trodes covering the whole scalp. For both scalp EEG
and eLFP analysis, samples were computed 16 times
per second. A sample consisted of the power spectrum
density, computed over the last second, at a given fre-
quency for a number of channels. We chose 15 bands
of variable resolution (higher at low frequencies and
bands of 20 Hz above 50Hz): 2–6Hz, 8–14Hz, 16–
24 Hz, 26–36Hz, 38–48 Hz, 52–70 Hz, 72–90Hz . . . 232–
250 Hz. Feature selection was then performed for both
scalp EEG and eLFP analysis using a variant of the
Relief method, which has been successfully applied to
the selection of relevant features for a BCI [8]. We ap-
plied this method to select the 10 most relevant EEG
electrodes out of 64 and the 100 most relevant vox-
els out of 4024 in the 3D reconstruction of the brain
activity.
Each single sample (48 in each trial) was finally fed
to a Gaussian classifier [4] for the recognition of the
mental task executed by the subject. The output of
this statistical classifier is an estimation of the pos-
terior class probability distribution for a sample, i. e.
the probabilities that the input vector belongs to one
of the three classes.
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 For each subject, the 30 sessions were split into 6
groups of 5 consecutive sessions each. For each fre-
quency band we performed the feature selection and
trained a classifier using the 5 sessions of a group and
we evaluated the performance of this classifier on the
5 sessions of the following group.

Figure 1: Average of the classification performances
for the four subjects plus the average of them using

EEG signals and estimated local field potentials for a
3-class BCI. In both cases we can see an increase in

performances between 70 and 130Hz as well as
between 170 and 230Hz compared to the

traditionally used 2–40Hz band. Furthermore, the
use of eLFP leads to an increase of performances

of ∼5 %

RESULTS
Figure 1 shows the average performance for the four
subjects plus the average of them for each frequency
band using scalp EEG (top) and eLFP (bottom). For
both scalp EEG and eLFP, the best performances are
reached for frequencies between 70 and 130 Hz and be-
tween 170 and 230Hz. The peak average performance
is 49.2% for the scalp EEG and 54.0 % for the eLFP.
The high frequency bands perform better than the tra-
ditional low frequencies (49.2 % vs. 44.6 % for scalp
EEG and 54.0% vs. 45.5 % for eLFP). Furthermore
eLFP outperform scalp EEG for all discriminant fre-
quency bands.
In the case of scalp EEG, the selected electrodes are
outside the midline and cover also the anterio-frontal
areas as expected. Regarding the selected voxels, there
are 3 clear clusters in the sensorimotor cortex and the
right anterior area.

DISCUSSION
The reported results suggest that high frequency
bands carry information that is useful for the classifi-
cation of mental tasks in a BCI context. Frequencies
between 70 and 130Hz and between 170 and 230Hz
outperformed the traditional 2–40 Hz band. Further-
more, the use of eLFP lead to an increase of perfor-
mances of ∼ 5 %. Performances are not very high for a
3-class BCI, but it should be noticed that we have tried
to classify every single sample computed every 62.5 ms
and that subjects had no prior BCI training and did
not receive any feedback. The combination of several
frequency bands could also lead to significantly higher
performances. The next important step consists in the
online verification of the reported improvements by in-
tegration of both high frequencies and eLFP into the
BCI.
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SUMMARY: We present offline results for classifica-
tion accuracy based on synchronisation features from
MEG and compare these to the more well-known au-
toregressive (AR) coefficients.

INTRODUCTION
This paper aims to show that phase synchronisation
features can be used successfully in Brain-Computer
Interfaces (BCI) based on magnetoencephalography
(MEG). While the MEG is not portable, short prepa-
ration time, high spatial resolution and signal quality
make it simple to test new algorithms. This can in-
crease motivation for patients who are still mobile.
Phase synchronisation has been associated with men-
tal tasks previously [1]. Results in the field of BCIs
based on EEG have been published by Gysels et al. [2]
and others. Gysels found that synchronisation mea-
sures combined with the classical power spectral den-
sity (PSD) estimates can lead to improved results com-
pared to using one measure only. Due to synchrony
being a measure for channel pairs, n channels result in
O(n2) features, making feature selection a vital ingre-
dient for the high number of MEG channels.
In an offline analysis, we compare synchronisation fea-
tures to the AR (model order 2) results to be found
in Lal et al. [3]. We use the same data and feature se-
lection methods as in their experiment to foster a fair
comparison. A combination of different feature types
is also examined.

MATERIALS AND METHODS
Experimental setup: MEG signals of 10 healthy sub-
jects (A – J ) were recorded at 625 Hz from 150 chan-
nels. The task was imagined left little finger or tongue
movement. The cue duration was 500 ms. The classifi-
cation interval began after a further 500 ms and lasted
for 3 s. Please see [3] for further details.
Preprocessing: To enable a comparison with the find-
ings in [2], we employ similar preprocessing. How-
ever, we investigate 3 frequency bands: 8–16 Hz and
16–24 Hz (known to be linked to motor tasks) and 8–
40 Hz which encompasses the most relevant frequen-
cies. These bands are extracted by applying a linear
phase FIR bandpass filter to the signal.
The phase locking value (PLV) characterising the sta-
bility of phase differences between two channels is cal-
culated as follows:

PLV =
∣∣∣< ej∆ϕ(t) >

∣∣∣ (1)

where ∆ϕ(t) is the phase difference of two signals

at time t. We calculate the instantaneous phase by
Hilbert transform [4]. The operator < . > returns
the average PLV for a given time window. We use 3
non-overlapping time windows, 1 s each.
Spectral coherence characterising the linear depen-
dence of two channels in a given frequency band f
is calculated as follows:

γ2
XY (f) =

|< CXY (f) >|2

< CXX(f) >< CY Y (f) >
(2)

where CXY (f) is the cross-power spectrum between
two signals x(t) and y(t) at a given frequency band f
and CXX(f) is the autospectrum.
We concentrate on the central 75 MEG channels (2775
features) to speed up calculations and to avoid arti-
facts, which are usually prevalent on the outer sensors.
Per trial we obtain 3 frequency bands and 3 time win-
dows. By ROC inspection, we found that the 8–40Hz
frequency band is best for most subjects. The follow-
ing results are shown for this frequency band. The
most discriminative time window varied across sub-
jects.

RESULTS
The error estimation method we use (nested cross-
validation), employing a linear SVM and Recursive
Feature Elimination (RFE), is explained in [3]. The
high amount of features forced us to reduce the num-
ber of outer cross-validation folds from 50 to 20. We
also use a fast RFE initially discarding 50 % of the
features per iteration, which might have a slight nega-
tive influence on the α error estimate (Table 1). This
estimate is for the number of selected features with a
deviation of no more than two standard errors from
the lowest error estimate during the cross-validation.

Table 1: Results for 8–40 Hz PLV features
Sub. α-Estimate All Features Nr Feat.
A 0.301 ± 0.077 0.322 ± 0.049 7 ± 16.4
B 0.351 ± 0.101 0.374 ± 0.055 2 ± 2.3
C 0.477 ± 0.062 0.416 ± 0.075 11 ± 13
D 0.140 ± 0.052 0.121 ± 0.047 4 ± 2.7
E 0.443 ± 0.087 0.378 ± 0.072 4 ± 4.9
F 0.374 ± 0.061 0.275 ± 0.071 8 ± 6.6
G 0.397 ± 0.061 0.349 ± 0.070 6 ± 6.6
H 0.210 ± 0.061 0.220 ± 0.037 1 ± 0.8
I 0.338 ± 0.079 0.349 ± 0.052 5 ± 3.3
J 0.481 ± 0.068 0.401 ± 0.063 7 ± 9.8
Ø 0.351 ± 0.111 0.321 ± 0.091 6 ± 6.6
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 The number of selected features used for the α-
estimate is displayed in the third column of Table 1.
For each subject, accuracy for the best time window
is shown.

Table 2: Results for 8–40 Hz PLV+AR features
Sub. α-Estimate All Features Nr Feat.
A 0.230 ± 0.057 0.245 ± 0.061 8 ± 11
B 0.314 ± 0.080 0.345 ± 0.069 5 ± 9.6
C 0.531 ± 0.072 0.461 ± 0.061 5 ± 6.3
D 0.046 ± 0.034 0.041 ± 0.026 14 ± 7.4
E 0.370 ± 0.071 0.326 ± 0.048 9 ± 8.0
F 0.244 ± 0.076 0.208 ± 0.054 2 ± 1.8
G 0.305 ± 0.092 0.229 ± 0.086 13 ± 13
H 0.168 ± 0.072 0.213 ± 0.058 2 ± 0.7
I 0.365 ± 0.066 0.292 ± 0.064 10 ± 9.8
J 0.480 ± 0.065 0.453 ± 0.063 14 ± 21
Ø 0.305 ± 0.143 0.281 ± 0.125 8 ± 9.0

Results for the combination PLV+AR features show
an improvement over the accuracies for a single fea-
ture type (Table 2). This result includes PLV features
from all time windows (2775 · 3 PLV + 150 · 2 AR fea-
tures). Note that we do not group the AR features
channel-wise as in [3].
A comparison of PLV, coherence (Coh), AR and
PLV+AR is shown in Figure 1.

Figure 1: Comparison of 3 error estimation methods
for 4 feature types

DISCUSSION
PLV features are better than Coh features, which is
consistent with the findings in [2]. Although PLV+AR
has the lowest error, the difference between PLV+AR
and AR is not significant. The average number of fea-
tures was reduced to 8 by RFE, increasing the mean
error by less than 3 %.

CONCLUSION
Our offline results propose that synchronisation fea-
tures could become a valuable addition to MEG BCIs.
Cross-validation results suggest that some subjects
would significantly benefit from using the PLV+AR
combination instead of AR alone. Future work will
concentrate on the combination of synchronisation fea-
tures with other well-known features such as PSD.
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SUMMARY: Given a spatial filtering algorithm that
has allowed us to identify task-relevant EEG sources,
we present a simple approach for monitoring the activ-
ity of these sources while remaining relatively robust to
changes in other (task-irrelevant) brain activity. The
idea is to keep spatial patterns fixed rather than spa-
tial filters, when transferring from training to test ses-
sions or from one time window to another. We show
that a fixed spatial pattern (FSP) approach, using a
moving-window estimate of signal covariances, can be
more robust to non-stationarity than a fixed spatial
filter (FSF) approach.

INTRODUCTION
Since EEG data are highly spatially blurred, it is of-
ten beneficial to apply a spatial filtering algorithm
such as Independent Component Analysis (ICA) or
the Common Spatial Pattern (CSP) method. Either
method may return a (let’s assume, square) matrix W
such that sources S are estimated from data matrix
X (s sensors by t time samples) by premultiplication
S = WX. Each row of W gives us a spatial filter,
i. e. a vector of sensor weightings for estimating one
source signal. We refer to the columns of the mixing
matrix A = W−1 as spatial patterns: each one shows,
for a given source, that source’s relative amplitude as
received at the s different sensors.
It is common practice to obtain spatial filters on one
set of data X1 (computing W from the training trials
only, using ICA or CSP), infer which sources are rel-
evant to the task, and then apply the corresponding
rows of W to some new test data X2 (perhaps from
a subsequent feedback session). A potential drawback
is that an optimized spatial filter can only be guaran-
teed to remain optimal for estimating a given source
as long as the spatial patterns of the other sources re-
main constant: changing any column of A may easily
affect all rows of A−1. So a spatial filter optimized for
listening to a particular part of the motor cortex in
the presence of, say, prominent frontal-cortex activity
may look different from a spatial filter optimized for
listening to the same source in the presence of promi-
nent occipital activity. It seems reasonable to hypoth-
esize that, over the course of a motor-imagery BCI
experiment, the spatial patterns for relevant sources
will change relatively little (we will assume that the
positions of the sources in the motor cortex, and the
spectral content of the signals they generate, are rel-
atively constant). By contrast we might expect the
spatial patterns in the rest of the decomposition to
change more significantly, particularly in transfer be-
tween training and feedback sessions (when conditions
of visual stimulation and general arousal change), but

also perhaps with regard to other factors like tiredness,
hunger, thirst or cognitive activity. For this reason, we
outline a simple approach based on fixed spatial pat-
terns (FSP) rather than fixed spatial filters (FSF).

FIXED SPATIAL PATTERN (FSP) DEMIXING
Both ICA and CSP can be seen as performing a
whitening or decorrelation, followed by a rotation, in
the s-dimensional space of sensors:

S = WX = RPX
X = AS = P−1R−1S.

The whitening matrix P can be any matrix such that
P>P = Σ−1, where Σ is the sensor covariance ma-
trix. The rotation matrix R is optimized according to
some criterion (class difference in projected variance
for CSP, independence of outputs for ICA). Let us as-
sume that we have used one of these methods to esti-
mate P1 and R1 from training data X1, and have parti-
tioned the mixing matrix A1 into two sets of columns,
A1 =

[
A[r]

1 : A[i]
1

]
corresponding to the task-relevant

and irrelevant sources respectively. We then observe
test data X2 and estimate a new P2 from it. We now
want a new R2 that will best separate our sources, but
under the constraint that the relevant columns of the
resulting A2 be the same as they were in A1.
As in the spatially constrained ICA (SCICA) approach
described in [1], we partition R−1

2 into constrained and
unconstrained columns, [C : U]. The FSP constraint
gives us C = P2A

[r]
1 . Since it is unlikely that P1 = P2,

we cannot assume that columns C are orthonormal.
However, like [1] we will assume that C and U occupy
orthogonal subspaces. This allows us to write R2 as a
vertical concatenation of pseudoinverses, to obtain:

W2 = R2P2 = [C : U]−1P2 =

[
(C>C)−1C>

(U>U)−1U>

]
P2.

If, like [1, 2], we were using this technique to cor-
rect the EEG for artifacts with known spatial pat-
terns A[r]

1 , we would then have to proceed to optimize
the U (making the further assumption that columns U
are orthonormal) in order to estimate the remaining
sources. However, since we have already decided that
the remaining sources are irrelevant, we can ignore the
lower rows of W2 and hence U. Substituting for C, we
obtain:

W[r]
2 = (A[r]>

1 Σ−1
2 A[r]

1 )−1A[r]>
1 Σ−1

2 (1)

This simple formula requires only the fixed spatial pat-
terns A[r]

1 and a new estimate Σ2 of the covariance of
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 the sensor signals from which we want to extract the
corresponding sources.

DEMONSTRATION
We present a preliminary illustration that this ap-
proach can make motor-imagery BCI classification
more robust to changes in task-irrelevant brain activ-
ity. We use 7 two-class data sets. The first is the
118-channel EEG dataset IVc from BCI Competition
III: we took the 500–1500 msec interval of each trial in
both training and test set, with the 0 class removed,
resulting in 210 training trials and 280 test trials of
left-hand/foot motor imagery. The other 6 are imag-
ined left/right hand movement data sets from our lab,
each consisting of 400 trials of 39-channel EEG. We
use the first 200 as training and the second 200 as test
points.
First, we perform ordinary CSP on the training trials
with a wide-band (7–30 Hz) temporal filter. We invert
the full s-by-s filter matrix and keep the first 4 and
last 4 spatial patterns as our A[r]

1 . Next, we track the
activity of the sources associated with these 8 patterns
throughout the whole data set (training and test tri-
als). For each trial i, we obtain spatial filters Wi using
equation (1) with a moving estimate of the covariance:
each Σi is obtained from the last n trials including the
current one, i. e. trials (i− n + 1) . . . i. After applying
the spatial filter, we compute the log amplitude spec-
trum using the Welch’s short-time Fourier transform
method. We then normalize the vector of amplitude
features for each trial and source. Using this feature
set, we then classify using a linear Support Vector Ma-
chine, finding the regularization parameter by 10-fold
cross-validation within the training set.
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Figure 1: Performance of FSP and FSF methods

The one hyperparameter that needs to be set is the
size of the moving window, n. In practice this could
be found by cross-validation, or perhaps by adding a
known artificial signal to the data, in a known artificial
spatial pattern, and empirically determining the value

of n that allows it to be recovered most accurately.
Here, we simply present the results for each of a range
of values, to see its effect on test set performance.
In Figure 1, filled symbols show the results for data set
IVc (circles) and for the average of the 6 subjects in
the other study (triangles)—the individual subject re-
sults were broadly consistent with the average, but we
do not have space to show them individually here. The
dashed lines show, for comparison, the performance of
a fixed spatial filter approach analogous to ordinary
CSP-based methods: the Wi were simply the original
filters found using the training trials, held constant
for all trials. We can see that, for a sufficient window
size, say n ≥ 20, the moving-window FSP approach
does not perform significantly better or worse than
the FSF approach.
At this preliminary stage we cannot say whether the
algorithm is not sensitive enough to non-stationarities
in the data to improve performance, or whether these
particular data sets do not suffer from a significant
non-stationarity problem in the first place (our six
data sets were all single-session without feedback).
However, we can demonstrate the moving-window FSP
approach’s robustness to non-stationarity by introduc-
ing non-stationarity into the data. In a second set
of tests, we added two Gaussian noise sources to the
test trials only. This introduces a difference in the
training and test distributions, resulting in clear prob-
lems for the FSF method (dotted lines). Both ar-
tificial noise sources had fixed spatial patterns (cho-
sen randomly), but their amplitudes drifted over time:
one increased linearly from a/2 to 2a over the course
of the entire test set, and the other decreased from
2a down to a/2, with a chosen such that the FSF
method suffered about a 10–15% degradation in per-
formance. Open symbols show performance on the
noisy data. Comparison of the filled and open symbols
shows that the introduction of non-stationary noise
into the test set did not greatly affect the moving-
window FSP method’s performance (hardly at all for
some subjects, like IVc), and hence it performed bet-
ter than the FSF approach for nearly all values of n.
This suggests that it is a promising candidate for deal-
ing with non-stationarities in EEG data, although a
wider range of data sets will be required in order to
see whether it is effective at coping with the kind of
non-stationarities that occur in reality.
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SUMMARY: We propose a simultaneous spatio-
temporal filter optimization algorithm for the sin-
gle trial electroencephalography (EEG) classification
problem. The algorithm is a generalization of the
Common Spatial Pattern (CSP) algorithm, which in-
corporates non-homogeneous weighting of the cross-
spectrum matrices. The spectral weighting coefficients
and the spatial filter are alternately updated. The
validation results on 162 motor-imagery BCI datasets
show that the proposed method outperforms wide-
band filtered CSP in most datasets and gives compara-
ble accuracy to Common Sparse Spectral Spatial Pat-
tern (CSSSP) with far less computational cost. The
proposed method is highly interpretable and modular
at the same time because the temporal filter is param-
eterized in the spectral domain.

INTRODUCTION
A Common Spatial Pattern (CSP) [1] based classifiers
for the motor-imagery BCI system has been success-
ful in extracting subject specific discriminative spatial
patterns. However, the problem of choosing the tem-
poral filter or the spectral band on which CSP works
has not been fully investigated in spite of recent efforts
[2, 3].
We propose a novel simultaneous spatio-spectral fil-
ter optimization technique and compare the classifi-
cation accuracy on 162 motor-imagery BCI datasets
with three conventional techniques, namely, Common
Spatial Pattern (CSP) [1], Common Spatio Spectral
Pattern (CSSP) [2], Common Sparse Spectral Spatial
Pattern (CSSSP) [3].

MATERIALS
We use 162 datasets of motor-imagery BCI experiment
from 29 healthy subjects. Each dataset contains EEG
signal recorded during 200-400 trials of one of the pair-
wise combinations of three motor imagination tasks,
namely right hand (R), left hand (L) or foot (F) (see
[3] for the detail).

METHODS
Preprocessing: We band-pass filter the signal from 7–
30 Hz and cut out the interval of 500–3500 ms after
the appearance of the visual cue on the screen from
the continuous EEG signal for each trial of imaginary
movement.
Spatio-spectral filter: Let us denote by X ∈ Rd×T the
EEG signal of a single trial of imaginary motor move-
ment, where d is the number of electrodes and T is the
number of sampled time-points in a trial. We consider

a binary classification problem where each class, e. g.
right or left hand imaginary movement, is called pos-
itive (+) or negative (−) class. The task is to predict
the class label for a single trial X.
In this paper, we use a feature vector, namely log-
variance feature, defined as follows:

φj(X;wj ,α
(j)) = log

T∑
k=1

α
(j)
k wT

j Vkwj (1)

(j = 1, . . . , J),

where wj ∈ Rd is a spatial projection that projects

the signal into a single dimension, α(j) =
{

α
(j)
k

}T

k=1
is the spectrum of the temporal filter, which is homo-
geneous (αk = 1 ∀k) in the case of conventional CSP
algorithm, and Vk := x̂kx̂†k ∈ Cd×d (k = 1, . . . , T ) are
the cross-spectrum matrices. The training of a clas-
sifier is composed of two steps. In the first step, the
coefficients wj and α(j) are optimized. In the second
step, the Linear Discriminant Analysis (LDA) classi-
fier is trained on the feature vector.
Since the covariance matrix of the temporally filtered
signal can be written as V (α) :=

∑T
k=1 αkVk, we solve

the following problem for the optimization of the spa-
tial projection (angled brackets 〈·〉c denote expectation
within a class c ∈ {+,−}):

max
w∈Rd

wT 〈V (α)〉+ w

wT 〈V (α)〉−w

Writing the spectrum of the spatially projected sig-
nal as {sk(w)}T

k=1, we set the spectral coefficients
α = {αk}T

k=1 as follows:

αk ∝


“

s
(+)
k −s

(−)
k

”“
s
(+)
k +s

(−)
k

”
v
(+)
k +v

(−)
k

if s
(+)
k − s

(−)
k > 0

and k ∈ I[7,30],

0 otherwise,

where I[7,30] is the set of DFT indices corresponding
to 7–30 Hz, and the following short hands are used:
s
(c)
k := 〈sk(w)〉c and v

(c)
k := Var [sk(w)]c.

Since both the spatial projection and the spectral co-
efficients depend on the other, we alternately update
them starting from a CSP with homogeneous spectral
filter. The process is illustrated in Figure 1.

RESULTS
Figure 2 shows the improvements in the 10× 10 cross-
validation error by iteratively updating spatio spectral
filter for six subjects. We use the log-variance feature
(1) with nof = 3 features for each class and LDA as a
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 classifier. The odd steps correspond to the spatial pro-
jection updates; the even steps are spectral updates.
Although major improvements were often observed at
the second step (spectral update), further improve-
ments were also observed after the third step (CSP
recalculation). For some subjects (e. g. in subject F)
systematic increases in the cross-validation errors were
observed.
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Figure 1: The topographical pattern of the CSP
projection and the spectrum of the filter are shown
for each step of iteration for a Left (−) vs. Foot (+)
dataset. The iteration starts from a homogeneous

spectral filter (step 0) and the spatial projection and
spectral filter are updated alternately (step 1–5).

Note that although we use nof = 3 features for each
class, only the top patterns are shown here for the

visualization purpose.

Table 1: The 25%-tile point, the median, and the
75 %-tile point of chronological test errors over 162
datasets are shown for CSP, CSSP, CSSSP, and the

proposed method.
CSP CSSP CSSSP proposed

(7–30 Hz) (20 steps)
25 %-tile 10.6 6.67 7.00 8.00
median 23.8 21.1 21.0 19.7
75 %-tile 35.8 33.6 36.4 35.3

Table 1 shows the comparison of test errors of four al-
gorithms, namely CSP [1], CSSP [2], CSSSP [3], and
the proposed method. Here, the validation was done

in the chronological manner, i. e. all methods were
trained on the first half of the samples and applied
on the remaining half. The time-lag parameter τ for
CSSP and the regularization constant C for CSSSP
were chosen by cross validation on the training set (see
[2, 3]).
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Figure 2: The cross-validation error at each step of
iteration is shown for six subjects. The median over
162 datasets is also shown (dashed line). The odd

steps and the even steps correspond to spatial
projection updates and the spectral filter updates,

respectively. Note that the first step is the CSP with
white spectral filter over 7–30 Hz.

CONCLUSION
We have proposed a spatio-spectral filter optimization
algorithm for the single trial EEG classification prob-
lem; the method is based on iterative updates of spec-
trally weighted CSP and the spectral coefficients. The
validation results on 162 BCI datasets show that the
proposed method outperforms wide-band filtered CSP
[1] and gives comparable results with CSSP [2] and
CSSSP [3] with far less computational cost.
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SUMMARY: Non-invasive real-time prediction of hand
trajectories by neural signals might allow consider-
able progress in neuroprosthetic. Here we evaluate
the accuracy that can be obtained when fitting and
predicting hand trajectories from scalp recorded and
synthetic EEG for two different hand movements: 1)
elliptic 2D movements and 2) reaching/approaching
3D movements. We show that both, recorded EEG
data and synthetic data serve to accurately fit the ex-
plored hand trajectories. Indeed, the smooth synthetic
data fits the model better than the measured data.
A cross-validation procedure was used to predict the
hand position coordinates in the second part of the tri-
als after training the model with the initial half. Also
here the synthetic EEG data yielded significantly high
(p < 0.0001) correlations between the predicted and
recorded hand trajectories for the 70% of trials. We
conclude that irrespective of the existence of a casual
relationship, it is always possible to fit hand trajecto-
ries by a multivariate time series of similar frequency
content.

INTRODUCTION
Neural signals directly recorded from the cortex of
monkeys have been used to accurately drive the 3D
movement of robotic arms. Extension of these devices
to paralyzed individuals are challenging because of the
inherent risks linked to neurosurgery. Besides, the
quality of recordings with long-term implanted devices
degrades with time. Thus, one might wonder if non-
invasive scalp recorded signals are informative enough
to allow for predictions of hand trajectories whith
the accuracy required to drive neuroprosthetic devices.
Some recent results using magnetoencephalography in-
dicate that this might be possible since rather accurate
prediction of hand trajectories were obtained in ten
subjects from 248 MEG channels.
In mathematical terms, the problem of predicting
hand trajectories from neural recordings consists in
finding a model in which the hand position coordi-
nates (the dependent variable) are written as a func-
tion of the neural activity (independent variable). One
widely employed model postulates a linear relationship
between the hand position at time t and the past of
neural activity (ARX models). A potential risk in this
type of models is the so-called overfitting that occurs
when the number of independent variables surpasses
the number of dependent variables. The danger of
overfitting is that good forecasting and model fitting
might arise for time series bearing no causal relation-
ship. The purpose of this paper is to illustrate the dan-

gers of overfitting in the problem of predicting 2D and
3D hand trajectories from EEG and synthetic EEG
(computer generated EEG).

MATERIALS AND METHODS
Hand Movements: We explored two different types
of movements represented in Figure 1: M1 – periodic
three dimensional elliptic movements (Figure 1a) and
M2 – non-periodic reaching/approaching movements
(Figure 1b) in which the subject’s hand started from
the keyboard, grasped and object from a tray and ap-
proached the object to the mouth.
Hand Position (HP) recordings: The 3D hand posi-
tion coordinates were recorded with a hand position
tracking system using a sampling frequency of 130 Hz.

Figure 1: Trajectories recorded with the hand tracking device
for periodic and non-periodic movements.

EEG Recordings: The EEG was recorded from 111
scalp electrodes (Electric Geodesic System) using a
sampling frequency of 1000 Hz. The EEG was simul-
taneously recorded with the HP data for the case of
movement M1 for 61 trials. A random subset of 20
electrodes was selected for the analysis reported here.
Synthetic EEG data (fEEG) generation: Generated as
combinations of sinusoidal waves of random phases.
Data Preprocessing: The differences in sampling fre-
quency between the HP and EEG recordings yield time
series of different lengths. We therefore resampled the
EEG and HP data using FFT interpolation to obtain
time series of 1000 samples length each one. We also
discarded the coordinate with the smallest spatial vari-
ation for movement M1 after realizing that the move-
ment was essentially planar.
Model: Lets consider the two following multivariate
time series: Y (t), the two-dimensional time series de-
scribing the hand position coordinates at time t.
V (t) the N -dimensional time series describing the
scalp recorded (synthetic) EED data recorded at N
scalp electrodes.
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 A linear relationship between the HP coordinates and
the neural activity can be assumed linear and written
as:

Y (t) = B1·V (t)+B2·V (t−T )+. . .+Bm·u(t−mT )+e(t)

Where B1 . . . Bm are the model coefficients, m is the
model order (m = 10 here), and e(t) is a noise term.

RESULTS

Movement M1, EEG data, model fitting: The fitting of
the model to the 20 randomly selected EEG channels
yield to very high correlation coefficients (cc) between
the fitted and the measured hand position coordinates
(cc x-coordinate = 0.9905, cc y-coordinate = 0.9913).

Movement M1, synthetic data, model fitting: The syn-
thetic data (20 synthetic EEG channels) yield perfect
fitting to the hand position data (cc x-coordinate =
1, cc y-coordinate = 1). Figure 2 shows the original
and fitted hand trajectories (x-coordinates top panels,
y-coordinates lower panels).

Figure 2: Example of original and fitted hand trajectories
using EEG (left) and synthetic EEG (right).

Movement M2, synthetic data, model fitting: The
synthetic EEG data also lead to excellent fitting of
the non-periodic movement 3D trajectories. Figure 3
shows an example of the fitting for each independent
coordinate and the cc values.

Movement M1, synthetic EEG data, hand trajectory
forecasting: For prediction we divided the trials (pairs
of fEEG and HP data for each performed movement)
into two groups: 1) The training group formed by 25
trials and 2) the test group formed by 31 trials. The
model was fitted with the training set and then used
to predict hand trajectories over the test set. The
fictitious EEG data predicted the hand trajectories
with correlation values significant at the 0.0001 level
in more than the 70% of the test trial. In the 16% of
the remaining trials one coordinate was correctly pre-
dicted. In only the 14% percent of the test trials were
the hand trajectories incorrectly predicted.

Figure 3: Fitting of non-periodic data using synthetic EEG.

DISCUSSION
The results presented here indicate that hand position
trajectories can be better fitted with computer gener-
ated data than with recorded EEG data. This effect
is due to the existence of oscillations in the EEG data
not present in the hand trajectories and is independent
of the possible movement artifacts. A perfect fit to the
hand trajectories can be obtained for smoothed EEG
data. The perfect fitting obtained with computer sim-
ulated data is not due to the use of smooth two dimen-
sional periodic movements since, for 3D non-periodic
movements, the fitting is also excellent. In this latter
case, the lack of periodicity influences the fitting at
the beginning and end of the time series. Finally, the
forecasting capabilities of the synthetic data are also
excellent.

CONCLUSION
Both, neural signals and synthetic signals show excel-
lent capabilities to model 2D and 3D hand trajecto-
ries. Synthetic data are able to predict such trajecto-
ries with adequate accuracies while bearing absolutely
no relationship with the hand position data. These re-
sults therefore introduce a note of caution when ana-
lyzing experiments in which the number of time series
containing the neural data surpasses the dimensions
of the hand coordinates. In such cases, it is impossi-
ble to decide if the obtained accuracy is due to model
overfitting or to actual neurophysiological information
contained in the neural data.
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SUMMARY: The aim of the study was to classify up to
four direction distinctive imaginary wrist movements
based on single-trial EEG recordings. The algorithm
was based on the Gabor transformation for features
extraction and recurrent neural networks for classifi-
cation. Classification rate of four different movements
(flexion, extension, pronation and supination) was up
to 71.7 % with an average of 62.3% in all seven sub-
jects. The average classification rate of any three se-
lected movements was 67 % and the average classifica-
tion rate of any two movements was 79.2 %. Surpris-
ingly, 66 % of the features included in classification
belong to the gamma region. This is the first study
showing results of classification of such large number
of movement classes on a single joint .

INTRODUCTION
Detection of single-trial imaginary movements gener-
ally utilizes EEG analysis in space, time and frequency
domains. However, current approaches are limited as
different classes are mainly related to different limbs
[1]. To detect different types of movement for a sin-
gle limb/joint, the number of classes should increase.
However, this is difficult to achieve because the usual
spatial information cannot be exploited as the move-
ments to be classified activate the same region of the
brain. In this study, we tried to achieve detection of up
to four different types of imaginary kinesthetic move-
ments of the right hand.

MATERIALS AND METHODS
Experimental Procedure: Seven healthy right handed
volunteers (24.9 ± 2.5) participated in the study. All
subjects signed a consent form. Subjects were asked to
perform four kinesthetic imaginary right wrist move-
ments: flexion (F), extension (E), pronation (P) and
supination (S). All subjects except subject 6 had no
experience in similar experiments but were asked to
perform a session of real movements prior to the imag-
inary one. At time t = 0 s, a warning sign (a rectan-
gle) appeared on the screen for 0.25 s. At t = 1 s, an
arrow pointing in one of the following directions was
shown: right (F), left (E), up (P), and down (S). The
arrow indicated the movement to be executed (letters
in parenthesis above). The arrow stayed on for 3 s
and for that time the subject was asked to keep the
hand in the required position. The time between the
arrow’s disappearance and the new warning was ran-
dom, between 5 and 8 s. The order of movements was
also random. Each subject performed 60 movements
of each type, totaling 240 movements divided in four
sessions.

Recording procedure: EEG was recorded using a 64
channel ActiveTwo system (Biosemi-TM) at 256 sam-
ples/s. The reference was the right mastoid. EMG
was bipolarly recorded from the flexor carpi radialis
and the extensor carpi radialis to check if there was
any real movement. Horizontal and vertical EOG were
recorded from the right eye as well.
Data Pre-Processing: EOG was removed using inde-
pendent component analysis (EEGLAB, SCCN). The
component containing EOG artifact was removed and
EEG was reconstructed from the rest of components,
then referenced and filtered (high pass at 0.5 Hz, low
pass at 80 Hz, stopband at 50Hz). Epochs of 5 s were
extracted, starting 1 s before the warning and up to
4 s after it. A baseline (50ms of EEG starting 1 s be-
fore the warning) was subtracted from the rest of the
epoch. Independent components (IC) were calculated
based on epoched EEG. Only 3 s long epochs showing
IC while the arrow was on the screen were included in
the analysis.
Joint Time-Frequency Analysis: Gabor coefficients
(GC) (time window 120 ms, frequency band 2Hz) were
calculated on the independent components. Only GCs
corresponding to 8–70Hz were included in the final
analysis. For 64 components and one 3 s epoch, this
yielded 49600 coefficients. To find the coefficients that
gave the best separation between the four classes, the
Davis-Bouldin Index (DBI) [2] was calculated for four
groups and two-dimensional variables (real and imag-
inary part of GC). Five hundred (about 1 %) of the
coefficients with the lowest DBI were used for classifi-
cation with a neural network.
Neural Network Training: A recurrent Elman network
was used. Thirty trials of each movement were used for
training and the rest were used for classification test-
ing. The input layer consisted of 1000 neurons (500
absolute values and 500 phases values of the chosen
GC) plus previous values of the hidden layer, hidden
layer had 250 neurons and the output had 4, 3 or 2
neurons, depending on the classification task.

RESULTS
Table 1 shows recognition rates for four different imag-
inary wrist movements (flexion F, extension E, prona-
tion P and supination S) for all subjects. Table 2
shows the average recognition rate for all subjects for
four possible combinations of three different imaginary
movements. Table 3 shows an average recognition rate
for all subjects for six possible combinations of two
imaginary wrist movements.
From the 500 selected best features, 7.3 ± 2.2 % were
in the alpha (8–12Hz) band, 29.0 ± 7.5 % were in the
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 beta (13–30Hz) band, 46.4 ± 5.6 % were in the lower
gamma (31–50 Hz) band and 20.1 ± 2.0 % were in the
higher gamma (51–70 Hz) band.

Table 1: Recognition rate for four imaginary wrist
movements for each subject and the average value for

all subjects
Subject F E P S Average

1 67 83 70 67 71.7
2 68 58 82 65 68.2
3 57 67 70 73 66.7
4 60 63 67 67 64.3
5 63 50 67 57 59.2
6 63 63 43 50 54.7
7 40 43 57 67 51.8

Total Average: 62.3 ± 10.4

Table 2: Average recognition rate for all subjects for
all combinations of three imaginary wrist movements

FEP 66.7 ± 10.9
FES 67.0 ± 13.3
FPS 68.8 ± 8.0
EPS 65.4 ± 13.1
Average 67.0 ± 11.3

Table 3: Average recognition rate for all subjects for
all combinations of two imaginary wrist movements

FE 79.0 ± 9.7
FP 80.2 ± 9.2
FS 79.5 ± 7.6
EP 77.4 ± 14
ES 79.9 ± 9.3
PS 79.4 ± 8.7
Average 79.2 ± 9.9

The stopping criteria for network training was a min-
imum gradient of 10−6, that typically resulted in a
mean square error MSE = 9 ·10−8. To check for possi-
ble overfitting, the MSE was chosen as a stopping cri-
teria. For MSE = 10−3, the average recognition rate
was 61.8 ± 7.2 and for MSE = 10−5 it was 61.7 ± 6.8.
Both mean values are worse than the one shown in
Table 1. The number of neurons in the hidden layer
was also varied. The results, shown in Table 4, don’t
show any clear trend that would indicate overfitting.

Table 4: Average recognition rate for all subjects as a
function of the number of neurons in the hidden layer

50 63.1 ± 2.5
100 59.7 ± 9.0
150 60.1 ± 10.7
200 58.9 ± 9.1
250 62.3 ± 10.4

DISCUSSION
Single trial EEG classification of different types of
imaginary movements on the same joint is a difficult

task because the spatial distribution of the EEG sig-
nals cannot be expected to yield relevant information.
Therefore, the analysis has to be focused on time do-
main and/or frequency analysis. The Gabor Trans-
form is a useful tool because it provides the most pre-
cise information about both amplitude and phase and
has a fixed time-frequency windows in the whole time-
frequency domain.
Similar single-trial studies have been restricted to two
class separation problems, such as the classification of
intention to generate a shoulder versus elbow torque,
with a classification accuracy of 89 % [3]. However, the
latter study was performed on only 4 subjects and us-
ing 163 electrode EEG. A four class single trial study
has been performed to classify imaginary movement
in four different limbs [1]. The results of our study:
62.3% average recognition rate of four movements,
67 % of three movements and 79% of two movements
are encouraging results for the following reasons: a)
imaginary movements about the same joint were clas-
sified, b) single trial classification c) not previously
trained subjects d) no subjectively discarded data and
d) only EOG was removed using ICA. Further, the
results are from seven subjects, which is a larger num-
ber than in most of comparable studies. An interesting
result of this study was that 66 % of all GC used for
classification belong to gamma band (30–70 Hz). Com-
binations of left and right wrist imaginary movements
could potentially enable separation of eight different
classes. In the future, a number of training sessions
has to be increased and different types of classifiers
have to be applied in order to increase the classifica-
tion accuracy.

CONCLUSION
Using a time-frequency approach and neural-network
based classifier of single trial movements, it was pos-
sible to classify four different types of imaginary wrist
movements. The most important features for classifi-
cation of movement were in the gamma band.

ACKNOWLEDGEMENT
This work was supported by the EPSRC (Grant
GR/T09903/01).

REFERENCES

[1] Pfurtscheller G, Brunner C, Schlögl A, Lopes da
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SUMMARY: Unsupervised manifold learning for di-
mensionality reduction has drawn much attention in
recent years. This paper applies two manifold learn-
ing methods for the first time to feature dimension-
ality reduction in brain-computer interface (BCI) de-
sign, and compares them with principal component
analysis (PCA) and supervised PCA that is mathe-
matically equivalent to the common spatial patterns
(CSP) method. Their abilities to reveal embedded
low-dimensional submanifolds or subspaces of high-
dimensional BCI data and to preserve or improve the
data separability are analysed. Experimental results
on asynchronous BCI data from 3 subjects are pre-
sented. As the methods are unsupervised, they are
particularly suitable for adaptive and asynchronous
BCI.

INTRODUCTION
In BCI system design, a well-known problem is how to
handle a very large amount of features extracted from
multi-channel EEG signals. When the number of ex-
tracted features is over hundreds or even thousand,
the training of a BCI classifier would be problematic
due to the overfitting problem caused by highly noisy
BCI data and the lack of representative data in the
high-dimensional feature space.
Feature selection is a commonly used approach for
solving this problem [7]. Although it offers good inter-
pretation, the dimensionality of the constructed new
feature space usually can or has to be further reduced,
resulting in better classification performance. Project-
ing high-dimensional features onto a low-dimensional
new feature space is another well-known approach,
which can be regarded as high-level feature extraction
or feature fusion [2].
This paper investigates on two manifold learning
methods [3, 8] for BCI feature dimensionality reduc-
tion, and compares their performance with other un-
supervised and supervised methods [2, 4]. The focus
of investigation will be on whether nonlinear projec-
tions can produce better new feature space than linear
ones and whether unsupervised approach to BCI fea-
ture dimensionality reduction is likely to perform as
well as supervised approach or even better.

MANIFOLD LEARNING METHODS
In recent years, unsupervised manifold learning meth-
ods have been developed for nonlinear dimensionality
reduction, such as Laplacian Eigenmap [1], ISOMAP
[9], and locally linear embedding (LLE) [8]. There
are four common steps in these methods: 1) comput-
ing nearest neighbours of input data, 2) constructing

a weighted graph using neighbourhood relations, 3)
deriving a matrix based on the graph as an optimal
criterion, and 4) producing projected data from the
top or bottom eigenvectors of this matrix. The differ-
ences among these methods lie in the definitions of the
weights and optimal criteria.
Unlike linear projection methods, the results of non-
linear manifold learning methods are projected data
themselves rather than projection matrixes or func-
tions. Therefore, for classification after a training
phase, a nonlinear projection function has to be learnt
from the obtained projected data, e. g., by neural net-
works. To overvome this problem, a locality preserving
projection (LPP) method has been developed, which
is linear but provides good approximation to the non-
linear Laplacian Eigenmap [1, 3].
Although the manifold learning methods are unsuper-
vised, they make use of structural knowledge within
the data, such as locality and proximity relations, and
thus suitable for classification applications. Without
the need of class labels, they are especially suitable
for adaptive and asynchronous BCI. This paper ap-
plies LLE and LPP to dimensionality reduction of
asynchronous BCI data, and presents results in terms
of separability on training data, optimal embedding
dimension chosen by cross-validation, and prediction
performance on testing data, in comparison with PCA
and supervised PCA (SPCA) [2, 4] that shares the
same idea as CSP filters [6].

EXPERIMENTAL RESULTS
The data used here is for asynchronous BCI and from 3
subjects, each performing 3 mental tasks in a random
order during 4 recording sessions respectively. During
a session of 4 minutes, a subject performed self-paced
mental tasks, each lasting about 15 seconds. EEG sig-
nals were recorded from 32 channels. Power spectral
density (PSD) features were extracted and 96 features
were selected. Detailed description of data recording
and preprocessing can be found in [5].
The first 3 sessions from each subject were used for 3-
fold cross-validation of the LDA classifiers (using one
against the rest mechanism), with features resulted
from 4 dimensionality reduction methods as inputs.
The average classification accuracies on training data
were used to examine the separability of the features
resulted from various projections. Figure 1 illustrates
the classification accuracies on Subject 1 after the fea-
tures are projected by PCA, LLE, LPP, and SPCA,
respectively, onto low-dimensional subspaces or sub-
manifolds. It shows that LPP achieves the best result
among the unsupervised methods and almost matches
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 SPCA. The results on Subjects 2 and 3 have also been
obtained, which show the similar trends of the 4 meth-
ods although the accuracies are lower. In order to
analyse the best embedding dimensions identified by
the 4 methods and their corresponding classification
accuracies on validation data, Figure 2 gives a perfor-
mance comparison among the 4 methods on validation
data from Subject 1. It can be seen that LPP is able
to find the lowest subspace producing the best cross-
validation performace. The result of LLE is not so sta-
ble, but it is worth further investigation in the future.
Results on Subjects 2 and 3 also lead to observations
similar to the above.

Figure 1: Separability comparison, using any two of
the first three sessions from Subject 1 as training

data and averaging over three folds.

Figure 2: Comparison of performance on validation
data from Subject 1, averaging over three folds.

By using the optimally reduced dimensions obtained
from the cross-validation, in comparison with the sit-
uation of no dimensionality reduction, the 4 methods
were further evaluated in terms of their classification
accuracies on testing data which is the 4th session from
each subject.

Table 1: Performance comparison on testing data
Projection Feature Subj 1 Subj 2 Subj 3 Ave
methods dimensions (%) (%) (%) (%)

None 96, 96, 96 81.14 69.99 55.25 68.79
PCA 57, 32, 37 80.37 68.52 54.21 67.70
LLE 18, 12, 31 78.34 73.47 45.79 65.87
LPP 12, 4, 56 82.56 73.33 59.97 71.95

SPCA 18, 12, 60 81.48 72.12 59.06 70.89

The results are given in Table 1, which show that LPP
and SPCA improve the classification performance on
all subjects and more significantly on Subjects 2 and
3 whose EEG signals are of poorer quality than Sub-
ject 1. It is interesting that unsupervised method LPP
slightly outperforms supervised method SPCA. Not
surprisingly, PCA degrades the classification perfor-
mance in comparison with no dimensionality reduc-

tion. LLE does not produce good results in this exper-
iment, especially on Subject 3. Further investigation
would be required to find out why.

DISCUSSION AND CONCLUSION
Although the original feature vectors were obtained
through feature selection, their dimensionality can still
be reduced dramatically by manifold learning, lead-
ing to average classification accuracy improvement of
over 3 %. Unsupervised method LPP is able to match
or even outperform supervised method SPCA, and
would be advantageous in adaptive and asynchronous
BCI. In theory, LLE is capable of revealing nonlin-
ear low-dimensional submanifolds embedded in high-
dimensional features. The experimental results in this
paper have not shown its advantage. However, it is
worth further investigation.
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SUMMARY: Asynchronous Brain-Computer Inter-
faces (BCI) offer more natural mode of human-
machine interaction, allowing users to make voluntary
and self-paced mental activities. However, it is difficult
to discriminate intentional user control from idle with
this approach. In this paper, we propose a method
that requires minimal user training for accurate on-
set detection of real movements using optimal spectral
features from selected electrodes. We obtained true
positive rates of 100 %, 87.5%, and 72.5 % for 3 sub-
jects respectively. The results also indicate a potential
of the method for detecting onset of imagery move-
ments.

INTRODUCTION
In recent years, there has been active research on tech-
niques for detecting mental activities in asynchronous
BCI designs [1, 2, 3]. In our approach here, nar-
row band spectral analysis of the electroencephalo-
gram (EEG) from 8–45Hz is conducted, because it
covers mu, beta, and lower gamma frequency compo-
nents, each having its own distinctive characteristics
during real and imagery movements [4]. The onset
detector presented in this paper has combined EEG
spectral feature extraction, feature selection to reduce
feature space dimension, and a decision mechanism to
detect onset from classification results. We present
the methodology in the following section, followed by
results and discussions, and a conclusion.

MATERIALS AND METHODS
Subjects and motor task: 3 right-handed subjects (2
males and 1 female) were sitting comfortably with
right arm resting on the arm rest. They were asked
to perform the same real movements 40 times on their
own pace in one session (session lasted 534, 338 and
400 seconds for Subject 1, 2, and 3, respectively).
There was no cue from the system to instruct the sub-
jects when to make a movement (i. e., random inter-
trial interval), but subjects were asked to leave at
least 4 seconds between two movements. The designed
movements were: extending right wrist, holding for
about 1–2 seconds, and relaxing.
EEG and EMG Acquisition: EEG signals were
recorded with 64 electrodes according to the Inter-
national 10-10 Standard (ActiveTwo, Biosemi, The
Netherlands). We used electromyogram (EMG) to
record muscle activities for establishing correct onset
and offset time points for self-paced movements. This
allows training data to be labelled according to the

real movement activities. EMG was recorded bipolar,
from extensor carpi radialis muscle. Both EEG and
EMG were sampled at 1024 Hz, but downsampled to
256 Hz for offline analysis. No artefact rejection or
EOG correction was employed.
EEG data labelling: The continuous EEG data were
labelled into 4 classes. Samples of 1.5 seconds prior to
EMG onset were labelled as “preparation”. Samples
between an EMG onset and offset of one movement
were labelled as “execution”. Samples of 1.5 seconds
after an EMG offset were labelled as “after execution”.
Samples that did not fall into one of the above classes
were labelled as “baseline”, as they are supposed to be
irrelevant to the movement.
Feature extraction and selection: EEG data were fil-
tered with common average reference. To extract fea-
tures for narrow band spectral analysis, the Thomson
Multitaper Method was used to estimate the power
spectral density (PSD) of each EEG channels over a 1
second moving window with an overlap of 7/8 seconds.
The PSD over 8–27 Hz was sampled and averaged ev-
ery 2 Hz, and over 28–45Hz it was sampled and aver-
aged every 3Hz, resulting in a vector of 16 features.
For 64 channels, there are 1024 features in total.
Davis Bouldin Index (DBI) [5] was used to select a
subset of the best features. N features that maximise
the validity of “preparation” against other classes were
selected, and another N features that maximise the
validity of “execution” against other classes were also
selected. Therefore, 2N features were selected in total.
Classification and onset recognition: A naive Bayes
classifier was used to deal with the 4 class problem,
To find an EEG onset, a moving decision window that
checks the past 11 classification results1 was applied
at each time point in feature space. In the moving
window, if there were 2 (for Subjects 1 & 2) or 3 (for
Subject 3) predicted “preparation”, followed by 3 “ex-
ecution”, then the current position of this window was
recognised to be an EEG onset. This sort of detection
would be less sensitive to noise, because “preparation”
correlates to “execution” and an individual false clas-
sification of “preparation” or “execution” would not
lead to a false-positive detection. In performance eval-
uation, a predicted EEG onset is regarded as correct,
if there is a real movement onset that occurs either 2
seconds before or after this predicted point.
Performance evaluation was conducted by 10-fold
cross-validation. Each fold had 4 trials for testing
and 36 trials for training. The number of true-positive
(TP) detections and the number of false-positive (FP)

1It is a reasonable length. Shorter windows resulted in lower FP rate but also lower TP rate. Longer windows resulted in higher
FP rate and were sensitive to noise.
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 detections from all the folds were combined to produce
true-false difference (TF%) that is an event-by-event
measurement. Given that E is the total number of
movements or events (i. e., E = 40), TF % is defined
by TF% = (TP/E−FP/(E +FP)) ·100 (Townsend et
al. [1] counted multiple detections during an event as
a single TP. However, in this paper we counted M de-
tections during an event as a single TP, and add M−1
to total number of FP).

Table 1: Performance with optimal number of
features selected from 64 (top) and 37 (bottom)
channels respectively. Dev is the averaged time

between correctly detected and real movement onset.
Subject 2N TF% TP/E (%) FP Dev (ms)

1 16 95.24 40/40 (100) 2 325
2 10 69.13 35/40 (87.5) 9 788
3 28 59.46 29/40 (72.5) 6 688
1 14 86.39 39/40 (97.5) 5 556
2 30 70.91 32/40 (80.0) 4 922
3 40 57.61 29/40 (72.5) 7 575

Table 2: Selected features that give the results as
shown in Table 1. In each sub-table, left column

shows features that optimise the detection of
“preparation” and right column shows features that

optimise the detection of “execution”.
Subject 1 (2N = 16)

CP1 34–36Hz CP4 10–11Hz
FC1 31–33Hz P4 10–11Hz
CPz 34–36Hz CP2 10–11Hz
FC1 28–30Hz P4 8–9Hz
P3 8–9Hz CP4 12–13Hz
P3 16–17Hz P2 10–11Hz
FCz 31–33Hz P4 12–13Hz
P1 10–11Hz Pz 10–11Hz

Subject 2 (2N = 10)
Cz 28–30Hz CP3 10–11Hz
Cz 26–27Hz CP1 10–11Hz
FCz 28–30Hz CP3 8–9Hz
C1 28–30Hz CP3 12–13Hz
C1 18–19Hz P1 10–11Hz

Subject 3 (2N = 28)
CPz 20–21Hz P5 18–19Hz
CP3 18–19Hz CP5 16–17Hz
P2 20–21Hz P5 16–17Hz
CP3 22–23Hz Pz 20–21Hz
CP3 16–17Hz CP3 20–21Hz
CP5 14–15Hz CP1 20–21Hz
CP5 18–19Hz CPz 22–23Hz
C3 22–23Hz CP3 14–15Hz
P5 14–15Hz CP2 22–23Hz
CP5 12–13Hz P2 22–23Hz
P5 20–21Hz CPz 18–19Hz
P5 12–13Hz CP2 20–21Hz
CP5 10–11Hz CP1 22–23Hz
P7 18–19Hz P5 22–23Hz

RESULTS AND DISCUSSION
Classification performance depends on the number of
selected features. The method was evaluated by cross-
validation, with 2N ranging from 2 to 100. The op-
timal values of 2N are shown in Table 1 (top), where
the features were selected from 64 channels (1024 fea-
tures). Subject 1 produced the best overall result,
with 100% TP rate and TF% = 95.24. Subjects 2
and 3 produced similar results: though Subject 2 had
a higher TP rate (87.5 %) and TF% = 69.13, whilst
Subject 3 had less FP detection. Table 1 also shows
the averaged time deviation.
The selected channels and frequency components (i. e.,
features) are also explicitly given in Table 2. It is in-
teresting to note that some features selected for Sub-

jects 1 and 2 are from lower gamma band, which dom-
inate the “preparation”. Although rarely found in the
human EEG, study in [4] has shown the existence of
gamma band activities shortly before movement onset,
which is then followed by mu rhythm activities.
Previous ERD/ERS research [6] showed that during
real movements, EEG activity can be found in both
contralateral and ipsilateral hemispheres, but in the
case of imaginary movements only contralateral hemi-
sphere gets activated. In order to make the condi-
tions similar to imaginary movements, Table 1 (bot-
tom) shows the results with features selected only from
the contralateral hemisphere. Even with fewer avail-
able features, only a slight drop in TF% was found
for Subject 3, but almost a 10 % drop for Subject 1.
This is because for Subject 1, the best selected fea-
tures that optimise the detection of “execution” are
from ipsilateral hemisphere which gets activated after
the contralateral one during real movements. The re-
sults in Table 1 (bottom) indicate a potential of our
method for detecting onset of imagery movements.

CONCLUSION
An onset detection method for asynchronous BCI is
presented in this paper, which shows some promise for
detection of self-paced real movements, and potentially
of imagery movements. New experimental protocol
and extension to deal with imagery movements will be
investigated in our future research. There is also much
room for improving the feature selection method.
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SUMMARY: In this paper, we use Kalman filtering to
improve inverse solutions for BCI applications. The
algorithm is tested on EEG data from the BCI 2003
competition. The aim of this work is to improve the
spatial resolution of the EEG using the inverse model
and take profit of their excellent time resolution with
the Kalman filter. Preliminary results show a 4 % im-
provement by our additionnal Kalman filtering.

INTRODUCTION
Current research in BCI are mainly conducted directly
on the EEG signals. These signals have a very good
time resolution but suffer from a low spatial resolu-
tion. This shortcoming can not only be explained by
the limited number of electrodes placed on the scalp
but also because electrodes and sources are separated
by the skull which is responsible of the diffusion of elec-
tric signals transmitted out of the brain. The Inverse
Problem (IP) offers an improvement of this spatial res-
olution with the projection of the EEG measurements
on dipoles distributed on a head model. The IP adds
an information prior to the EEG (i. e. brain’s geome-
try, electromagnetic transmission inside the brain) and
therefore could be helpful in BCI applications based on
the localisation of motor tasks. Already a few steps
have been taken in that direction [1, 2, 3] and show
promising results. To go further in that path we sug-
gest improving inverse solutions by taking into account
the temporal evolution of the EEG. It has recently
been shown [4] that Kalman filtering is a suitable ap-
proach for this purpose although it has mainly been
tested on simulated data. The main challenge in using
this method with real EEG data is that we still know
very little of the brain dynamics, and thus it seems
difficult to find an accurate model. We will show in
the following how, in the case of BCI applications, it is
possible to elude this problem. We will first describe
the data we used as well as the head model for the
inverse problem. Then the application of Kalman fil-
tering to the IP will be described. Finally, preliminary
results will be presented and discussed.

MATERIALS AND METHODS
Data [5]: Provided by Fraunhofer-FIRST, Intelligent
Data Analysis Group, and Freie Universität Berlin,
Department of Neurology, Neurophysics Group.
This dataset was recorded from a normal subject dur-
ing a non-feedback session. The task was to press
with the index and little fingers the corresponding keys
in a self-chosen order and timing ‘self-paced key typ-
ing’. 28 EEG channels were measured at positions of

the international 10/20-system. Signals were recorded
at 1000 Hz with a band-pass filter between 0.05 and
200 Hz. There are 416 epochs (316 for the training set
and 100 for the test set) of 500 ms length.
Head Model : For simplicity reasons, a simple four con-
centric spheres head approximation was used. As few
as 400 dipoles were fitted on a half-sphere just below
the cortex. They are orientated perpendicular to the
cortex. We chose a small number of dipoles to cope
with computational expenses and also because the ac-
tivity we are looking at is located in the cortex.
Kalman filtering : The inverse problem can be viewed
as a Kalman filtering problem where the measurements
are the EEG, φ(t), and the states, J(t), are the val-
ues of the current of each dipole. The measurement
equation is:

φ(t) = GJ(t) + ε (1)

where G (commonly called the lead field matrix) rep-
resents the electromagnetic model of the head and is
a projection from the electrode space to the dipole
space. For simplicity reasons we used a first order lin-
ear approximation for the state equation where A is
the dynamical model matrix:

J(t) = A(t)J(t− 1) (2)

Since we do not know how the currents in each dipole
are linked, we adopt a very simple model linking cur-
rent at time t and position d, namely j(d, t), to current
j(d, t− 1) and currents at time t− 1 on neighbouring
positions as in expression (3). This makes sense in
our case since we work specifically on regions located
in the left and right motor cortex. Thus the dipoles
located in these regions are probably correlated.

j(d, t) = a(t)j(d, t− 1) +
1
4
b(t)

∑
d′εD(d)

j(d′, t− 1) (3)

The second expression on the right hand side expresses
the contribution of d’s neighbors. Since the dipoles
are located on a surface, each dipole has four neigh-
bors. We suppose that all neighbors have the same
contribution. As was pointed out in the introduction,
brain dynamics are yet to be known and of course, this
model is not precise enough to track the temporal evo-
lution. Nonetheless in the particular case of the data
we analyse here, it is possible to have improved inverse
solutions by introducing the supposed dynamics that
appear when we take out the mean for one movement.
For example, taking a dipole located in the middle
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 of the right (resp. left) cortex, and taking the mean
of the signal provided by this dipole over a few trials
when the user moved his left (resp. right) hand, it is
possible to observe a slowly decreasing curve.
Therefore, we can improve the inverse solution corre-
ponding to a given task by giving a temporal depen-
dency for A, and giving a gradually ascending value
for the a(t) that corresponds to dipoles located in the
right or left cortex. We then face a model selection
problem since we use two models, one for the left and
one for the right hand movement.

PRELIMINARY RESULTS
Algorithms were only tested on the test set, and the
inverse problem was not optimized. The classifier con-
sisted simply in comparing the mean of the signal for
the dipoles in the right and left motor cortex. The
inverse problem alone gave a 72 % good classifications
while the inverse problem with the Kalman approach
gave 76 % good classifications.

DISCUSSION
Although these results are certainly inferior to the
best results obtained on this dataset, they show that
Kalman filtering can be used and can improve results
obtained with the inverse problem. On the other hand,
recent work based on [1] using the same head model,
but with an optimized classifier, reports a 82 % good
classification. Hopefully, this result can be improved
with the method described here. Possible improve-
ments will be obtained by using a better classifier, im-
proving the temporal model and using better features
than just the mean of the signal.

CONCLUSION
Kalman filtering has been applied to the inverse prob-
lem and used in the case of BCI applications. The
main challenge of this method is to find an accurate

model for the brain dynamics. One way to achieve this
is by using different models that enlight only one task.
A model selection can then decide which model is the
most suitable one.
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SUMMARY: Two novel Space-Time-Frequency (STF)
approaches for Brain Computer Interfacing (BCI) are
presented. The first algorithm is based on extending of
a precise time-frequency masking method to accommo-
date spatial information in BCI. In this method EEG
trials are classified based on the motion vectors of the
extracted EEG sources and their locations over the
scalp. In the second algorithm, using parallel factor
analysis (PARAFAC), the STF decomposition of EEG
is proposed. Results of using PARAFAC shows that
for each EEG trial there are two factors in µ band.
The spatial distribution of the factor with ERD time
characteristics is classified to indicate the subject’s in-
tention of left/right index movement imagination. We
can reliably distinguish between left and right index
movements by using these developed STF methods.

INTRODUCTION
Studies of medical imaging have established cortical
sensorimotor systems are activated during imagery as
well as real motions. It has been established that
planning and execution of movement leads to a short-
lasting amplitude attenuation following by amplifica-
tion in the µ rhythm known as event-related (de-) syn-
chronization (ERD/ERS) [1]. These brain activities
are spatially smeared when volume conducted through
the scalp, thus their exact localization is sophisticated.
Also the clearest ERD/ERS may occur at different fre-
quency bands and in different time points. This fact
motivated us to develop hybrid space-time-frequency
approaches for BCI. In this paper, we briefly intro-
duce the two methods where in both, in addition to
the time and frequency information of the EEG sig-
nals, the spatial information provide crucial indicators
of intended motion.
Based on the assumption that the electrical sources in
brain might move during index imagination, we devel-
oped a moving source tracker after clustering of the
highly active regions of the time-frequency maps of
64 channels EEG signals. In the second method in
order to remove the background activity subspace of
recorded EEG, we developed the PARAFAC algorithm
on the complex wavelet transformed filtered EEG sig-
nal with a static spatial mask over the sensorimo-
tor area. The spatial distribution of the factor with
ERD time characteristics is classified to indicate the
subject’s imagination. The support vector machines
classifier has been used for the two approaches. The
data of the first approach was provided by King’s Col-
lege Hospital, London where an able bodied subject
was seated with arms resting on a table. The second
method has been implemented on the EEG signals of

2 subjects participating in NIPS2001 BCI Workshop
datasets.

FIRST METHOD
Preliminary, the EEGs are transformed into the time-
frequency domain and then the TF representation of
each electrode is arranged into a matrix where each
element represents the x-y coordinates of the elec-
trode. Then, space-time-frequency masks are created
and the components within the masks are clustered.
Using k-mean clustering followed by the Gap statistics
method enables us to estimate the number of disjoint
factors, representing the brain’s active sources, accu-
rately. The cluster centers are one of the features used
by the classifier. The other significant feature is the di-
rectionality of the moving reconstructed source signal
which is deduced from its cross correlation with the
raw EEGs. A block diagram of the proposed system is
shown in Figure 1. Using this approach classification
rates up to 75.5 % have been gained when Gaussian
RBF kernel is used for the SVM classifier. The results
are detailed in Table 1. Interested reader is referred
to [2] for details of this approach.

Figure 1: The diagram of STF based atom extraction
and classification algorithm [2]
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 Table 1: The performance of the classifier based on
the average (standard deviation) number of correctly
classified points. Three kernels are compared in the

classification.
Kernel Average classification rate (%) (s. d.)

Overall Right Left
Gaus. RBF 75.50 (1.0) 75.16 (1.2) 69.43 (1.5)
Cubic Poly. 65.30 (1.4) 66.15 (1.0) 64.36 (1.0)

Linear 61.01 (1.3) 60.34 (1.4) 56.51 (1.0)

SECOND METHOD
In this approach, we decomposed the time-varying
EEG spectrum of different channels using PARAFAC.
It has long been known that unique multi-linear de-
composition of multi-way arrays of data is possible us-
ing PARAFAC. We showed that PARAFAC is capable
of successfully space-time-frequency decomposition of
the EEG for BCI. This makes use of the fact that
multichannel evolutionary spectra are multi-way ar-
rays, indexed by electrode, time, and frequency. The
inherent uniqueness of the PARAFAC solution leads
to single trial EEG decomposition with a minimum a
priori assumptions such as independencies of channels.

Figure 2: Sample Space Time Frequency
decomposition of the 15 channel EEG signal recorded

during LEFT index imagination. The factor
demonstrated with solid line indicates a clear ERD in
the contralateral hemisphere. (a) Spectral contents of
the two identified factors, (b) Temporal profile of the
two identified factors and the onset of preparation

and execution cues are shown in vertical dashed and
solid lines, respectively, (c) and (d) Topographic

mapping of EEG for the two factors.

One sample result for left index imagination is shown
in Figure 2. Figure 2 (a) shows the spectral contents of
the two factors identified by PARAFAC in the µ band.
Figure 2 (b) is of great interest where two temporal
profiles are illustrated. Note that the blue and red
vertical lines indicate onset of “L/R” and “X” cues for
preparation and execution, respectively. Figure 2 (b)
shows that even before “X” which occurs at time point
3.75 s, the subject has started imagination. The dot-
ted curves of Figure 2 (a, b) correspond to Figure 2 (c),
where obviously occurs under. Note that red and blue
areas indicate the level of activity of the channels nor-
malized between zero and one (left ear is left and the
nose is up). The results come along with previous
researches where it is elaborated that an ERD may
be mostly recorded on the contralateral hemisphere in
µ band [1]. The second factor occurs simultaneously
within the brain but manifests the background activ-
ity of brain-due its temporal signature. The spatial
distribution of the ERD factor is introduced to the
SVM classifier as feature. The best achieved classi-
fication rate implementing this method was 76.22%
with Gaussian RBF kernels [3].

CONCLUSION
In this paper, two STF hybrid approaches for BCI
are presented. The first approach effectively utilizes
the spatial information of the localized a rhythms and
directionality of the moving sources. In the second
approach, the potential of PARAFAC to jointly STF
decompose the time-varying spectrum of multichannel
EEG, enables spatially localization of the ERD fac-
tor in contralateral hemisphere clearly in parallel with
time and frequency. The classifications have been done
by using the SVM and promising results achieved.
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 ENGINEERING THE BRAIN SIGNALS – PREPROCESSING
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SUMMARY: The central element in each brain com-
puter interface (BCI) is a translational algorithm that
converts electrophysiological input from the user into
output that controls external devices [1]. The focus of
our BCI group is to improve the accuracy and efficacy
of the techniques used to develop this translational al-
gorithm, thereby making an impact on increasing the
transfer rates for online BCI systems. In this paper, we
report on the preliminary analysis of the multi task,
multi-channel brain data and study the methods to
segregate it into useful sequences providing distinct
features for the development of an efficient learning
algorithm.

INTRODUCTION
The concept of BCI development evolved from motor
imagery which is then transformed into control signals
[2]. The key characteristics of precision, responsive-
ness and interpretability by which the development of
BCI is ranked, are not only dependent on the good
performance of the classifier, but also on the choice of
proper parameters characterizing signal features [3].
This feature extraction process is boosted, if the data
channel selection is based on its ability to provide in-
formation about the mental tasks, being performed
by the subject. Thus, Principal Component Analysis
(PCA) studies on the multi-channel data acquire im-
portance for the selection of the appropriate channels
with maximum information. Furthermore, the paper
covers object oriented filter design which gives better
trade off analysis between the stop band attenuation
and the filter order which is perceived to have positive
effect on the transfer rates of BCIs.

DATA
The dataset used here is provided by the University
of Tbingen, Germany and other participating univer-
sities as a part of the BCI competition 2005 [4]. The
subject had to perform a series of tasks as imagined
movements of either the left small finger or the tongue.
The 3 second trials were performed using 8× 8 ECoG
platinum electrode grid, placed on the contralateral
(right) motor cortex. To avoid visually evoked poten-
tials, the recording started 0.5 s after the visual cue.

METHODOLOGY
The intent is to extract more exhaustive knowledge for
the feature extraction process so that the classification
of this multi-channel training data is accurate and ef-
fective. By and large, the concept of motor imagery
is related to spatial location of the recording sites of
the head. This idea helps significantly, to shrink the
multi channel data and reject the channels which are
likely to be of less use in terms of the information they

contain about the left or right motor imagery. Since
it is known that the left small finger movement should
correspond to right part of the head, the recording
paradigm clearly implies that all the channels contain
the information about the right motor cortex. So there
is a need to extract those channels with maximum
information about the tasks. This is done through
PCA, a technique for reducing the number of corre-
lated variables in a data set without significant loss
of information. Since the training data trials are la-
belled as 1 and −1, we know that the two consecutive
trials are two different tasks. After the rejecting the
channels having less information, we propose to calcu-
late band powers for the selected channels to be used
as features for the learning algorithm. In the second
phase, an object oriented approach using MATLAB
is employed to design filters to segregate data into
frequency bands namely 0.5–7 Hz, 8–12Hz, 13–29Hz
and 30–50Hz. These frequency bands are so selected
that the tasks performed by the subject fall into one of
them. The band power in each of the selected channels
is used as a means of classifying the task. This also
indicates the prominent frequency band correspond-
ing to each of the two tasks. This concept is novel
[5, 6] because firstly, the methodology is implemented
on the data collected with the help of ECoG grid and
the identified key principal components determine the
channel selection. Secondly, filter design is object ori-
ented. The filter design becomes quite systematic with
object based approach i. e. the trade-off analysis be-
tween the stopband attenuation and the filter order
becomes less cumbersome. As we know that the filter
order is directly proportional to the delay between the
input and output in time (the computation time to
implement the filter), so the stopband attenuation can
be iterated to select filter order with the least distor-
tion. The iterations are based on the dynamics of the
data in terms of its statistical measures and amplitude
ranges. Lower filter order would mean less multiplica-
tions and subtractions, therefore less computational
time. Figure 1 (a) is a schematic representation of the
methodology and 1 (b) shows the parameters for the
band pass filter design.

RESULTS AND CONCLUSION

Bar charts in Figure 2 (a) and 2 (b) show large range
of variation in channels. This implies that there is
more rigorous brain activity going on in specific areas
of the brain. The challenge lies in selection of channels
with limited independent information about the tasks.
Firstly, the data is normalised by their second mo-
ments. PCA transforms the data set of correlated vari-
ables into a new set of uncorrelated variables, called
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 the principal components (PCs). The PCs are orthog-
onal and are sequenced in terms of the variability they
represent. They correspond to the directions in which
the input data has the largest variances. Before doing
the PCA we make sure that the channels are correlated
by using scatter plots between two channels. Scatter
plot between channel 1 and 2 in Figure 2 (c) shows a
cluster of points in the straight line i. e. for every value
in the first channel, there is a corresponding value in
the second channel, hence, correlated. Figure 2 (d)
shows somewhat less correlation between another set
of channels. Hence, it is observed that some channels
are more correlated than others.

1 (a) 1 (b)

Figure 1 (a): Methodology Flow; 1(b): filter design

There is a need to find a hypothetical spatial location
of electrodes in the grid which would give clearer con-
ceptual fundamentals about the correlation between
channels because we perceive that the channels adja-
cently placed in the grid might be closely correlated.
It is observed that the range of data is up to 20 dB
for all channels, so for the filter design, we regulate
stopband attenuation around this value. The ripple in
the pass band is kept at 0.5. This gives a direct form,
FIR equiripple stable filter, with linear phase and very
clean attenuation of 20 dB as shown in Figure 2 (e).
Stable elliptic filter with filter order of 12, Figure 2 (f)
has been designed with identical parameters for com-
parison. It exhibits non linear phase, but since our
application concerns band power, the non linearity in
phase doesn’t have large impact on the results. It is
concluded that PCA analysis is a useful tool to ex-
tract information and reduce the size of data. But the
recording paradigm of using 8×8 grid makes it compli-
cated to answer queries like, the electrode placement
in a grid might result in a distinguishable correlation
between the adjacently placed electrodes, which could
mislead our conclusions. There is a need to perform
more comprehensive statistical analysis on the data to
understand the distribution of the data before apply-
ing PCA to be able to choose specific channels. Even
the scree plots and eigen value ratios in percent are
not able to explain the selection of channels. In or-
der to use PCA for this type of multi channel data it
must be somewhat modified to take into account the
data structure and the recording paradigm. The spec-
tral power in each band can be computed and power
difference in two different channels for the same band
can also be computed which can act as features for the
learning algorithm. The authors are working on this
idea and results will be published soon.

2 (a) 2 (b)

2 (c) 2 (d)

2 (e) 2 (f)

Figure 2(a) and 2(b): Bar charts show variances of 64
channels for first task and second task respectively

before PCA. 2(c) and 2(d): Scatter plots show
correlation between channels for the first task. 2(e)
and 2(f): Magnitude and phase responses for the
equiripple filter and elliptic filters respectively
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SUMMARY: This study looked into classification of
wrist movements for left and right hands across user
with an unbiased selection of feature/channel sets.
The 10 best feature/channel sets as determined by the
Davies-Bouldin Index (linear separability) were used.
The features were then classified using a multi-layered
perceptron (MLP). Classification of executed move-
ments across users (classifier trained on data from one
set of subjects but tested on data from another) was
promising: near 80 % correct classification in some
cases. Data scaling improved the performance more
than MLP retraining on parts of the test user’s data.
On the other hand, imaginary movements proved more
difficult (near 60% mean correct recognition), with
the exception of 1 user whose results greatly improved
with MLP retraining (near 100 % correct classification
of left vs. right wrist imaginary movements).

INTRODUCTION
The study looked into wrist movements for left and
right hands. For each of 21 EEG channels, 776 fea-
tures from time, frequency and joint time-frequency
domains were investigated. Classification was investi-
gated across users, i. e. the MLPs were trained on data
from one subject but tested on data from another. To
determine the features and channel combinations with
the highest class separability, the Davies-Bouldin In-
dex (DBI) [1] was used.

MATERIALS AND METHODS
Experimental Protocol: Four able-bodied male sub-
jects participated in the study. Data were acquired
using a MindSet system with a 10/20 ear-referenced
21 electrode setup. The subjects looked at a moni-
tor where commands were given as to which hand to
move. More details about the protocol can be found
in [1].
Data Processing: Data were run through an analogue
antialiasing second order Butterworth filter and sam-
pled at 256 Hz. The data were then filtered using
band-specific Butterworth zero-phase filters: 6th order
filter to extract the Delta band, and 12th order filter
to extract the Theta band, Alpha band, Beta band,
Gamma band, and for the combined bands. The data
were then downsampled to 128 Hz. No effort was made
to remove EOG artefacts so as to examine the robust-
ness of the features.
The 12th order filter was used as it was the lowest
order that returned a 40 dB SNR between the signal
and mains power. The delta band filter used a smaller
order than the other filters because of numerical er-
rors in Matlab that did not allow the use of a higher

order filter.
Feature Selection: The following features were ex-
tracted for selection of the best set for classification:

• Amplitude variance of the signal

• Windowed amplitude variance of the signal

• Maximum/minimum power and dominant fre-
quency of autocorrelation

• 6th order autoregressive model, 6 coefficients and
noise variance [2]

• 4th order autoregressive moving average model,
4 coefficients and noise variance

• Total signal power

The features were calculated for each of the specific
EEG bands. All windowed features used non overlap-
ping 125 ms windows. Based on the DBI values for
each feature, the 10 best (lowest DBI) were used in
the classification of left versus right hand movements.
Classification: The data from three subjects were used
for training, while the data from a fourth subject were
used for testing (for all combinations of subjects). The
data from the test subjects were later also scaled using
50 and 95 percentile width in the data’s distribution
before re-calculating the features and the results re-
evaluated.
Retraining was also used to assess its effect on classifi-
cation results. To this end, one third of a test subject’s
data were set aside for testing. The remaining 2/3 of
the test subject’s data were used for retraining to as-
sess the effect of the amount of retraining data used, as
follows: First, the first 1/3 of the retraining data were
used to continue training an MLP that had previously
been trained on the data from the other subjects. In
another case, the first 2/3 of the retraining data were
used, and, finally, the full retraining set was used. This
was combined with random initialization of the data
sets.
The classification task was also repeated five times
for each data set and the average performance was
computed. The classifiers used were multilayer-
perceptrons with five to fifty hidden neurons (in incre-
ments of five) with the training goal set to 0.2 mean
squared error (MSE).

RESULTS AND DISCUSSION
Cross-user results without classifier retraining or data
scaling: As expected, the initial cross-user results were
very disappointing (first bar in the plots in Figure 1).
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 These results were found to reflect the large differences
between the users’ feature distributions.
Cross-user results with 95 percentile scaling: The re-
sults (second bars in the plots Figure 1) showed that
scaling improved the executed movement classifica-
tion, but the imagined movement classification re-
mained relatively unchanged. The results for the imag-
inary movements were more in line with the non scaled
data results.
Cross-user results with 50 percentile scaling: This scal-
ing had similar effects (third bars in Figure 1) as the
95 percentile scaling but to a lesser degree. It is also
important to notice that the scaling did not have a
substantial effect on the imaginary movement results,
as in the 95 percentile results.

Figure 1: Effect of data scaling on cross-user results.
Bars: mean correct classification. Thick lines:
standard deviations. Controls: no data scaling.

Cross user results with classifier retraining: The re-
sults of retraining the MLPs with one third, two third,
and all of the retraining data from a subject were dis-
appointing, as can be seen in Figure 2. There was little
improvement with respect to the classification without
retraining or scaling (i. e. controls in Figure 1).
Best results: Results for User 3 were special in that,
when retraining was used, his results where close to
100 % correct classification for both left and right
imagined hand movements. This could be due to the
distribution of his data being a subset of the distribu-
tions for the other subjects.

CONCLUSION
In this crossectional study, scaling of the test subjects’
data to the range of the training data showed potential
in improving the classifier’s performance for executed
movements. On the other hand, neither scaling nor re-
training showed significant improvement in imaginary

movements, with the exception of the case for Sub-
ject 3. It is possible that the retraining data were not
sufficient to improve the results, or, that the subjects
employed different strategies for the motor imagery
task.

Figure 2: Cross-user results with retraining and
scaling. Sc: scaling percentile factor (0 = no scaling).

Rtr: retraining data size (as a fraction of the full
retraining set)
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SUMMARY: In this paper we propose a new method
for the synthesis of a biofeedback for Motor Imagery
BCI protocol with no need of a preliminary frequency
screening session. We discuss a solution based on the
index of the percentage of desynchronization estimated
after an envelope demodulation. Starting from an al-
gorithm without a priori knowledge about the rele-
vant frequencies of the subject, an auto calibrating in-
cremental adaptive algorithm produces a feedback as
significant as a feedback obtained on the basis of the
knowledge of the relevant frequencies.

INTRODUCTION

A Brain Computer Interface is a man-machine inter-
face based on the mutual interaction between the com-
puter and the brain: the former should be capable to
translate the signal generated by the user through a
classification algorithm, while the latter should learn
the correct mental strategy on the basis of the com-
puter behaviour. This approach leads to the genera-
tion of a more repeatable and more effective signal.
When the user is aware of a physiological activity
which usually does not perceive, he or she can learn
how to partially control it. This phenomenon is called
biofeedback. When biofeedback is applied to the BCI
it is possible to establish a virtuous loop, which could
improve the performances of the whole system. In or-
der to achieve such a result a real-time feedback is
needed: in this way the user can obtain an higher level
of control over the system by understanding the action-
reaction mechanism behind it. An efficient training
system should help the user to provide a better signal.
In this work we face the issue of subjects training on
the ERD/ERS based Motor Imagery Protocol. Usu-
ally the biofeedback is generated by a classifier trained
on a previous training set. In this way the generated
feedback magnitude reflects the probability that the
extracted feature belongs to a particular population
of the training set; as a consequence, in case of a low
quality training set, the user should learn to repeat a
low quality signal.

Figure 1: The adopted epoch structure

MATERIALS AND METHODS
Setup: The signal was acquired from the scalp above
the sensorymotor cortex using two bipolar channels
centered on locations C3 and C4. The training pro-
tocol was based on a modified version of the epoch
structure proposed by the Graz University of Technol-
ogy. A scheme of the adopted structure is reported
in Figure 1. In this preliminary study, three subjects
were asked to perform a training session of 80 epochs
based on the imagination of hands movements. A feed-
back value for each channel was presented to the user
by means of two level bars as instantaneous indexes of
the lateralized motor imagery.
The algorithm: The proposed solution aimed at mod-
elling the in-band desynchronization using the integral
of the amplitude modulation envelope (AM) computed
on data windows of fixed length and overlap. In Fig-
ure 2 is reported an example of the fitting properties
of the AM envelope method [1] on a 1 second data
window filtered in the generic mu-band (8–12 Hz).

Figure 2: The amplitude modulation envelope

The developed algorithm used an incremental ap-
proach in order to progressively adapt to the subject
relevant frequencies. This was achieved by identifying
those portions of the 4–30Hz band in which the event-
related information was concentrated. By using a bank
of 4 Hz amplitude passband filters centered on the 6–
28 Hz frequency range, the windowed signal acquired
from each channel was separated into its components.
For each ith component the AMi value was computed
and consequently, according to the current event-label,
the mean values (x̄OFF,i for the idling phase, x̄ON,i for
the controlateral imagery phase) and the standard de-
viation values (SOFF,i, SON,i) were updated. During
the controlateral activity phase a set of weights, each
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 related to a specific component, was computed by eval-
uating two parameters: the current desynchronization
in respect to the x̄OFF,i value and a gradient descent
analysis based on the mean value. According to the in-
formation gathered at time t, three main states could
be identified:

x̄OFF,i(t−1)−AMµ,i(t)

{
< ϕ · SOFF,i(t− 1) ⇒ LOSS
≥ ϕ · SOFF,i(t− 1) ⇒ other

other ⇒ [x̄ON,i(t)− x̄ON,i(t− 1)]

{
≤ 0 ⇒ GAIN
> 0 ⇒ STABLE

where ϕ ∈ (0, 1] identifies the fraction of SOFF,i to be
used as desynchronization threshold. The LOSS state
identified a decrease (δLOSS,i) of the weight related to
ith component, while the GAIN state corresponded to
an increase (δGAIN,i) of the weight value. During the
STABLE state the weight value were not modified.

δLOSS,i = −α ·
(

2ϕ− x̄OFF,i(t− 1)−AMµ,i(t)
SOFF,i(t− 1)

)
δGAIN,i = α ·

(
x̄OFF,i(t− 1)−AMµ,i(t)

SOFF,i(t− 1)

)
where α is a parameter by which the effect of a single
update step is adjusted. The gain and loss quantities
identified by δLOSS,i e δGAIN,i were chosen in order
to be proportional to the current distance of the AMi

feature from the desynchronization threshold identi-
fied by the quantity ϕ · σOFF,i. At each analysis step
the feedback value was computed as follows:

AMtot(t) = − (x̄OFF (t− 1)−AM(t))×

×
(

w(t− 1)∑
i wi(t− 1)

)T

where x̄OFF = {xOFF,i}, AMOFF = {AMi} and
w = {wi}. The current feedback value was finally
scaled according to the variability of a reference popu-
lation. This latter was incrementally evaluated during
the idling phase, corresponding to the first three sec-
onds of each epoch.

RESULTS AND CONCLUSION
We evaluated the performances of the proposed
method by comparing relevant frequencies, identified
by means of an offline method, with the weights as-
signed to each signal component and using the pre-
sented incremental solution. The offline method con-
sisted in the maximization of the mutual information
[2] values obtained by analyzing the output of a su-
pervised classifier. This was based on a linear discrim-
inant analysis which used as features the RMS am-
plitudes, evaluated on 4 Hz bands centered on the 6–
28 Hz frequency range. It is worth noting that the val-
ues of mutual information, identified using the offline
method, reflected the values of the final weights com-
puted incrementally on the same dataset (Figure 3).

Figure 3: The results of the two methods applied on
the training dataset correspondent to subject S1

We evaluated the time courses of the mutual informa-
tion (MI) computed from the difference of the feed-
back outputs from channel C3 and C4 from the whole
dataset (Figure 4). In spite of the incremental method
settling time, the MI obtained with no a-priori knowl-
edge regarding the subject relevant frequencies, re-
flects the time course obtained with the reference
method on predetermined optimal frequencies.

Figure 4: Time courses of mutual information
obtained both with the proposed incremental method

(continuous line) and the relevant band method
(dotted line)
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SUMMARY: This work is aimed at enhancing inter-
session performance of Brain-Computer Interface
(BCI) classification. The effective handling of uncer-
tainties associated with changing brain dynamics is
considered to be a key issue. Since fuzzy logic (FL)
has been recognized as a functional and well-suited
approach to capturing the effects of uncertainty, the
research has been concentrated on the development of
an FL classifier for a BCI system. The emphasis is
placed on type-2 (T2) FL methodology that has re-
cently shown a higher potential in dealing with uncer-
tain data than its classical type-1 (T1) FL counterpart.
In this work a case study was conducted using ECoG
recordings made available as part of BCI competition
III. Due to the high dimensionality of the signal, two-
stage feature selection was devised. The overall per-
formance of the developed BCI was assessed in off-line
simulations based on the classification accuracy (CA).
Comparative analysis of the designed T2FL and T1FL
systems suggests that T2FL has superior capability in
effective dealing with inter-session variability of the
ECoG dynamics in the given subject.

INTRODUCTION
Despite intensive research in the BCI area, there are
still problems impeding the advancement of practical
applications. One of the challenges is the effective
handling of uncertainties associated with variability in
brain dynamics. This research deals with some as-
pects of this problem at the level of a classifier. The
case study reported here is based on two-session elec-
trocorticogram (ECoG) recordings provided as part of
the BCI Competition III. The principal objective set
by the organisers, which was to devise a classifier main-
taining high level of classification accuracy (CA) over
more than one session recorded with a few days’ in-
terval without re-training, constitutes the essence of
the BCI enhancement attempted in this work. The
problem of inter-session BCI generalisation has been
tackled with varying degree of success. Schlögl et
al. [4] made an attempt to assess the effect of non-
stationarities and long-term variability of the brain
dynamics on the performance of a BCI system. The
multi-session data analysis confirmed the existence of
long-term changes that could not be effectively han-
dled by the multi-session linear discriminant analysis
(LDA) classifier. Similarly, the results of two-session
experiments reported in [1] showed a significant drop
in the CA obtained on session II with session I used
as training data. There has been some research per-
formed on adaptive BCI classification [5, 6] aimed at

reducing the effect of spontaneous EEG variations. In
most cases, these classifiers are designed under the as-
sumption of a specific feature distribution to handle
within-session changes, which leads to their frequent
adjustments.
In this work off-line analysis was undertaken to il-
lustrate the concept of a multi-session BCI classifier
that can function effectively without a mechanism of
adaptation. To this end, fuzzy logic (FL) methodol-
ogy was employed due to its distinctive capabilities
in capturing the effects of non-deterministic variations
described in uncertainty terms [3]. Recently, the type-
2 (T2) FL, has emerged as a powerful approach to
handling more than static imprecision in data [3].

MATERIALS AND METHODS
Data: The ECoG trials were recorded from one sub-
ject performing imagination of left small finger and
tongue movement using 8× 8 ECoG electrode grid in
two sessions, 276 and 100 trials, with a week-long in-
terval. Each trial was recorded with a sampling rate
of 1000 Hz for 3 s.
Feature Analysis: To begin with, three types of fea-
tures were extracted from the 64-channel signal. They
were calculated independently in 3 overlapping time
windows (window length of 1040 samples and over-
lap of 80 samples) and concatenated within chan-
nels to represent a 64-dimensional trial. First, power
in the frequency bands adjusted to individualised
ERD/ERS features [1] was estimated using the short
time Fourier transform (STFT). Second, the corre-
sponding wavelet packets coefficients were evaluated
with Symlet-8 mother wavelet. Thirdly, reflection co-
efficients of an autoregressive (AR) model of order 4
were extracted.
The following feature selection procedure was then ap-
plied: First, channel selection was tackled using Fisher
discriminant analysis, which led to the reduction to
12 channels with the most discriminative properties.
Next, a genetic algorithm was applied to select a type
of feature sub-vector (STFTf, WPf, ARf) assigned
to each of the 12 channels. The cost function was the
mean CA of 4-fold cross-validation (CV) on session I.
As a result, only 4 channels were assigned a feature
sub-vector:

V =
(
STFTf chi1 ,STFTf chi2 ,ARf chi3 ,WPf chi4

)
Fuzzy Classification: The results of off-line analysis
with classification in a given feature space being made
at the end of every trial are reported. The emphasis
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 is laid on T2FL approach and the results of its appli-
cation are compared with that of T1FLS and LDA in
terms of CA.
The concept of T2 FL is based on fuzzy sets (FSs)
that are themselves fuzzy. Instead of being two-
dimensional, a T2 FS is three-dimensional with the
two-dimensional domain of support for membership
functions called a foot of uncertainty (FOU) [3]. In
this work, the simplified approach of the Interval T2
(IT2) FSs [3] with constant membership function over
the FOU was adopted.
The fuzzy classifier was designed in two steps: an ini-
tial structure was found and then its parameters were
tuned. The signal features representing ECoG trials
and the corresponding class labels were clustered using
the multi-pass version of a mapping-constrained ag-
glomerative (MCA) algorithm developed in this work
[2]. This allowed for maintaining the consistency in the
input-output space mapping and led to enhancement
of the performance of the T2FLS-based classifier.
The clusters in the input-output space, defined by the
means (mINP, mOUT ) and standard deviations (sINP,
sOUT ), were translated into T1 fuzzy rules. The conse-
quent FSs were singleton corresponding to class labels
equal to mOUT (sOUT = 0). Next, T2 fuzzy rule-base
was formed by replacing T1 FSs with T2 FSs in each
rule:

IF R1 is Ã1 AND . . . AND Rn is Ãn

THEN class is C = [cleft, cright]

where R1, . . . , Rn are the fuzzified components of
an input feature vector V, n is their number and
Ã1, . . . , Ãn denote IT2FSs with uncertain means [3]
that model rule antecedents and C is the centroid
of the consequent T2FS representing the class that
the input feature vector is assigned to. The an-
tecedent Gaussian IT2 FSs are described by pairs of
means, m

(i)
1 and m

(i)
2 , plus the standard deviations s(i)

(i = 1, . . . , n), and the consequents are characterized
by two points, cleft and cright. Thus, additional pa-
rameters, ∆m and ∆c, were introduced to define a T2
fuzzy rule:

m1 = mINP −∆m, m2 = mINP + ∆m, s = sINP,

cleft = mOUT −∆c, cright = mOUT + ∆c

The parameters ∆m and ∆c determined the initial
bounds of the uncertainty modelled. They were se-
lected in combination with the learning process by an
extensive search in 4-fold CV setup over session I.
The parameters of the initial FSs were tuned in the
next step. The training algorithm implements the con-
cept of gradient-descent with the mean-square error
to be minimised. The enhanced version of a classical
learning algorithm for FLSs [3] was developed in this
work, which increased the computational efficiency [2].

RESULTS AND DISCUSSION
Selection of the classifiers’ initial parameters and esti-
mation of their overall efficacy was performed using a
4-fold CV on session I data. The mean CA rates with
95 % confidence intervals (CI) are reported in Table 1.

Table 1: Comparative analysis of BCI classifiers
Session I – CV Session II – test

CA ± 95 % CI [%] CA [%]
T2FLS 82.14 ± 1.78 87.00
T1FLS 81.36 ± 1.77 85.00
LDA 81.43 ± 2.29 80.00

There are no significant differences in performance be-
tween the classifiers on the training session I. They
accommodated within-session variability of ECoG fea-
tures to a comparable extent. Next, LDA along with
the T2FLS and T1FLS in their optimal initial configu-
rations were trained on session I and tested on session
II in one pass. The purpose of this analysis was to as-
sess session-to-session performance transfer of the clas-
sifiers. The results presented in Table 1 demonstrate
superior capabilities of the T2FLS in accounting for
changes in the dynamics of ECoGs recorded at distant
times from the given subject. This is in accord with
the outcome of similar analysis for EEG-based BCI [2].
However, the enhancement achieved here by exploiting
T2FL methodology is less substantial when compared
to the T1FLS’s performance. It is hypothesised that
this effect can be due to lower degree of noise and arte-
facts contributing to both short and long-term changes
in stochastic properties of the ECoG dynamics.

CONCLUSION
The ECoG case study analysed in this work demon-
strated the potential of FL approach to handling inter-
session variability of the signal characteristics. More
subjects and more sessions have to be examined in or-
der to validate these findings.
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SUMMARY: A major problem with Brain Computer
Interface (BCI) technology is the variability of perfor-
mance when applied to multiple users. We introduce a
user-specific training scheme that builds a signal tem-
plate specific to each user based on EEG recordings.
As a feature we use the slow cortical change associated
with a movement known as the Bereitschaftspoten-
tial (BP) measured using one bi-polar channel placed
between C3 and A1 in the 10-20 standard electrode
scheme. Signal processing techniques such as embed-
ding, median and exponential weighting filters as well
as normalisation of data and simulated annealing are
implemented to make the template as robust as pos-
sible. Results still indicate a large variability in per-
formance with accuracies from 59% up to 86 %. It is
expected that the results of this classification will be
most useful in a multi-feature classification scheme.
The simplicity of the training protocol and the num-
ber of electrodes used for detection are useful when
considering clinical application of BCIs.

INTRODUCTION

Two of the major challenges facing current BCI sys-
tems are the high subject variability in performance
[1] and the complexity in practical clinical applica-
tions due to the placement and recordings of many
electrodes. Here we investigate the effectiveness of a
user specific detection system based on the the Bere-
itschaftspotential (BP). Previous work [2] has shown
that the BP can be of value in predicting the onset of
movements and hence in constructing a real-time BCI.
Our system attempts detection of the movements us-
ing only one electrode channel (as opposed to 21 chan-
nels used in [2]). We present some background on the
BP, our template building methods and the detection
of the single trial. Results are followed by a brief dis-
cussion and conclusion.

THE BEREITSCHAFTSPOTENTIAL

The BP, also known as the readiness potential, is a
slow cortical change associated with movements and
movement planning. It has been suggested that the
BP only materializes with exact movement synchro-
nization over ensemble averaging, indicating the sensi-
tivity of its presence to external noise factors. In pre-
vious experiments we have found the shape of the BP
to vary considerably between subjects hence providing
the motivation for a user-specific template matching
system. To accurately locate the BP, synchronization
of signal segments is carried out by aligning EMG sig-
nals from electrodes on the appropriate muscles.

BUILDING THE TEMPLATE
One template for each subject is obtained from four (in
some cases three) trials each containing 6 movements,
3 left and 3 right. Only movements corresponding to
the contra-lateral channel are used to build that chan-
nel’s ensemble (a total of 12 movements per template).
The raw EEG data is filtered (using an embedding fil-
ter [3]) and segmented.

Figure 1: Information flow

The individual segments are then aligned (using
concurrently-recorded EMG) and processed further
using the signal processing techniques shown in Fig-
ure 1. Figure 2 shows a typical template with error
bars.

Figure 2: A typical user specific template with error
bars (fs = 40Hz)

CLASSIFICATION OF A SINGLE TRIAL
We compare a window of the template and the real
data based on:
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 Correlation & P-Values: Found by calculating the
Pearson’s correlation coefficients. P -values from these
coefficients (using a Student’s t test) give us the prob-
ability that the correlation between the two signals
happened by chance based on the number of samples
considered. We apply a simulated annealing to the P -
value [4] to deflate parts of the signal that likely to be
correlated by chance.
The error: The variance of the template, shown by
the error bars in Figure 2, allows us to place more em-
phasis on sections of the template that match while
the error bars are small. Conversely where the error
bars are large we have less confidence in a match. By
treating each sample in the template as an indepen-
dent Gaussian distribution we can calculate the prob-
ability of each unseen point xn being generated from
a corresponding point in the template yn using:

P (xn|yn) =
1

2πσ2
n

e
− (xn−yn)2

2σ2
n

This probability (totaled over the window at a partic-
ular time step) is expressed as a multiplier to penalize
the correlation where the error is large and to instill
confidence where the error is small.

EXPERIMENTAL PROCEDURE
We test 5 different subjects (AF, AO, HH, CB, SA)
asked to make actual finger movements when faced
with a cue. For each subject we record 5 sets of roughly
27 s each. We record correlation, annealed P -value,
confidence, and a combination value representing the
product of the confidence multiplier and the P -value.
Successful movement detection is regarded when the
combination value is greater than 0.2 within one sec-
ond before and half a second after the movement cues.

RESULTS
Figure 3 shows a typical response from the best subject
AF.

Figure 3: Probability of movement in a good subject,
vertical lines are the movements.

Table 1
Subject No. Mov Detected + False + % (acc)

AF 28 24 5 86%
HH 25 12 15 48%
SA 23 19 9 83%
CB 21 16 3 76%
AO 27 16 7 59%

TOTAL 124 87 39 70%

DISCUSSION
Although the results show variability in performance
between users it is promising to see that a single
channel electrode analysis can result in good detec-
tion (> 85 %) accuracies. Further investigation us-
ing the same subjects with a different methodology
is recommended in order to evaluate the effect on the
method in user performance variability. The poor per-
formances match with templates that were deemed
“featureless”, or simplistic resulting in a large num-
ber of false positives being detected. Having the re-
sult expressed as a probability between 0 and 1 (see
Figure 3) we can easily fold our information here into
a multi-feature classification scheme.

CONCLUSION
User performance variability remains evident after
the application of the user-specific template matching
scheme. However, in some subjects the BP has been
successfully used from a single electrode analysis to
predict movements with accuracy greater than 85 %,
with a low false positive rate (5/24). This suggests
viable use of the algorithm as part of an information
fusion approach [5] to detecting movement planning.
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SUMMARY: In the last decade, the possibility of non-
invasive cortical activity estimation has been high-
lighted by the application of the techniques known
as high resolution EEG. These techniques include a
subject’s multi-compartment head model (scalp, skull,
dura mater, cortex) constructed from individual mag-
netic resonance images, multi-dipole source model and
regularized linear inverse source estimates of cortical
current density. The appliance of such techniques has
the potential to provide a better insight on the cortical
activity than scalp EEG and can be used to on-line
detection of mental states from EEG signals during
motor imagery tasks. This study demonstrates that
is possible to estimate cortical activity, resulting from
non-invasive EEG during BCI sessions, on-line and the
usefulness of such estimation to improve user perfor-
mances.

INTRODUCTION
It has been shown that EEG-based BCI systems dis-
play a drop of classification accuracy when more than 2
mental states have to be classified, due to bad signal-to
noise ratio (SNR) [1]. An alternative method is repre-
sented by direct implants into the brain as discussed
by Nicolelis [2]. In this case, we have an excellent SNR
but we are confronted with all the problems in associa-
tion with a highly invasive system. On the other hand,
linear inverse problem solutions (LI) has the potential
to provide a better insight on the cortical activity. In
the present study the usefulness of LI in the context of
a BCI as compared with different scalp spatial filters
generally used on-line [3] is demonstrated.

MATERIALS AND METHODS
The experimental setup: Six subjects (males, mean
age 30.2 ± 2.9; subjects S1 to S6) voluntarily par-
ticipated to the study. They underwent a series of
recording while were trained to gain control on a mu-
rhythm brain computer interface (BCI2000 recording
software [4]). One of the subjects (S6) was confined
to a wheelchair. In BCI2000 framework hand or foot
movement imagination was executed to move a cursor
upward or downward respectively, towards appearing
targets which covered half screen (the cursor moved
horizontally across the screen at a fixed rate, while
the user controlled vertical movements). EEG was
recorded by using a high resolution cap with 64 chan-
nels digitized at 200 Hz and stored for off-line analysis.
A subset of the 64 channels was used to control cursor
movement and was re-referenced to the common aver-

age reference (CAR). Training period lasted 10 weekly
sessions. At the end of training each subject gained an
accuracy higher than average 75 %.
The off-line paradigm: Four different scalp spatial fil-
tering methods, e. g. ear referenced (RAW) potentials,
common average reference (CAR), Small (SL), Large
(LL) Laplacian, as considered in [3], and one corti-
cal linear inverse source estimate (LI) were compared
in term of topographical and spectral analysis of R-
square (R2) values, both at the beginning and at the
end of CAR training: “This measure proved very use-
ful in choosing the best spatial filter method for ex-
tracting mu- or beta-rhythm signal features” [3].

Figure 1: Topographical distributions of R-square for
the spatial filters considered. All maps refer to the

EEG frequency that shows the R-square peak.

The Linear inverse estimation: Sequential MR images
were acquired and a three-shell realistic head models
were generated with the help of the Curry 4.6 software
(Compumedics Neuroscan Ltd., El Paso, Texas).With
this approach, the cortical surface is tessellated into
triangles and a dipolar source is modelled at each
vertex (yielding about 5000 source locations). The
strength of these sources was then estimated by us-
ing a linear inverse procedure according to a weighted-
minimum norm approach as reported in details else-
where [5]. Such estimation returns the pseudo-inverse
transformation matrix (G) able to transform scalp
EEG in dipoles current densities only by a matrix
multiplication. G matrix, stored off-line can be used
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 on-line as an input filter of BCI2000 recording soft-
ware [4].
The statistical analysis: The off-line R2 results were
subjected to separate Analysis of Variance (ANOVA).
The main factor of the ANOVAs was the FILTERING
factor (with five levels: CAR, RAW, SL, LL, LI). Sep-
arate ANOVAs were performed on the off-line results
obtained from the first and the last session of training.
Moreover, post-hoc analysis with the Scheffes test was
performed (significance level p = 0.05).
The on-line paradigm: To prove the easy utilization
of LI without artefact rejection on-line, we realized
an horizontal (left or right hand kinesthetic movement
imagination) screening of all six subjects trained on
the previous vertical task and selected the two more
promising. In both cases the pseudo-inverse trans-
formation G matrix stored off-line in the previous
step was used as an input spatial filter for a standard
recording software system as BCI2000 [4]. Since one
of the more promising subject was the best vertical
performer (S6), we test subject S1 and S6 with a hori-
zontal and two-dimensional on-line tasks respectively.

RESULTS
The off-line results: All the spatial filters (CAR,
RAW, SL, LL, LI) were compared by considering the
maximum values of R2 taking into account the best us-
able feature (frequency/channel) of each subject both
at the beginning and at the end of training. As showed
in Figure 1 for a representative subject, all the features
considered are associated with channels/dipoles above
sensorimotor areas.

Figure 2: Spatial filters compared by average and
standard deviation (on subjects) values of R2. Panel
A and B take into account the first and last training

session respectively.

The statistical analysis (ANOVA) revealed a strong in-
fluence of FILTERING factor on the R2 values (p <
0.001). This is illustrated in Figure 2 A and Figure 2 B

for the first and the last training session respectively.
It can be appreciated that, LI filtering procedure pro-
duces an average (on subjects) value of R2 higher than
those obtained from all the other filtering methods as
confirmed with a post hoc test with Scheffe’s proce-
dure.
The on-line results: Table 1 shows the on-line classifi-
cation range obtained from the users in four sessions.
In average, correct classifications exceed 80 % with a
peak of 96 % considering the 1-dimensional task and
89 % considering the 2-dimensional task.

Table 1: On-line classification ranges obtained using
linear inverse as spatial filter for BCI2000 recording
software [1] for one and two dimensional horizontal

task (4 sessions each)
1-D LI-1 on-line Corr. Class. Uncorr. Class.

MEAN 86.00% 14.00%
ST.DEV 9.20 % 9.20%

2-D LI-1 on-line Corr. Class. Uncorr. Class.

MEAN 80.09% 19.91%
ST.DEV 7.02 % 9.01%

DISCUSSION
The aim of this study was to to understand whether
the use of cortical activity estimated from non-invasive
EEG recording could be useful to improve perfor-
mances in the context of a mu rhythm BCI. Fur-
thermore, another objective was to demonstrate the
on-line applicability of such method using a standard
recording software (BCI2000 [4]). The data reported
here suggest that LI procedure can be easily used on-
line and improves performances. This can be explained
with the natural ability of LI to improve signal to noise
ratio as compared with scalp EEG data whatever spa-
tial filter considered.
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SUMMARY: In the context of mu-rhythm based
Brain-Computer Interfaces, we present an analysis of
the dependence of performance on the parameters of
the feature extraction algorithm. In order to optimize
user performances, we observed that a different model
order value should be chosen corresponding to different
EEG features used to control the system, according to
the differences in the spectral power content of alpha
and/or beta bands.

INTRODUCTION
In the context of Brain-Computer Interface signal
processing, non-invasive data acquisition makes au-
tomated feature extraction challenging [1], since the
signals of interest are ‘hidden’ in a highly noisy en-
vironment, so it is important to strive for robust sig-
nal processing methods that are as invariant as possi-
ble against such distortions (e. g. [2]). It was demon-
strated that the spatial filtering operations improve
the signal-to-noise ratio [3]. On the contrary, autore-
gressive modeling has been successfully used by many
investigators for EEG signals analysis in BCI context
(e. g. [2, 4]), but to our knowledge no clear guidelines
exist on how to choose the parameters of the spectral
estimation.
The aim of the present study is to perform a system-
atic analysis of the dependence of BCI performance on
the parameters of the feature extraction algorithm, in
order to improve both the accuracy and the general-
ization ability of the feature extraction.

MATERIALS AND METHODS
Recordings: Eight healthy subjects, 26–30 years old,
participated to the study. Each subject’s training
consists in 6–10 recording sessions (BCI2000 software
framework , D2box task with two vertical targets).
Fifty-nine EEG channels, uniformly disposed on the
scalp, were acquired. A subset of 1–3 channels (among
C3, C4, Cz, CP3, CP4, and CPz), re-referenced to the
common average reference (CAR), were used to con-
trol cursor movement. Subjects were instructed dur-
ing the first session to perform hands/feet movement
imagination to bring the cursor up/down. The cursor
moves as a function of the amplitude of mu rhythm
activity (8–12Hz activity) or the amplitude of higher
frequency (e. g. 18–30Hz) beta rhythm activity, both
focused over sensorimotor areas.
Data Analysis: A cross-comparison was performed
between different autoregressive models by varying
model order and the length of EEG segment data,

according to the attitude of the estimated EEG seg-
ments to predict the target. Data are reported in term
of topographical and spectral analysis of R2 values, a
measure proved very useful for extracting mu- or beta-
rhythm signal features [2]. We evaluated performances
for four epoch lengths: 200 ms, 250ms, 500 ms and
1 s and then for the 1 s epoch length that maximize
performances, according to the sampling frequency of
200 Hz, we ranged model order from a minimum of 10
to a maximum of 40, in order to approximate control
signal’s non parametric PSD (Welch PSD).
Simulations: Since results on real data show a de-
pendence of optimal AR order on both scalp loca-
tion and frequency of the responsive rhythms, with a
strong interaction between these two variables, we re-
constructed 5 different synthetic control signal’s spec-
tra that represent respectively 3Hz alpha band desyn-
chronization, 3 Hz or 6Hz beta band desynchroniza-
tion or the two simultaneous alpha and beta desyn-
chronization, in order to find the differences in model
order selection due to the “shape” of the control sig-
nals. For each of them we test the model order we
had to select to optimize user’s performances in the
ideal case he had to control the system by means of
the “built” synthetic signal.

RESULTS
The comparison of the distribution of R2 values at the
most responsive frequency/channel revealed that the
ability of an AR spectral feature extracted from EEG
data to predict the intended action, depends on the
model order.
Three groups of responsive features were identified: A)
Desynchronization in alpha band over bilateral sen-
sorimotor cortex; B) Desynchronization in beta band
over mesial cortex; C) Desynchronization in beta band
over bilateral sensorimotor cortex. Not all subjects
show the same dependence on model order.
Subjects in group A, who control the system by a
desynchronization in alpha band over bilateral sensori-
motor cortex (Figure 1), achieve the best performances
with an higher order (between 22 and 30 depending on
subject); while subjects in groups B or C, who control
the system by a Desynchronization in beta band, re-
spectively over mesial and bilateral cortex, maximize
their performances by using a lower model order, from
10 to 20 among subjects.
Synthetic data confirmed real data results: in the case
of desynchronization of mu-rhythm, R2 value increase
with model order from 0.32 (order 10) to 0.43 (order
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 32), while in the two different conditions of beta desyn-
chronization (conditions B and C), the best order in
terms of r-square maximization varied from 20 to 22
among different kind of beta desynchronization.
The use of EEG epochs of longer length produce more
stable and reliable predictions. This not surprising re-
sult must be mediated with the consequent delay of
the on-line feedback to the subject.

Figure 1: Topographical distributions of R2 values
for a representative subject in group A. The

histogram represents R2 peaks on control channels
depending on the AR model order.

DISCUSSION
A statistical study, using about 200 training sessions,
was performed to find a relationship between R2 val-
ues, off-line computed on EEG data, and accuracy
gained from users during on line sessions. According
to this study the increase of R2 value obtainable by
optimizing model order selection corresponds in a dif-
ferent increase of performances related to the ability
of the users: the increase of R2 value we can obtain
by varying model order is between 0.05 and 0.1, that
means an increase of the on-line classification range
from 5% to 15 %.
These findings show that the performance of a BCI
classifier can be enhanced by tuning to the individ-
ual subject the parameters for the feature extraction –
a concept that is already well known for spatial selec-
tion of the features. Future work will extend this study
to alternative (e. g. non-parametric) feature extraction
algorithms.

Figure 2: R2 values varying the autoregressive model
order for averaged real data in conditions A, B,

and C.
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SUMMARY: This paper adopts a simple but effective
unsupervised method for incrementally updating the
means and variances that define LDA and Bayesian
classifiers for real-time BCI. The method is evalu-
ated using asynchronous BCI data from three sub-
jects. Experimental results show that the proposed
self-adaptation approach is stable and able to improve
BCI performance consistently. This paper also aims
to clarify the confusion between BCI that is capa-
ble of on-line training using true class labels and self-
adapting BCI that is able to adapt without knowing
true labels.

INTRODUCTION
It is well-known that EEG signals, particularly in
EEG-based BCI systems, are non-stationary. The
non-stationarities may be caused by the subject’s
brain conditions or dynamically changing environ-
ments. To some extent, a realistic BCI system has
to be adaptive, even in application phases where the
true labels of ongoing EEG trials are unknown.
Recent years have seen a few publications on adaptive
BCI [3, 4, 5, 7, 8, 9, 10]. The adaptive BCI systems
described in most of these publications are capable of
on-line training or sequential learning using true class
labels, but incapable of adapting without knowing true
labels. Shenoy, et al. [7] have realized that “. . . in a re-
alistic BCI scenario the labels of ongoing trials may
not always be available; however, in some applications
such as the use of a speller for communicating words, it
is possible to estimate the labels a posteriori with high
probability.” In their paper, however, they only com-
pared the results from on-line training using labeled
data to the results from off-line training alone. Millan
and Mourino [4] have also pointed out that “. . . online
adaptation should be ongoing even when the subject’s
intention is not known instant by instant.” They sug-
gested that reinforcement learning techniques would
be useful to address this issue, but no result on this
has been reported so far. The reported adaptive BCI
systems by Millan [3, 4, 5] are based on stochastic
gradient descent updating of means and variances us-
ing labeled data. Adaptive BCI based on unlabeled
data has been developed by Sykacek, et al. [8, 9], who
used an adaptive variational Bayesian classifier. This
is a kind of pseudo-supervised approach in which la-
bels a posteriori estimated by the Bayesian classifier
was used in the adaptation process. When the prob-
ability of correct estimation is not high enough, the
incorrectly estimated labels would damage the param-
eter adaptation, similar to noise or outliers in super-
vised learning. Apart from adaptation of classifiers,
adaptation of feature extractors is another important

issue in adaptive BCI [10], but this paper will address
classifier adaptation only.
This paper proposes to adopt a robust unsupervised
method for updating means and variances, and sub-
sequently adapting LDA and Bayesian classifiers for
BCI applications. The method is evaluated on asyn-
chronous BCI data, which has been used in BCI Com-
petition III [5], in comparison with adaptation using
true labels and labels estimated by classifiers.

SELF-ADAPTING BCI BASED ON UNSUPER-
VISED LEARNING
The basic issues in adaptive BCI systems include what
to adapt, how to adapt, and when to adapt. For com-
plicated nonlinear classifiers such as support vector
machines (SVM) and other neural networks, there is
no appropriate algorithm for on-line sequential learn-
ing, especially when class labels are not given. How-
ever, LDA and Bayesian classifiers have a big ad-
vantage, because they are completely determined by
means and variances of the BCI data from individ-
ual classes and the number of samples from each class,
which can be updated incrementally and robustly with
new input data without knowing class labels. A two-
pass method is necessary for accurate variance calcu-
lation, but it is not suitable for on-line or incremental
updating. Some one-pass methods given in statistics
textbooks for incrementally updating variances are of-
ten numerically unstable. This paper adopts the fol-
lowing numerically stable algorithm for updating the
means and variances that define a LDA or Bayesian
classifier:
Step 1: Given a new input x, decide which class it
belongs to by unsupervised clustering.
Step 2: If it belongs to class j, update the mean and
variance of class j as follows [11]:

µ(j)
new = µ

(j)
old +

x− µ
(j)
old

nj + 1
(1)

Σ(j)
new =

(nj − 1)Σ(j)
old + (x− µ

(j)
new)(x− µ

(j)
old)

T

nj
(2)

where µ(j) and Σ(j) are the mean and variance of the
data from class j, nj is the number of samples from
class j, which will be increased by 1 after the above
updating. The priors used in Bayesian classifier are
estimated by nj/

∑
j nj . After the above updating,

the associated LDA or Bayesian classifier can be eas-
ily updated. It can be seen that the above updating
is completely incremental and instant by instant, and
thus ideal for on-line BCI adaptation.
By now the issues on what to adapt and how to adapt
have been addressed. As for when to adapt, a simple

3rd Int. BCI Workshop & Training Course 2006

50



 

 

 solution is to adapt all the time. More delicate ap-
proaches could be based on checking the level of cur-
rent classification confidence or whether there exist a
trend of so-called error potentials in ongoing EEG [1,
6], or other novelty detection methods.
It should be noted that the proposed method can also
be used for on-line training as in [4, 5, 7, 10] or pseudo-
supervised adaptation as in [8, 9], if the class label of
the new input is given from the training data or by the
classifier’s output. In the next section, the unsuper-
vised learning based adaptation is evaluated in com-
parison with supervised and pseudo-supervised adap-
tation.

EXPERIMENTAL RESULTS
The data used here is for asynchronous BCI and from 3
subjects, each performing 3 mental tasks in a random
order during 4 recording sessions respectively. EEG
signals were recorded from 32 channels. Power spectral
density (PSD) features were extracted and selected.
Detailed description of data recording and preprocess-
ing can be found in [5].

Table 1: Performance comparison of LDA (upper
half) and Bayesian (lower half) classifiers using

different adaptation methods
Adaption Subj. 1 Subj. 2 Subj. 3 Ave
methods (%) (%) (%) (%)
None 81.80 67.19 48.17 65.45
Supervised 83.37 70.88 51.17 68.47
Pseudo-supervised 82.58 69.56 48.72 66.95
Unsupervised 83.65 69.95 50.11 67.90
None 83.50 65.45 45.70 64.88
Supervised 84.94 69.12 55.50 69.85
Pseudo-supervised 83.19 64.90 42.29 63.46
Unsupervised 84.53 66.45 49.75 66.91

The first 2 sessions from each subject were used to
train off-line a LDA and a Bayesian classifier sepa-
rately. The 3rd and 4th sessions from each subject
were then used to evaluate the on-line adaptation (sim-
ulated on-line) of the trained classifiers by supervised,
pseudo-supervised, and unsupervised methods respec-
tively, in comparison with the situation of no adapta-
tion. Using two sessions for evaluation is to test the
stability of adaptation during a relatively long period.
The classification rates of LDA classifiers and Bayesian
classifiers on the evaluation data from the 3 subjects
are given in Table 1. It can be seen that all the three
adaptation methods improve the BCI performance of
the LDA classifiers, but pseudo-supervised adapta-
tion degrades the performance of the off-line trained
Bayesian classifiers. Not surprisingly, supervised on-
line training using true labels achieves the best result.
It is interesting that unsupervised adaptation consis-
tently outperforms pseudo-supervised adaptation, im-
proving the performance of the Bayesian classifier for
Subject 3 by over 4 %. It is also noticed that Bayesian
classifiers perform better than LDA classifiers on Sub-
ject 1, but worse on Subjects 2 and 3.

CONCLUSION
Self-adaptation, without a need of class labels, is differ-
ent from on-line training. The unsupervised learning

approach for incrementally updating means and vari-
ances is simple but effective for self-adapting BCI, and
it outperforms the pseudo-supervised approach. LDA
and Bayesian classifiers are most suitable among other
classification methods for adaptive BCI.
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SUMMARY: An alternative single-trial analysis for
on-line adaptive cue-based brain-computer interfaces
is presented. Usually the optimum value of the time
course obtained by averaging trials was used as sub-
jects’ performance measurement. Instead we use an
estimate of the most class-discriminative instants of
each trial to calculate the performance of the subjects
in each experimental session. The greatest separa-
bility between classes is calculated trial-based, using
an estimate of the mutual information as performance
measurement. This approximation is also employed to
decide which samples of each trial should be used for
on-line updating the classifier.

INTRODUCTION
On-line adaptive classifiers for brain-computer inter-
faces (BCIs) are currently a hot research topic in the
field [1, 3, 4], although some kind of adaptation has al-
ways been performed in BCI systems due to the highly
non-stationary nature of brain signals and more specif-
ically, of electroencephalographic (EEG) signals.
Regarding the classification module we are interested
in long-term changes that are for example caused by
feedback training or tiredness. In order to deal with
these variations, we have developed two adaptive clas-
sifiers, one of which is based on quadratic discriminant
analysis (QDA) and the other on linear discriminant
analysis (LDA). Our classifiers are parametric and are
designed for cue-based synchronous systems, where the
time is divided in trials, during which the subjects per-
form the task.
The single-trial analysis is used to analyse the subjects’
performance and is specific to synchronous communi-
cation, in which the length of the trials is defined and
the system knows when the trials start and end. Usu-
ally, single trial analysis is calculated as an average
of the performance measurement, Mutual Information
(MI, see [2]) and Error rate (ERR) at every point of
time in a trial, using the most appropriate number
of trials depending on the study. As a result of this
analysis the time course of the selected performance
measurement (ERR, MI or any other selected by the
investigator) is obtained and its optimum value can be
used to describe the subject’s performance.
But in serveral works it has been shown that EEG is
non-stationary and, therefore, the time point of most
effective discrimination can change along the experi-
ments [3, 1]. Moreover, selecting the optimum value
from the single-trial analysis can be critised as the sub-
jects’ performance is described by only one specific in-
stant. In order to solve these problems we could use

the mean classification result at the window around
the estimated time point of maximum class separabil-
ity to calculate the performance of the subjects.
To accomplish this new single-trial analysis, we used
two-class pre-recorded data from experiments per-
formed with 3 unexperienced subjects who carried out
three experimental sessions using on-line adaptive sys-
tems. The most discriminative instant of each trial was
estimated and used to specify a window in which their
performance was computed.

MATERIALS AND METHODS
The data used for the analysis was recorded in exper-
iments carried out with 3 able-bodied naive subjects
without previous BCI experience. They performed ex-
periments using the “basket paradigm” with the tim-
ing shown in Figure 1. They received feedback with
an on-line estimation of the best class-discrimination
time in every trial.

sec0 1 2 3 4 5 6 7 8

Beep Beep

Figure 1: Timing of the experiments

The subjects conducted three different sessions, with 9
runs per session and 40 trials per run. 1080 trials were
available for each of them (540 trials for each class).
The system was a two-class cue-based and EEG-based
BCI and the subjects had to perform motor imagery
of the left or right hand depending on the cue. More
specifically, they were not instructed to imagine any
specific movement, but they were free to find their own
strategy. They was asked to maintain their strategy
for at least one run.
The estimation of the time point for the analysis was
performed using an approximation of the MI. The orig-
inal MI is computed using the principle of Shannon’s
communication theory and it is defined as the average
amount of information that an observation (output)
provides about a signal (input) and measured in bits.
Comparing it to ERR, MI has some advantages: MI
has no upper limit, indicating a large SNR, whereas
ERR is limited to 0 %; ERR resolution is limited by
the number of trials in consideration; and MI intro-
duces the magnitude of the output and not only the
sign.
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 A trial-based on-line estimation of MI (M̂It) was used
to determine the time when the adaptation of the clas-
sifier should start and to estimate the performance of
the subject in each trial. M̂It was obtained using a
moving average algorithm, see Equation 1.

M̂It = mi · UCtini + M̂It−1 · (1 − UCtini) (1)
Tini = t|

max(dMIt)
(2)

where mi is the output of the classifier multiplied by
the class label of the current trial, and UCtini is an
update coefficient, the speed of adaptation of mutual
information. The time when the maximum of M̂It ap-
pears is selected as Tini for the next trial. The update
coefficient is UCtini and represents the “memory” of
the process. Its value was selected by optimization
over six subjects using exhaustive search due to the
low number of iterations.
The subjects’ performance was calculated by averag-
ing the output of the classifier in the window selected
for its adaptation in every trial with the use of Tini’s
estimate. Therefore, one value was obtained in each
trial and with the set of results of each session the
ERR and an averaged MI (MI) were computed.

RESULTS
Table 1 shows the subjects’ performance each experi-
mental session in terms of ERR and MI.

Table 1: Subjects’ performance in each session
Old method New method

Sub. Sess. ERR[%] MI[bits] ERR[%] MI[bits]
Ses1 32.22 0.103 34.44 0.089

S1 Ses2 14.72 0.536 14.71 0.569
Ses3 08.06 0.786 07.50 0.822
Ses1 18.61 0.327 19.72 0.359

S2 Ses2 18.33 0.433 19.72 0.424
Ses3 15.83 0.472 16.11 0.492
Ses1 14.17 0.519 14.72 0.507

S3 Ses2 11.39 0.599 10.83 0.605
Ses3 10.28 0.616 10.00 0.653

The old method refers to the optimum value of ERR
and MI obtained with the traditional single-trial anal-
ysis. The new method is the single trial analysis ac-
complished with the estimate of Tini for the calcula-
tion of both performance measurements. The results
are shown for ERR and MI.

DISCUSSION
Table 1 shows that the old and the new methods for
single trial analysis yielded to similar results with the
data recorded from three subjects. Nevertheless, it can
be argued that the new method is preferable because
is based on the parameter estimation used to perform
the experiments; moreover, the description of the sub-
jects’ performance is not based on the selection of an
optimum value which occurs in an specific instant of
the trial, but on the group of samples around the esti-
mate of the most class-discriminative moment of each
trial.
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SUMMARY: In this article, we present an adaptive
classifier for BCI based on a mixture of Gaussian
(moG) model of the features and a dynamical Bayesian
model of the class means. We apply this approach
to feedback data from the Berlin Brain-Computer In-
terface (BBCI). The proposed model can improve the
classification performance by compensating for sub-
stantial changes of EEG signals between training and
feedback sessions as well as for gradual nonstationarity
in the feedback sessions.

INTRODUCTION
EEG-based BCI systems are often subject to nonsta-
tionarities that are caused by changes in the subject’s
mental state during an experiment (e. g. due to fa-
tigue, change of task involvement and demands for
visual processing etc.). Recently Shenoy et al. [2]
showed that a simple bias recalculation for the classi-
fier obtained from the training data can eliminate most
detrimental effects of nonstationarities during feed-
back operation. In this paper, we propose a Bayesian
version of such adaptive classifiers, where the class
means are treated as random variables and their pos-
terior distributions are approximated by a sequential
manner as Kalman filters. The proposed method was
applied to BBCI data collected from three subjects.

MATERIALS AND METHODS
We investigate data from a study of three subjects
using the BBCI system similar to [1] but with very
long feedback blocks without break. The experiments
consisted of a calibration measurement and a feed-
back period. In the calibration measurement, visual
stimuli L, R (for imagined left and right hand move-
ment) and F (for imagined foot movement) were pre-
sented to the subjects. Based on the recorded sig-
nals, subject-specific features for the further analysis
were calculated. The most discriminative frequency
band for two of the three classes was selected manu-
ally by experts, and common spatial patterns (CSP)
were calculated. For the data sets we analyzed, 6 (al),
2 (aw) and 4 (VPt) CSP channels were used, respec-
tively. The bandpower of the CSP-projected channels
was estimated using windows of 3 seconds length, and
finally a linear classifier was trained by linear discrim-
inant analysis (LDA).
In the feedback phase, bandpower estimations of CSP
channels were calculated in a similar manner as in
the calibration session for sliding windows of 1 second
length. The real-valued output by the LDA classifier
was used to move a cursor horizontally on the screen.
The subjects were then using this cursor for the oper-

ation of a text input (speller) software.
We employ the following mixture of Gaussian (moG)
model for each class distribution.

p(x|y = 1) := (1− pp)φ(x|µp,Σp) + ppφ(x|m, V ),

p(x|y = −1) := (1− pn)φ(x|µn,Σn) + pnφ(x|m, V ),

where φ(x|µ,Σ) is the Gaussian density function with
mean µ and covariance Σ. The first terms represent
typical samples, while the common second term corre-
sponds to outliers with large covariance V . Although
we concentrated on the binary classification problem,
the moG model also enables us to recognize outlying
observations from typical samples. In the training ses-
sion, we estimate the model parameters, i. e., the mean
(µp, µn, m) and the covariance (Σp, Σn, V ) of each
Gaussian prototype, their outlier ratios (pp, pn), and
the class probability (π := p (y = 1) ) by EM algo-
rithm with an extra restriction to keep the covariance
V of the outlier large.
To cope with the difference of EEG signals between
training and feedback and the gradual non-stationarity
in the feedback session we assume that the centers of
both classes are random variables and subject to the
dynamical model (t ≥ 1)

µp(t) = µp(t− 1) + εp(t)

µn(t) = µn(t− 1) + εn(t)

where εp(t) ∼ N(0,∆p), εn(t) ∼ N(0,∆n). The
initial means are also assumed to be Gaussians cen-
tered at the estimators from the training session, i. e.
µp(0) ∼ N(µ̂p,Γp) and µn(0) ∼ N(µ̂n,Γn), respec-
tively. The covariances ∆p, ∆n, Γp and Γn control the
speed of adaptation and should be chosen according to
the magnitude of the initial covariances. The center
m(t) of the outlier class is fixed at the average of the
positive and negative classes. The required parameters
are determined on the training data.
When the samples and the labels Dt = {xτ , yτ}t

τ=1

up to t-th trial are observed, we infer the posterior
distribution p(µp(t),µp(t)|Dt) by a sequential scheme
as Kalman filter. However in contrast to the case in
Kalman filters, the posterior is not Gaussian in our
moG model. Hence, we approximate it by a single
Gaussian distribution with the same mean and covari-
ance. We construct a classifier based on the posterior
distribution in order to predict the label of the (t+1)th
trial from the inputs. In this study we adopted the
classifier based on the posterior probability of the typ-
ical positive minus that of the typical negative class,
i. e. ft(x) := P (y = 1, z = 0|x,Dt) − P (y = −1, z =
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 0|x,Dt), where the latent variable z equals 1 if the
sample is an outlier and 0 otherwise.

RESULTS
In our Bayesian framework, the posterior distributions
of the class means µp(t) and µn(t) are approximated
by Gaussians. In order to visualize the nonstationarity
of the data infered by the moG model, we plotted the
time course of the posterior means in Figure 1, where
the horizontal axis is the direction of the original clas-
sifier.

−1 −0.5 0 0.5
0.5

1

1.5

Figure 1: Time course of the class means. The
posterior means of the random variables µp(t) and
µn(t) for the subject aw were plotted so that the
horizontal axis coincides with the direction of the

original classifier.

Time is indicated by gray scale (black to white). At
the beginning, because less information about the
class means µp(t) and µn(t) is available, the poste-
rior means can move by a large amount, while the
changes get smaller as more trials are performed. For
the subject aw, although the mean of the positive class
again comes closer to the estimator from the training
data after feedback learning, that of the negative class

seems to stay away from the original estimator. This is
the reason why classifier modification in the feedback
session can improve the performance.
In Table 1, we compare the classification error in the
feedback sessions of our approach (ADB) with the er-
ror of the original classifier (ORIG). ADB was much
better for subject aw, equal for VPt and worse for al.

Table 1: Comparison of classification errors
(window-wise, the feedback error in the BCI task was

lower)
ORIG ADB

al 10.5 13.4
aw 22.5 9.0
VPt 18.5 18.3

DISCUSSION
The number of data sets limits the interpretation of
our results so we can only speculate. In line with
the results of [2], one possible reason for the differ-
ence in relative performance could be that the features
which are extracted by the BBCI are often not strongly
affected by nonstationarities (al, VPt). Accordingly
adaptive methods can improve only for some datasets
(aw). Another observation is that the in/decrease of
performance correlates with the number of features. It
could be that some parameters in the more complex
method ADB are not accurately estimated. This issue
and possible remedies are subject to further research.
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SUMMARY: In recent years a number of non-invasive
Brain-Computer Interfaces have been developed that
determine the intent of a subject by analysing the Elec-
troencephalograph (EEG) signals up to frequencies of
40 Hz. The use of high frequency EEG features have
recently been proposed as alternative or additional fea-
tures in EEG-based BCIs. In this paper we examine
the performance of several feature bands, and evalu-
ate the performance on online classifier adaptation on
these features. Our analysis shows that the higher fre-
quency band perform very well under online classifier
adaptation for all the frequency bands, particularly for
the higher bands.

INTRODUCTION
EEG-based BCIs have inherent instability due to the
variation in EEG signals over time. Choosing more
stable features is one way of reducing this variation.
A different approach is to continually adapt the clas-
sifier as it is being used, in order to keep it tuned to
the signals of the current session. Of course, ideally we
would like the features that we are using to be as stable
as possible so that the minimum possible adaptation
is used. To this end we are investigating frequency
bands higher than those traditionally used in BCIs.
A comparison between different frequency bands has
been performed by Ferrez et al. [1]. This paper inves-
tigates the performance of high frequency features in
an adaptive classifier.

MATERIALS AND METHODS
This experimental setup is described more thoroughly
in [1]. The data analysed in this paper were recorded
from four healthy subjects performing three mental
tasks (imagination of left and right hand movement
and a language task), with EEG being recorded at
512 Hz from 64 scalp electrodes. The subjects were
asked to perform each task for 5.5 seconds, of which
the last 3 seconds was used in the analysis. The sub-
jects received no feedback in order to prevent a bias
towards one particular feature set. Each subject per-
formed 15 sessions on two consecutive days, where each
session comprised 18 trials with a delay of about 2.5
seconds between them.
Offline analysis was performed to determine the best
feature bands as described in [1]. Fifteen feature bands
of varying width were constructed by calculating the
PSD over the given band, with narrower bands at low
frequencies, covering the full range of frequencies from
2 Hz to 250Hz. For each subject the 30 sessions were
divided into six groups of five sessions. Feature selec-
tion was performed for each frequency band in each
group to select the best electrodes. From the 64 elec-

trodes the 10 with the highest discriminative power
were chosen, creating a 10-element frequency-specific
feature vector. For each group a Gaussian classifier
was trained on the data from one group and tested on
the five sessions of the next group.
From this analysis three frequency bands were cho-
sen for further analysis with online classifier adapta-
tion: 8–14Hz, 72–90 Hz and 212–230 Hz. The online
adaptation was performed on the Gaussian classifier by
stochastic gradient descent (for details, see [2]). Each
sample in turn was classified by the classifier, then
used to update the classifier. In this analysis only the
first second of every three was used to update the clas-
sifier in this way. This method of assessing the results
gives us an idea of how the classifier would have per-
formed online.
The Gaussian classifier outputs the posterior probabil-
ities of the three classes. In general we set a minimum
probability threshold level and reject samples that do
not reach this confidence level. However, for the pur-
pose of this study we are not rejecting any samples, so
all samples are either classified correctly or incorrectly,
making the chance level of good classifications 33.3 %.

RESULTS
Table 1 gives the classification results of the static clas-
sifier (trained on the sessions in the previous group)
and the adapted classifier (initialised as the static clas-
sifier, then updated throughout the sessions) averaged
over all 25 test sets of each subject, and the over-
all average. For all subjects and frequency bands,
the adapted classifier significantly outperforms the
static classifier. However, the statistical significance
of comparisons between different frequency bands is
less clear. When looking at the static classifier, the
classification rates are similar for the three bands (the
only statistically significant difference is between 8–
14 Hz and 72–90Hz), but the lower band has much
smaller variation. When the adaptive classifier is used
the lower band is more constantly outperformed by the
higher bands (statistically significantly over the whole
data set, and almost always significantly over the in-
dividual subjects), but the variation in the lower band
is again much smaller than in the higher band.
Figure 1 shows the average correct decisions of the
adaptive classifier over the five groups of five sessions
that were used for testing. This shows the lower but
more constant performance of the lower band, and the
higher but more variable performance of the two higher
bands.
Since the data was recorded over two days the first
two groups are from the first day and the following
three groups from the second day. As we are using the
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 data from the previous group to train the classifier,
this means that the third group was trained on data
from the previous day, a situation which generally re-
sults in poorer classification rates due to changes in
the EEG signals. Interestingly, results obtained with
online adaptation seem quite robust to this.

Table 1: Average % correct classifications of the
static classifier (S) and the adapted classifier (A) for

each subject (1-4), and averaged
8–14 Hz 72–90 Hz 212–230 Hz

1 S 37.6± 6.1 45.9± 16.7 49.9± 20.5
A 54.6± 5.8 70.1± 18.0 59.7± 22.9

2 S 51.2± 3.7 51.3± 13.0 49.3± 16.8
A 58.9± 7.1 69.1± 23.5 77.7± 17.4

3 S 51.2± 3.7 47.6± 15.4 49.7± 18.0
A 64.1± 8.0 78.5± 16.0 76.1± 17.7

4 S 46.0± 6.7 45.9± 14.8 49.3± 11.2
A 59.0± 8.0 72.7± 17.8 83.7± 13.5

Av S 45.4± 8.2 47.7± 15.0 49.5± 16.7
A 59.2± 7.9 72.6± 19.1 74.3± 20.0
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80
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Figure 1: Performance of the adaptive classifier by
group (average over 5 sessions), where the black bar
is 8–12 Hz, the grey bar is 72–90 Hz and the white

bar is 212–230 Hz.

Without online adaptation, classification rate of the
low band on average decreased by 4.3 percentage
points and the highest band dropped by 6.1 percent-
age points. With online adaptation the classification of
the low band increased by 5.2 percentage points from
the second to the third session, and the highest band
dropped by only 0.2 percentage points on average (the
figures for 72–90Hz have not been quoted because of
the distorting effect of the second subject on this band,
where both the static and adaptive classifiers had the
same very low classification rate on the third group).

This indicates that the adaptive classifiers are able to
incorporate quickly the signals in the new session and
adjust themselves accordingly.
It is also interesting to note that the classification of
the last group is often higher than the first group, es-
pecially in for the 72–90 Hz band, which might be an
indication that the subject is becoming more used to
the experiment and is generating more stable EEG.

DISCUSSION
The analysis in this paper demonstrated that online
classifier adaptation was very effective when applied to
high frequency features, as shown by the improvement
in classification rates over the static classifier and the
robustness to the difference in signals caused by the
test and training data being from different days. The
use of higher frequencies as features has potential and
warrants further investigation. This analysis consid-
ered only the use of one frequency band at time and
should be extended to using multiple bands together.
However, while this analysis indicates that the aver-
age classification rates of the higher frequency bands
are higher, particularly when used in conjunction with
online classifier adaptation, the variation in the classi-
fication rates between sessions is much greater. Unless
this variation is reduced it might make higher frequen-
cies less desirable for a BCI than lower frequencies,
despite their apparent promise.
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SUMMARY: Generalized linear models (GLMs) are a
very useful tool in data analysis. In this paper we
project features from a dynamical system model of
the EEG into a non-linear basis space. The responses
from the basis functions are then mapped via a logis-
tic classifier onto a class-posterior decision space. This
mapping is parameterized via a set of weights which,
importantly, we allow to be dynamically adaptive.
This reflects our underlying belief that the EEG sig-
nals and subsequent decisions from BCI experiments
are non-stationary. A sequential Bayesian learning
paradigm gives a set of equations which may be imple-
mented very efficiently via an extended Kalman filter
(EKF). This paper shows that such adaptive classifi-
cation gives good results and addresses the problem
of running the method on data for which very few, or
no, class labels are known – such as is the case for
self-paced BCI experiments.

INTRODUCTION
An important problem in the field of online EEG anal-
ysis and many other online analysis problems is that
of adaptive classification. The extended Kalman filter
lends itself to this problem quite well due to the non-
stationary nature of EEG signals. However, it is pre-
cisely this non-stationarity that renders simple linear
systems ineffective in forming appropriate classifiers
for BCI experiments.
The use of basis functions for nonlinear classification
has been shown to be an effective method of increas-
ing data separability [2]. Employing a Gaussian ker-
nel to create a Hilbert expansion in this manner leads
to a very effective classification system that is free of
many of the pitfalls of a simple linear classifier. Us-
ing a Bayesian approach to evolve a time-dependent
set of weights under a linear dynamical system yields
a suitably adaptive system in the presence of a non-
stationary data set [1].
In this paper, we present an extension of the dynam-
ical linear model to accommodate adaptive and arbi-
trary non-linear two-class distinction when little or no
feedback is available.

METHODS
Data acquisition: Using electrodes placed over C3 and
C4 in the standard 10-20 placement system, one bipo-
lar data channel was recorded at 384 Hz with a res-
olution of 16 bits using a g-Tec g.BSamp biosignal
amplifier. Patients were prompted to perform imag-
ined finger movements at regular intervals, though the
classifier was left blind to the movement cues.
Feature extraction & basis formation: The second re-

flection coefficients of autoregressive (AR) models were
calculated once every 54 ms using a sliding one-second
long window forming a feature vector x. Using a set
of Gaussian kernel functions, we created an expansion
of the original feature set x

Φt ≡

 ~xt

{φj (~xt)}
1


where φj (~xt) are defined as:

φj (~xt) ≡ N
(
~xt; ~µj , σ

2
)
∝ e−

(~xt−µ
j)

T
(~xt−~µj)

2σ2

The location parameters ~µj are selected once, without
re-adjustments, from within the statistics of x.

EKF IMPLEMENTATION
The key variable of interest in our system is the pos-
terior probability of movement, denoted by ŷt. This
is obtained via a logistic regression of the form ŷt =
g(at) in which the intermediate variable at is given
as at = ~wT

t
~Φt. By implementing sequential non-

stationary Bayesian learning, we arrive at a set of
update equations that can be implemented under the
EKF framework. We begin by formulating the stan-
dard prediction and update steps of an EKF, with the
latent space variable y0 initialized to zero mean and
unit variance.
Note that the weights ~wt in this system, initialized
to zero, are time-dependent and are evolved under a
linear dynamical system as described further on.
Key to our EKF implementation is the use of quasi-
targeting. This is incorporated as an extra step be-
tween the Kalman filter’s prediction and update stages
as described further on.
Prediction Step: The prediction step for the EKF im-
plementation begins with calculating an adjustment
value for the prior latent covariance by adding to the
latter the weight diffusion vector q, initialized to 0 at
time t = 0:

Σt|t−1 = Σt + qI

where I is the identity matrix.
Next we calculate the latent variable ŷt and its vari-
ance s2

t :

s2
t = ΦT

t Σt|t−1Φt

ŷt =
∫

g(at)p(at)da ≈ g
[
κ

(
σ2

µ

)
â
]

with κ = 1/
√

1 + πσ2
µ/8. We moderate ŷt using the

approximation in [3] to provide an estimate to the in-
tractable integral.
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 Quasi-targeting and sparse feedback: In order to work
with data in an environment where feedback is sparse,
we must be able to deal with large amounts of unla-
belled data. To do this, if Φt was generated from an
unlabelled sample, we calculate from the latent vari-
able an assumed target zt = Θ(ŷt > 0.5), where Θ is
the heaviside function

Θ(x) =

{
1 if x ≥ 0
0 otherwise

Importantly, we consider a confidence metric ut =
ŷt (1− ŷt) on the distinction given by the latent vari-
able. The implication of this is that when dealing with
quasi-targeted data, the weight vector updates more
strongly upon lower-certainty data.
Augmenting this approach, we optionally assign la-
bels zt to occasional samples known to have no motion
planning. These labels are assigned to approximately
one percent of all samples. Even in an online, asyn-
chronous BCI system, obtaining baseline data from the
user during use is a simple task, akin to displaying a
“please wait” message box in a traditional graphical
user interface.
Update step: Next, we assign the prior latent covari-
ance matrix and weight vector for the next iteration
of the filter:

Σt+1 = Σt|t−1 −
(

ut

1 + uts2
t

)
·

·
(
Σt|t−1Φt

) (
Σt|t−1Φt

)T

~wt+1 = ~wt

(
Σt|t−1

1 + uts2
t

)
Φt (zt − ŷt)

The inclusion of the value u in calculating the new co-
variance has the effect of contracting the area around
a classification point when high-certainty data is pre-
sented to the system, and expanding the area when
low-certainty data is seen. Prior to recalculating the
weight diffusion vector, the latent space values must be
updated according to the new weight and covariance:

yt = h
(
wt+1,Σt+1, 0

)
ût = yt (1− yt)

Finally we calculate the new weight diffusion vector:

q = max (ût − ut, 0) .

If quasi-targeting was used for the most recent data
point, then we add u to the new value of q, thus reflect-
ing the calculated uncertainty of the assumed target
and increasing the prior latent covariance in the next
step accordingly. Obviously if a known target rather
than a quasi-target was assigned to the data point,
there is no need for this extra uncertainty measure in
the weight diffusion vector and, by extension, the prior
latent covariance for the next time step.

RESULTS
We show in Figure 1 a typical posterior class proba-
bility plot. Of principal importance are the distinct
state changes from no movement (y = 0) to movement
(y = 1) reflected in the posterior probability seen in
relation to movement cues, denoted by brackets super-
imposed over the class probability plot.

Figure 1: Posterior class probability plot in
conjunction with movement cues (denoted by

bracketed areas)

DISCUSSION
The Φ ⇒ y mapping characterized by the evolving
system of weights attaches class labels to the mixture
components, thus enabling localized data point clas-
sification that is relevant to the current system state.
Periodic areas of no motion planning, easily solicited
from the user in an on-line system and with high cer-
tainty of classification accuracy, act as a source of pas-
sive feedback to allow system parameter verification.

CONCLUSION
By evolving a series of weights tied to an EKF under
a Bayesian framework, we generate a dynamic linear
regressor that accurately responds to regime changes
in a non-stationary data source. Moreover, by incor-
porating confidence-based quasi-targeting into our up-
date equations, such a system presents an effective
non-linear state classifier, well-suited to the problem
of EEG classification in a self-paced BCI.
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M. Krauledat1,2, F. Losch3, G. Curio3

1Fraunhofer FIRST (IDA), Kekuléstr. 7, 12 489 Berlin, Germany
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SUMMARY: The Berlin Brain-Computer Interface
(BBCI) has been developed to transfer the main load
of learning from the user to the machine. After a
short calibration period of approx. 30 minutes, even
untrained users with no previous BCI experience can
achieve bit-rates of more than 35 bits/min. In some of
these experiments, however, the classifier from the cal-
ibration period needs to be slightly adapted by adding
a constant bias term to its output in order to maintain
a stable performance throughout the feedback session.
In this paper, we will provide evidence that a change
in the brain states between calibration and feedback
periods probably causes this need for adaptation.

INTRODUCTION
Operant conditioning, a classical approach to imple-
menting BCI systems, relies on the ability of the brain
to adapt to a fixed feedback application. It requires
extensive training from the user to find a mental strat-
egy which results in the desired effect in the feed-
back. The BBCI follows a different idea: driven by
the motto “Let the machines learn”, it minimizes the
need for user adaptation by modifying the feedback
application according to the individual brain signals,
see [1]. This attempt is realized with an initial calibra-
tion (“training”) period, where the users are switching
between different mental states without receiving feed-
back from the computer. The brain signals are then
used to generate a classifier which discriminates be-
tween the signals and which can then be used as the
core of the feedback application.
The classification can only be successful if the brain
signals produced in training and feedback session are
similarly distributed, or if the change from training
to feedback can be easily parameterized. It has been
shown in [2] that if the distributions are sufficiently
close, simple methods like adding a bias term to the
classifier output can significantly increase the classifi-
cation accuracy of the feedback session. In this paper,
we demonstrate a change of brain states between the
two sessions leading to a change in classification per-
formance.

EXPERIMENTAL PARADIGM
For an intuitive use of the interface, imagined move-
ments of hands and feet are used as mental states. The
imagination of movements is known to entail a decreas-
ing power in the alpha and beta frequency band of the
electrodes over the corresponding motor cortex. This
phenomenon is termed Event-Related Desynchroniza-

tion (ERD). Since the exact location of the amplitude
modulation varies strongly between subjects, a spatial
filter is trained individually after each training session,
projecting the data on few channels that maximize the
variance for one class while minimizing it for the other
class. The Common Spatial Patterns (CSP, see [3])
algorithm provides an analytical solution to this prob-
lem by simultaneous diagonalization of class-wise co-
variance matrices.
The study presented here comprised experiments with
9 healthy subjects. While sitting in a comfortable
chair in front of a computer monitor, their EEG data
was recorded using 64 electrodes. In each trial of the
calibration period, one of the letters ‘L’, ‘R’ and ‘F’
was visually presented for 3.5–4 seconds to indicate
the intended type of movement (left hand, right hand
or foot). 140 trials of each target class were recorded.
After training a classifier for the most discriminable
pair of imagined movements, feedback was presented
to the subjects. It consisted of a cursor whose horizon-
tal position was controlled by the output of the clas-
sifier. The subjects then tried to navigate the cursor
into a highlighted target. The classifier was applied to
a window of the preceding 1000 ms. The data was pro-
jected on the CSP vectors, then a bandpass filter was
applied and the bandpower was estimated by taking
the logarithm of the variance.

Table 1: For this table, a window of 1000 ms length
was extracted from each trial of calibration and
feedback session. The first two rows show the

classification error (in %) of the used classifier on
training and feedback, respectively. The remaining
rows show the neurophysiological change between

these sessions. See text for details.
Subjects TR error FB error Spec r2 Alpha r

cm 16.5 19.0 1.36 0.18
cn 25.9 46.7 4.75 0.16
co 43.9 33.4 0.91 -0.08
cp 21.4 28.2 1.48 0.11
cr 29.3 35.3 3.45 0.04
ie 18.9 24.2 1.57 -0.00
cs 13.9 34.9 7.48 0.14
cu 32.9 23.0 0.66 -0.01
ct 14.3 25.0 2.79 0.00

RESULTS
Table 1 summarizes some changes that occured from
calibration to test period. In 7 of 9 subjects, the clas-
sification rates in the feedback session were lower than
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 the performance on the trials from the calibration ses-
sion. For the third row of Table 1, we calculated the
squared r-value (the bi-serial correlation coefficient be-
tween the motor imagery conditions, a formula is given
in [2]) of the most discriminative spectral frequency
bin from the spectrum of laplace-filtered electrodes
over the motor cortex. A large r2-value indicates a
high discriminability. Then we divided the resulting
maximal value of the training session by the corre-
sponding value from the feedback session. The results
are greater than 1 in the same 7 subjects as before.
For the last row, the bandpower in the alpha band (8–
14 Hz) has been calculated. By subtracting the values
from the feedback session from the values from the
training session, we calculated the r-value for each oc-
cipital electrode and averaged over all electrodes. It
turns out that for 5 of the 7 subjects the average r-
value is greater than zero, which proves that the band-
power during the training session is higher.
A typical subject is shown in Figure 1. The figure
reveals a strong shift of alpha bandpower over the oc-
cipital electrodes and decreasing significance levels for
the class discriminability.

DISCUSSION
In this series of experiments, the classification perfor-
mance in the feedback session was often different from
the expected accuracy. Table 1 shows that in most
of the subjects the performance dropped considerably.
This can be accounted to the generally lower discrim-
inability of spectral features in the feedback session,
as it has been demonstrated by comparing the most
informative spectral frequency bins of calibration and
application session. Therefore, the performance of ev-
ery other classifier relying on spectral features would
have deteriorated in the feedback session.
In the calibration session the demand for visual pro-
cessing is low as compared to the feedback session,
where visual attention is high. Furthermore imagining
movements in the calibration session leads to high and
less distributed activity in the pericentral regions. By
contrast in the feedback session subjects have to fol-
low correct effectiveness of their imagined movements
by high visual attention and more distributed cortical
activity. On this account as one can see in Figure 1
pericentral activity in most of our subjects in feedback
condition decreases whereas occipital visual activity
increases and vice versa for the calibration session.
As the brain states between training and test appar-

ently differ strongly, it is likely that a classifier will
perform better when it is adapted to the data of the
feedback session.
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Figure 1: The differences of brain states in training
and feedback condition for subject cm. The first row
shows the bandpower during the training session for

left hand (first column) and right hand (second
column) movement, and the difference between these
conditions in terms of r-values. In the second row,

the same evaluation is made for the feedback session.
The third row shows the difference between the

sessions.
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SUMMARY: The mu rhythm is an 8–13Hz oscillation
which can be detected over human sensorimotor cor-
tex in brain signals such as the electroencephalogram
(EEG). This rhythm is desynchronized by movement,
observing the movement of others, and imagined self
movement [3]. In this study we combine motor im-
agery and movement observation. We show that the
majority of subjects tested produce an enhanced mu
desynchronization over sensorimotor cortex when mo-
tor imagery and movement observation are combined,
compared to motor imagery alone.

INTRODUCTION
Both motor imagery and movement observation have
been shown to decrease mu power over sensorimotor
cortex (known as an event-related desynchronization
or ERD) [3], and there is some speculation that these
two different findings may involve the same brain sys-
tem [4]. In this study, we analyze the effects on mu
rhythms of combining motor imagery and movement
observation. Our technique for enhancing mu ERD
during motor imagery tasks may be useful for improv-
ing brain-computer interfaces based on this signal.

METHODS
Experimental paradigm: Ten healthy, right-handed
volunteers participated in this study (6 male and 4 fe-
male aged 22–32 years, mean 25). Subjects were seated
in a comfortable chair approximately 85 cm from a
19 inch monitor in an electrically shielded, soundproof
room.
The experiment consisted of 10-second trials during
which the subject performed a motor imagery task.
There were two experimental conditions which differ
in the stimulus presented to the subject: fixation cross
(FIX) or realistic animated video of a clenching and
unclenching right-hand fist (VID). Each trial consisted
of a 2.5 second presentation of a fixation cross, which
brightened from second 2.5 to second 3 to indicate that
the active portion of the trial was about to begin. At
second 3, one of the two stimuli {FIX, VID} was dis-
played for 4 seconds, during which the subject was
instructed to imagine clenching and unclenching his
or her right hand in a manner similar to the anima-
tion. The final 3 seconds of the trial consisted of a rest
period with a blank screen. The two conditions were
presented in random order in 7 blocks of 20 trials, with
1–3 min rest periods between blocks, for a total of 70
trials for each condition.

EEG Recording: Continuous EEG signals were
recorded from 13 scalp sites located according to the
10-20 system using an electrode cap (Electro-Cap,
USA). Signals were recorded using tin electrodes with
a ground at AFz and a linked mastoid reference. Volt-
ages were amplified and digitized at 500 Hz using a
NeuroScan Synamps amplifier and were bandpassed
from 0.3 to 50Hz. Data were re-referenced to a com-
mon reference and the 3-second rest period was dis-
carded. The data were visually inspected for blink or
movement artifacts, and affected trials were discarded.
Analysis: Our analysis focused on electrode position
C3 because of its location near the sensorimotor hand
area contralateral to the imagined movement, which
makes it a good choice for detecting mu ERD from
motor imagery tasks [3].
Analysis was carried out in the frequency domain using
Welch’s averaged modified periodogram [1] for spectral
estimates. Spectra for the two trial conditions were
computed for the 4 second active period of each trial,
while baseline spectra were computed for the first 2.5
seconds of each trial. In order to compute the mu
ERD, we first determine the peak mu frequency for
each subject by locating the frequency of the aver-
age peak power of the baseline period, restricted to
the expected mu frequency range of 8–13 Hz. A 2Hz
wide frequency window centered about the peak mu
frequency is used to compute the mu power for each
trial.

Figure 1: Mean mu power difference between
conditions VID and FIX with 95% confidence

intervals. Negative values indicate enhanced mu ERD
in the VID condition relative to FIX.
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Figure 2: Mean mu power difference between FIX
condition and baseline with 95 % confidence intervals.

Negative values indicate enhanced mu ERD in the
FIX condition relative to baseline.

RESULTS
We analyzed the effect on the mu ERD of movement
observation during imagined movement by comparing
mu power of FIX, VID, and baseline conditions. Our
analysis used a percentile-t bootstrap [5] to compute
95 % confidence intervals on power differences. A mean
difference is considered significant if the 95% confi-
dence interval does not include 0.
The mu power difference VID-FIX is shown for all sub-
jects in Figure 1. 9 out of 10 subjects showed an en-
hanced mu ERD in condition VID relative to FIX, with
statistical significance in 6 subjects. Figure 2 shows
the mu power difference FIX-baseline, which indicates
each subject’s mu ERD for motor imagery without
feedback. Comparing these figures reveals that some
subjects (e. g. subjects 2 and 10) with poor ERD per-
formance in the FIX condition show marked improve-
ment with the addition of movement observation in
the VID condition.

DISCUSSION
This study indicates that presenting realistic human
motion animations during motor imagery enhances

the mu ERD in most subjects. Although some sub-
jects failed to show a significant ERD enhancement in
the VID condition, no subjects displayed a significant
ERD decrease, indicating that there is little negative
interference from observing the video.
It may be possible to increase this effect by employing
imagery and animations which are more goal-directed
[2] and by exploring movement observation in virtual
reality settings. It is also possible that the effect would
be further increased in an online setting where the
user’s imagined movements affect the animated hand
in real time. We intend to further explore these op-
tions and eventually use the results to improve upon
current mu-rhythm-based brain-computer interfaces.
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SUMMARY: EEG-based asynchronous brain-
computer interface (BCI) system to realize binary
switch by using simple thresholding of EEG beta band
power was tested on six healthy subjects. EEG signal
was measured from a bipolar channel on the vertex
of the head, and was band-pass filtered, squared and
smoothed on-line to extract the band power of beta
oscillation. Subjects were requested to imagine foot
movement, and if the band power exceeded a pre-
defined threshold value, a command was generated. It
was shown that two subjects out of six were able to
induce bursts of beta oscillations by foot movement
imagery, and binary commands could be detected in
higher correct rates by these subjects.

INTRODUCTION
To provide better communication abilities to severely
paralyzed patients, the EEG-based asynchronous
(user-driven) brain-computer interface (BCI) that en-
abled binary switch by detecting the patients’ foot mo-
tor imagery was studied.
We have developed a BCI to realize binary switch by
detecting bursts of beta oscillation. Such a system, so
called “Brain Switch”, has been applied successfully
to one paralyzed patient for controlling external FES
(functional electrical stimulation) system [1].
In previous BCI studies, it was common to extract
and classify features from preprocessed multi-channel
EEG data by complex mathematical data analyses for
increasing both information transfer rate and accuracy
of the obtained commands. But for robust and easy–
to–apply BCI for paralyzed patients, the binary switch
with only a single channel would be reasonable.
In this study, the “Brain Switch” was tested on six
healthy subjects to show the applicability of this sys-
tem.

MATERIALS AND METHODS
Six healthy subjects took part in the experiments.
From each subject, bipolar EEG (Cz-FCz) was mea-
sured by two Ag-AgCl electrodes with a forehead
ground. Measured signal was amplified (sensitivity
50 µV) between 0.5 and 100 Hz with a biosignal am-
plifier and sampled with 250 Hz.
In the present method, the power increase of beta oscil-
lation elicited by foot movement imagery was detected
as a command. To estimate the band power of beta
oscillation, signal was processed on-line by bandpass
filtering (20–30 Hz), squaring and smoothing (moving
average: 1 s). A white bar (power bar), whose length

was propotional to the calculated power value, was
displayed onto a LCD display as a feedback.
The experiments consisted of two parts. One was a
free training session, in which subjects were requested
to control the length of the power bar by foot move-
ment imagery on his/her own pace. It was intended
to help subjects to develop their own mental strategy
for motor imagery. The other was a cue-based train-
ing session. Subjects were instructed to imagine foot
movement during the presence of cue (from 0 to 6 s)
onto the display, and to try and keep the length of the
power bar longer during imagination.
To subjects with significant increase of beta band
power during imagery, the free/cue-based training
with command detection were applied. In these
paradigms, the total numbers of desired/undesired de-
tections were displayed together with the power bar.
Beep signals were also presented when the events were
detected as commands.
The criteria to detect events of motor imagery was as
follows [1, 3]: An event was detected if the band power
of beta oscillation exceeded a pre-defined threshold
value for a certain time period (dwell time). To avoid
undesired successive detections, refractory period was
taken into account. These three parameters for com-
mand detection were initially set by ROC analysis
[3], and were adjusted according to subjects’ perfor-
mances.
In this study, the change of beta band power due to
foot movement imagery was evaluated for detecting
commands. Generally, mu oscillation whose frequency
range is similar to that of occipital alpha oscillation
is also responsible to motor imagery. But this compo-
nent was not used for detection, because it was very
hard to separate it from alpha oscillation by using a
single channel bipolar signal.

RESULTS AND DISCUSSION
From two subjects, significant bursts of ERS and ERD
(event-related (de)synchronization [2]: increase and
decrease of magnitude on specific frequency range)
were observed. A weak ERD on wider frequency range
(mu and lower beta bands) was observed from the rest
four subjects.
An example of time-frequency map of EEG activity on
cue-based training is shown in Figure 1. As shown in
this figure, the following ERS and ERD components
could be observed from those two subjects: (a) ERD
after onset of motor imagery on lower beta band (20–
25 Hz), which was related to motor planning, (b) sus-
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 tained ERS on upper beta band (25–30Hz), (c) sus-
tained ERD on mu band, (d) ERS after offset of motor
imagery (rebound) on lower beta band.
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Figure 1: An example of time-frequency map of EEG
activity related to foot movement imagery task

during cue-based training for one subject.
ERD (a and c), ERS (b and d).
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Figure 2: Single trial (upper) and averaged (lower,
with standard deviation) band power of beta

oscillation (25–30 Hz) induced by foot movement
imagery for one subject.

Especially, the band power of upper beta range ac-
tivities during foot motor imagery (b) was slightly
stronger on these two subjects. The single-trial and
averaged band power activities on this frequency range
are shown in Figure 2 (results in Figure 1 and Figure 2

were given from the same data). As shown in this fig-
ure, an increase of upper beta (25–30Hz) band power
was observed from both single-trial and averaged ac-
tivities.
The two subjects above participated in the experi-
ments with command detection. Events were treated
as true positives if it were detected during imagery pe-
riod, otherwise they were treated as false positives. By
these experiments, it was shown that the true events
of foot motor imagery were detected with a probability
of 60–90%.

CONCLUSION
Applicability of the EEG-based asynchronous BCI sys-
tem to realize a binary switch was tested on six sub-
jects. It was shown that the bursts of EEG beta
oscillations in the vertex of the head were induced
by foot movement imagery on two subjects, and bi-
nary commands based on motor imagery could be de-
tected in higher correct rates from these subjects. The
present system detects foot motor imagery by simple
thresholding, and it requires only one bipolar chan-
nel (three electrodes) for measurement. The “Brain
Switch” would be a robust and easy–to–apply BCI sys-
tem for paralyzed patients. Investigation of training
effect and development of training strategies to im-
prove the performance are left to future study.
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SUMMARY: Feedback plays an important role when
learning to use a BCI. Here we compare visual and
haptic feedback in a short experiment. By imagin-
ing left and right hand movements, six novice subjects
tried to control a BCI with the help of either visual
or haptic feedback every 1 s. Alpha band EEG signals
from C3 and C4 were classified. The classifier was
updated after each prediction using correct class in-
formation. Thus feedback could be given throughout
the experiment. Subjects got better at controlling the
BCI during the experiment independent of the feed-
back modality. Haptic feedback did not present any
artifacts to the classified brain signals. More research
is required on haptic feedback for BCI applications be-
cause it frees visual attention to other tasks.

INTRODUCTION
EEG signals associated to mental tasks can be classi-
fied accurately enough to be transferred into computer
commands in a Brain-Computer Interface (BCI) [1, 2].
Feedback plays an important role when subjects learn
to control their brain signals. Nevertheless, just a few
studies have addressed the role of feedback in BCIs (see
e. g. [3, 4, 5]), where only the effect of removing visual
feedback from well-trained subjects [3], comparison of
discrete and continuous visual feedback [4], and the
use of auditory feedback has been examined [5]. To
our knowledge the use of other feedback modalities,
such as haptic feedback, has not been studied. The
aim of this study was to compare haptic and visual
feedback in a short experiment.

MATERIALS AND METHODS
Subjects: Six right-handed subjects (20–30 years).
Recordings: EEG was measured at 12 locations (in-
ternational 10-20 system, sampling frequency was
500 Hz). The reference was situated between Cz and
Fz.
Experimental setup: Subjects were shown a visual tar-
get either on the right, left, or upper side of a small
screen. The subjects were to imagine either left or
right hand movements, or do nothing (target up). The
targets were changed randomly every 10–15 s. S1–S3
received haptic feedback in the first three sessions and
visual feedback in the following three sessions. The
order was reversed for S4–S6. Each session lasted
∼7 min.
Features: Movement-related activity (7–13 Hz) from
C3 and C4 was used. FFT components were calcu-
lated from a 1 s time window, resulting in 2 channels

× 7 frequencies = 14 features. The window was moved
and features were re-calculated once the classifier func-
tion had finished with the previous sample (∼ every
100 ms).
Classification and Feedback: A linear model with lo-
gistic output function was used to classify the features.
The model was re-trained after each new feature (∼ ev-
ery 100 ms) using a maximum of 300 previous labelled
samples from both classes (less in the beginning of the
experiment). The iterative least squares algorithm was
used to update the model parameters. Classification
and training was done only when the subject was per-
forming either the left or right task. Haptic feedback
was delivered through a vibrotactile transducer driven
by a custom board connected to the PC. It consisted
of 100ms of 200Hz vibration either to the left or the
right lower neck. The amplitude was set to a value
that the subjects reported being clearly perceivable.
Visual feedback showed for ∼100 ms an arrow on the
screen either to the left or right. Feedback was given
every 1 s if the averaged posterior probabilities of 10
previous predictions exceeded 70% (S1 & S4) or 60%
(others) for either of the two classes, i. e. feedback was
not given in uncertain cases. Feedback was given from
the beginning of the experiment.

RESULTS
Table 1 shows the mean classification accuracy aver-
aged over three sessions with different feedback modal-
ities. Even during a short 42 minute experiment high
classification accuracies (means 56–80 %) were possi-
ble.

Table 1: Mean classification accuracies for 3 sessions
(%) (HF, VF: Haptic and Visual Feedback,

respectively)
S1 S2 S3 S4 S5 S6 Mean±SD

HF 77 71 56 71 64 67 68± 7
VF 80 67 64 70 67 58 68± 7

Table 2: Average feedback time interval (s) for
subjects

S1 S2 S3 S4 S5 S6 Mean±SD
HF 3 2 3 6 3 2 3.3± 1.5
VF 2 2 3 5 3 2 3.8± 0.9

Table 2 shows how often the subjects received feed-
back. The best subjects got on average feedback ev-
ery 2 s and the worst subject every 6 s. The posterior
probability threshold was higher for S1 and S4, thus
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 they had to perform better to get the same amount of
feedback.
Figure 1 displays the classification accuracies for the
individual sessions for the different subjects. No clear
differences can be seen between haptic and visual feed-
back. Subjects S2–S6 got tired towards the end of
the experiment which explains the worse results in the
last session. Three out of six subjects show a decrease
in classification accuracy when the feedback modality
was changed. Subjects got better during the experi-
ment irrespective of feedback modality.

Figure 1: Classification accuracies in the different
sessions

The left side of Figure 2 displays the event-related
potentials for the visual (grey) and haptic feedback
(black) from channel C3 and corresponding standard
error. The slow somatosensory evoked potential (SEP)
can be detected in all subjects at ∼200 ms. The visual
feedback does not evoke any response. The right side
of Figure 2 displays the corresponding spectrum (cal-
culated using FFT for 0.5 s time window after stimulus
onset). The haptic feedback does not show significant
difference in the alpha band frequencies that could in-
terfere with the classification of motor imaginary.

Figure 2: Left: Evoked-responses of feedback related
activity (N = 200–400). Right: Corresponding

spectra.

DISCUSSION
No differences were found between training using hap-
tic or visual feedback during the 42 min experiment.

Even though SEPs can be detected in the averaged
signals, the haptic feedback did not interfere with the
classified brain signals in the 7–13 Hz range. When
asked, most subjects thought haptic feedback felt more
natural. However, one subject said that it sometimes,
especially during misclassifications, interfered with the
imagination of movements. Visual feedback was given
discretely only once a second because continuous hap-
tic feedback was not possible due to technical diffi-
culties. Otherwise the different feedback modalities
would not be comparable.
The preliminary results of this study show that hap-
tic feedback could be used as an alternative to visual
feedback if e. g. visual attention is needed for other
tasks. Haptic feedback could also be used as additional
information to visual feedback. For example, when
controlling an intelligent application, haptic feedback
could present the user with the output of the classi-
fier and visual feedback the control of the application.
For example, in a wheelchair simulator with intelli-
gent assistance to avoid obstacles, the movement of
the wheelchair does not directly describe the classifi-
cation performance. These results should be verified
with more subjects. Especially the long term effects
when learning to use a BCI with the help of haptic
feedback should be investigated as well as the effect of
discrete and continuous feedback.
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SUMMARY: We describe a brain-computer interface
system based on two non-motor imagery tasks, namely
auditory imagery of a familiar tune (AI) and imag-
ination of spatial navigation (SN) through a familiar
environment. 10 healthy subjects were used in this ex-
periment and EEG activity was recorded from 18 elec-
trodes over the temporal and parietal lobes. Features
were extracted using autoregressive modeling (AR),
and classification was performed with a Bayesian clas-
sifier. The two classes were differentiated with an av-
erage classification accuracy of 73 % based on the en-
tire feature space, 69% based on the best pair from
all combinations of two electrodes and 65% based on
two optimal electrodes selected with a feature selection
method.

INTRODUCTION
Motor imagery is the most commonly task used in
brain-computer interface systems (BCI). It consists of
imagining a movement without actually performing it,
which produces changes in the EEG activity that are
fairly easy to recognize. Use of motor imagery task if
effectively used in BCI systems, however may be dif-
ficult for a person who has been paralyzed for several
years. Also has been shown that patients with spinal
cord injuries do not perform motor imagery tasks as
well as able-bodied persons [1]. These facts indicate
the need for BCI systems based on non-motor imagery,
which feasibility has been shown by [2].

METHODS
Equipment: The EEG data acquisition was performed
using the Quick-Cap EEG positioning system, the Nu-
Amp digital amplifier and the Scan 4.3 Data Acqui-
sition Software (Neuroscan). Data was sampled at
500 Hz using a band pass filter set to 0.1–100Hz and
a standard resolution of 32 bit.
Subjects: Ten naive healthy subjects (5 males) aged
21–28 participated in the experiment.
Imaginary tasks: Two non-motor imaginary tasks
were used and subjects were instructed to perform
them as follow.

1. Spatial Navigation (SN): The subject was in-
structed to imagine being in a familiar envi-
ronment, scanning the surroundings noticing de-
tails while going from room to room and around
rooms. The importance that the imagination in-
volved examining the rooms rather than walking
around them was stressed, as the latter could
cause motor activity [2].

2. Auditory Imagery (AI): The subject was asked
to think of a familiar tune. They were instructed
to listen to it in their head, without mouthing
the words or melody [2]. Well known melodies
were presented to the subjects and they had to
choose the most familiar one.

Electrode placement: Both hemispheres of temporal
and parietal lobes were partially covered by 18 elec-
trodes according to the extended 10-20 positioning sys-
tem at FT7, T7, TP7, C5, FT8, T8, TP8, C6, P5,
CP3, PO5,3, P1, P6, CP4, PO6, P4 and P2, refer-
enced to the average between both ear lobes.
Performance of the imaginary tasks: Subjects were
asked to stay still during the EEG recordings. Oral
and written instructions were given to them regarding
imaginary tasks. Each task was performed for 10 s and
repeated 10 times with an inter-trial interval of 15 s.
Tasks were performed alternatively. An external trig-
ger marked the beginning of both tasks and warned
the subject before the start of each trial with a 5 s
countdown.
Signal Processing: The entire analysis was performed
on segments of 1 s with an overlap equal to 0.5 s.
Pre-processing: The EEG signal was assumed to be
wide sense stationary (WSS), nevertheless the 1 s seg-
ment might still nor be WSS, thus, the segments were
detrended by taking the first order difference of the
signal. All segments were re-referenced using common
average reference (CAR), as described in [3].
Feature extraction: Autoregressive (AR) analysis was
used to extract features. In this method the signal is
modeled as a linear combination of the input (white
Gaussian noise) and the P last outputs. The AR co-
efficients were found using the Burg-lattice method,
which predicts the forward and backward error. The
AR model order was settled to 6.
Channels selection: Two methods were used:

1. SEPCOR: The name stands for SEParability
and CORrelation. The algorithm is based on
a separability measure, S(i), and a normalized
correlation coefficient C, defined as follows:

S(i) =
1
2

(µ1i − µ2i)2

σ2
1i + σ2

2i

; C =
∣∣∣∣ σij√

σiiσjj

∣∣∣∣ (1)

where µji denotes the mean of class j on the ith
component and σ2

ji denotes the variance of class
j on the ith component, in the second equation
σij corresponds to the covariance between fea-
ture i and j, and σii is the variance of feature
i.
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 Assume the features are listed in decreasing or-
der according to the separability value S(i) (1).
Then the algorithm is described as follows (as
done by [5]):

(a) Select from the list the feature with highest
S(i) value and remove it from the list.

(b) Obtain the overall correlation C between
(all) the selected feature(s) and each of
those remaining in the list, and remove from
the list all features which have a higher
correlation value than a certain threshold
(MAXCOR) with any of the selected fea-
tures.

(c) If the list is not empty and more features
are required, then repeat from (a).

In this study MAXCOR was settled to 0.4 and
the two channels with highest separability value
were chosen as feature space.

2. Exhaustive search: To find the two electrodes
that gave the best classification all combinations
of two electrodes were classified. The pair that
gave the best classification was chosen.

Fisher’s Linear Discriminant (FLD): Projects high di-
mensional data onto a line. The projection maximizes
the distances between the means of the classes while
minimizing the variance within each class. The orien-
tation that separates best the two classes is chosen.
Classification: This process was performed separately
for each subject. Three feature spaces (previously pro-
jected onto a line with FLD) were classified; all chan-
nels, all combinations of two electrodes (only the best
pair is presented in the final results) and the 2 channels
that gave best separability using SEPCOR.
Based on these reduced feature spaces, classification
was performed using a Bayesian classifier. For descrip-
tion of this classifier see [4], chapter 2. Features were
randomly separated into two equally sized test and
training sets. To avoid unfortunate permutations of
the features, the random-splitting procedure was re-
peated 40 times to generate 40 classifiers. The final
results are an average of these 40 classification proce-
dures.

RESULTS AND DISCUSSION
The classification result for each subject is reported
in Table 1. The average results show a classification
accuracy of 73 % (σ = 6 %) based on the entire feature
based on the best two electrodes using SEPCOR. By
using channels T8 and P4 for all the subjects, as done
by [2], the average classification accuracy was 60%
(σ = 4 %). For electrodes pairs it was found that it
was significantly better (p = 0.02) selecting the opti-
mal pair of electrodes using exhaustive search for each
subject compared to using the same two electrodes for
all subjects.
Exhaustive search showed a slightly better classifica-
tion accuracy than SEPCOR (p = 0.01) but a much

higher computational time. The difference between
using exhaustive search and all 18 electrodes was not
significant (p = 0.06). No pattern could be observed
in the chosen electrode pairs among subjects neither
using exhaustive search nor SEPCOR, as seen in Ta-
ble 1.

Table 1: Classification accuracy for all 10 subjects.
The electrodes chosen for classification are marked
with E for exhaustive search and S for SEPCOR.
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CONCLUSION
The two tasks investigated in this study, FT and SN,
showed to have good classification accuracy, which
makes them suitable for online systems. The lack of
a pattern in the selection of the best two channels
suggests that training sessions must be carried with a
large electrodes setup to find the optimal feature space
to feed the classifier, and then reduce it to the desired
number of channels. For this, SEPCOR seems to be
the most appropriate method since the computational
time required is substantially less than for exhaustive
search, giving similar results.
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SUMMARY: The aim of this study was to discrim-
inate cortical activity related to different rates of
torque development of imaginary isometric plantar-
flexion on a single-trial basis. Electroencephalographic
(EEG), electrooculographic (EOG) and electromyo-
graphic (EMG) signals were recorded while six sub-
jects imagined two right-sided isometric ankle plantar-
flexions tasks comprising moderate and ballistic rate
of torque developments (RTDs). Feature extraction
was based on the marginal distribution of a discrete
wavelet transform with optimization of the mother
wavelet. Classification was performed with a sup-
port vector machine (SVM) approach. Minimum mis-
classification rate from the best channel was 12%
with wavelet optimization and 17% with Daubechies
4 wavelet.

INTRODUCTION
It has recently been shown that movement-related cor-
tical potentials (MRCPs) are function of force-related
parameters in both real and imaginary movements
[1,2]. This is the basis for the use of these signals
in brain-computer interface (BCI) applications.
Therefore, this study aims to identify and classify
two rates of torque development (RTD) of imaginary
isometric plantar-flexions on a single-trial basis us-
ing electroencephalographic (EEG) recordings. The
method used for classification is based on signal-based
wavelet optimization, which has shown satisfactory re-
sults with EMG signals when compared to spectral-
based or catalogue wavelet-based approaches [3].

MATERIALS AND METHODS
Experimental Setup: Six right-handed healthy volun-
teers participated in the experiment (3 males and 3
females, mean age 24.3 years, SD 1.5 years). The ex-
perimental procedures were approved by the local eth-
ical committee and informed consent was obtained.
The subjects were asked to perform voluntary real and
imaginary right-sided isometric plantar flexion under
two RTD (moderate and ballistic) ending at 60 % of
the maximum voluntary contraction (MVC).
The ballistic task was defined as the attainment of
60 % MVC as fast as possible, whereas the moderate
task was defined as a 4 s linear torque increase followed
by a plateau of 1 s.
Each task comprised 74 and 26 trials of imaginary and
real movements, respectively, randomly distributed.
Trials of real movements were included to keep the
subject focused on the specific motor task. Auditory

warnings were sent to the subjects in order to indicate
when to get ready to perform a task; with either one
or two beeps indicating imaginary or real movement,
respectively.
For real movements, the subjects had torque feedback
on an oscilloscope which displayed an output voltage
proportional to the torque exerted on a pedal instru-
mented with strain gauges.
For imaginary movements, the subjects were asked to
imagine the movement as they recalled the experience,
having compute-generated traces on the oscilloscope
for visual guidance.
EEG recordings were performed with standard 10-20
system. The channels FC1, FC2, C1, CZ, C4, CP3,
CP1, CPZ, P3, PZ and P4 were recorded with refer-
ence to electrodes on the earlobes (A1, A2). Vertical
and horizontal EOGs were recorded as well. Surface
EMG was recorded from soleus and tibialis anterior
muscles.
Data Preprocessing: Only data of imaginary motor
tasks were analyzed. Trials were excluded if the EMG
activity exceeded by 25 % the EMG noise root mean
square, estimated as average over all trials during rest
periods. Trials were also excluded if the peak-to-peak
EOG amplitude exceeded 75 µV in one of the four
EOG channels. EEG and EOG signals were high-pass
filtered at 0.25Hz and notch filtered at 50Hz to elim-
inate baseline drift and power line noise, respectively.
Signal epochs of 1024 samples were used for further
analysis.
Wavelet transformation: A discrete wavelet transform
(DWT) was used for extracting features from EEG sig-
nals. By restriction to orthogonal wavelets and using
the multiresolution analysis framework, it was possible
to define mother wavelets by varying design parame-
ters of Finite Impulse Response (FIR) filters, which
are associated to the scaling and wavelet functions [4].
For feature extraction an analysis filter of length 4 was
used, resulting in one free design parameter. All ten
levels of wavelet coefficients were include. The opti-
mal wavelet was selected by varying this parameter
in steps of 0.1 from −π to +π, and by estimating the
classification error from a training set (supervised clas-
sification). For comparison, Daubechies wavelet with
filter length 4 (DB4) was also used for classification.
Further details on the actual wavelet optimization, fea-
ture extraction and classification are presented in [5].
Feature extraction: Features were obtained by com-
puting the marginal distribution (integrating over
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 time) of the discrete wavelet transform [3].
Classification: A Support Vector Machine (SVM) clas-
sifier was used with cross validation procedure (3 sub-
sets of trials) for reporting misclassification errors [6].
Statistical Analysis: The resultant misclassification
rates were statistically tested with a two-way repeated
measures analysis of variance (ANOVA), with channels
and wavelet type (optimal vs. DB4) as within lev-
els. Significant differences were localized by Student-
Newman-Keuls (SNK) test for multiple comparisons.

RESULTS
Minimum misclassification rate was obtained in chan-
nel C4 with an average of 21.6% (± 8.3) with the op-
timal wavelet, whereas the misclassification rate with
DB4 wavelet in the same channel was 26.9% (± 11.7).
The topographical distributions of average misclassifi-
cation rates over all subjects are reported in Figure 1.

Figure 1: Topographical distributions of average
misclassification rates over all subjects in case of

wavelet optimization (left) and Daubechies 4 wavelet
(right).

Within subjects, C4 was also the electrode that pre-
sented the lowest misclassification rate, i. e. 12 % and
17 % for optimal and DB4 wavelets, respectively.
Statistical analysis showed the results obtained with
optimal and DB4 could not be differentiated, but
C4 electrode showed a “close to significant” differ-
ence (p = 0.069). Moreover C4 electrode was signif-
icantly different from all other electrodes when using
the optimal wavelet (p < 0.05), while for DB4 wavelet,
the only significant difference was found between elec-
trodes C4 and P3 (p = 0.022).

DISCUSSION
This study shows for the first time that MRCPs have
a potential as control signals in BCIs, considering that
variation of RTD of a same imaginary motor task can
be detected in a single trial basis. The classification
results obtained with optimal wavelet showed better
performance than with DB4 wavelets, with an average
decrease in the misclassification rate with optimiza-
tion of ∼4.5%. A tendency for significant difference
(p < 0.07) was found in C4 and this electrode was
significantly different from all other electrodes when
using the optimal wavelet, while such a trend was not
observed when using DB4 wavelet.
The lowest misclassification rates found in electrode
C4 corroborates our previous findings were differenti-

ation of average MRCPs between force-related tasks
were mainly seen ipsilateral to the side of the imagi-
nary movement [2]. Most likely, this outcome indicates
a dipolar projection of the contralateral cortical site
responsible for ankle/foot movements. Nevertheless,
it cannot be excluded that ipsilaterality may be an
effect of handedness [7], considering that all subjects
were right-handed and imaginary motor tasks prob-
ably generate a diffuse cortical activity that may be
strongly influenced by handedness dominance.

CONCLUSION
The results show that imaginary movements with dif-
ferent RTDs can be classified from EEG with a mis-
classification rate of ∼20 % in subjects without any
specific training. These results are considered promis-
ing for the use of MRCPs in BCIs since training of
subjects and multi-channel classification approaches
are expected to further decrease the misclassification
rates.
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SUMMARY: A multimodal interface such as virtual
reality can combine 3D display and sound, improving
BCI feedback presentation to help subjects to get bet-
ter control of EEG signals. This paper describes a BCI
system based on virtual reality techniques to provide
feedback with more immersive and motivating effect.
Preliminary results suggest that EEG behaviour can
be modified via feedback presentation.

INTRODUCTION
A brain-computer interface (BCI) is based on the
analysis of the electroencephalographic signals (EEG),
recorded during certain mental activities, to control an
external device. One of its main uses could be in the
field of medicine and especially in rehabilitation. It
helps to establish a communication and control chan-
nel for people with serious motor function problems
but without brain function disorder.
Performance of BCI will depend, especially, on the
ability of subjects to control their EEG patterns. Ap-
propriate training is very important, which can some-
times take up to several months [1]. It is also very
important to provide some type of feedback allowing
subjects to see their progress [2].
Nowadays, conventional systems of feedback are based
on cursor control and horizontal bar extension. Due to
the lengthy training in BCI systems, this type of feed-
back may result tiring or somewhat boring, leading to
a lack of motivation [2]. In order to improve the ef-
fectiveness of the training process and reduce training
time, feedback needs to be attractive, thus motivat-
ing subjects to control their EEG signals. For this,
as proposed in [3], a good option is the use of tech-
niques based on virtual reality (VR), combining 3D
display with sophisticated graphics and sound. Using
these techniques, a more natural interaction can be
achieved, providing a more immersed and motivating
environment.
The purpose of this paper is to continue the work de-
veloped in previous research [4] in which subjects were
trained using a BCI system based on virtual reality
techniques and had to act within a familiar environ-
ment, such as controlling a car to avoid puddles. The
obtained results showed how subjects were motivated
throughout the feedback period to control the car’s
movement to avoid the puddle, achieving a good con-
trol of EEG signals. However, a worsening of this con-
trol was noticed during the last second of feedback,
probably due to the fact that subjects did not make
an effort when they realised the puddle was almost be-
hind them. In the study presented in this paper, the
same BCI system has been used but different obstacles
(walls, logs and ramps) are incorporated at the end of

the puddle with the purpose of improving the control
of the BCI.

MATERIALS AND METHODS
Signal recording and signal processing: The EEG was
recorded from two bipolar channels with electrodes
placed over the right and left hand sensorimotor area.
The signal processing includes EEG feature extraction
and classification. The feature extraction consists of
estimating the average band power of each channel in
predefined, subject specific reactive frequency, and the
classification is based on linear discriminant analysis.
Training protocol: The training protocol consisted of
different training sessions, combining sessions with no
feedback and sessions with continuous feedback. Dur-
ing each session, subjects were instructed to carry out
160 trials. The duration of each trial was 8 seconds.
The training was carried out discriminating between
two mental tasks: a relaxed state and imagined right
hand movements.
Trial time: Subjects were to carry out some trials, the
timing of which is shown in Figure 1. In a scene of
continuous movement, initially the car would be mov-
ing in the middle of three lanes. At 2 s, a puddle, in
the left or right lane, would appear at the end of the
road. If this appeared in the left lane, subjects should
imagine right hand movements. If it appeared on the
right, they should remain in a relaxed state. At 4.25 s,
the puddle was situated beside the car, starting the
feedback period when subjects were able to control
the car to avoid the puddle and the obstacle located
at the end of the puddle (a wall in Figure 1). In the
case of sessions without feedback, the car would stay
in the central lane.

Figure 1: Trial time

In this system, to make interface even more entertain-
ing, different scenes were developed (Figure 2): con-
trolling the car to avoid crashing into a wall, to avoid
logs in the road, or to reach a ramp that would make
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 the car jump (in this scene, the ramp is not an ob-
stacle but a target, and it is also located at the end
of the puddle but on the opposite lane with the aim
being to drive over the ramp). With the aim of achiev-
ing a more realistic environment, sounds simulating a
car engine, puddle splashes and effects of the obstacles
were introduced.

Figure 2: Different obstacles

RESULTS
Only one of the subjects who took part in the previous
research [4], participated in this study. To obtain com-
parative results, error percentage of all sessions with
feedback have been considered, as shown in Figure 3.
Discontinuous lines represent the error curves obtained
in previous experiments [4] in which the subject was
to control the car’s movement to avoid only the pud-
dle (5 sessions). Continuous lines represent the error
curves obtained in this experiment in which the sub-
ject was to control the car to avoid the puddle and
the obstacle located at the end of the puddle (3 ses-
sions). In this study, the obstacles presented in each
trial were randomised between the wall and the ramp.
Thick lines represent error percentage average from all
sessions with feedback for each experiment.

Figure 3: On-line classification results

Curves show how, effectively, in almost all sessions the
error rates worsen during the last second of feedback
(specially from 6.5 s to 8 s) when the subject has to
avoid only the puddle (results obtained in [4]), while
the presence of an obstacle located at the end of it
seems to help the subject to maintain the control of
the EEG signals until the end of the feedback period.

DISCUSSION
The obtained results suggest that changing the feed-
back presentation make it possible to modify the be-
haviour of the subject and in turn their capacity to
control the EEG signals. The incorporation of an ob-
stacle at the end of the puddle, at the end of the feed-
back period, allows the subject to feel immersed and
to be taking part in the task of avoiding the puddle
during the whole feedback period. The subject man-
ages to maintain concentration until the end of the
trial avoiding a loss of control of the BCI. Further-
more, mixing different scenes, or obstacles, seems very
important to make interface even more entertaining,
and to avoid that feedback effects become frustrating
or could prove somewhat boring.

CONCLUSION
In BCI systems, training must be as easy and attrac-
tive as possible, being sometimes necessary to adapt
training protocol to be effective. The preliminary re-
sults obtained in the study carried out suggest how
it is possible to improve the EEG control presenting
feedback whose effects are more immersive and moti-
vating. The graphical possibilities of a multimodal in-
terface combining 3D display and sound seems a good
option to develop training techniques helping subjects
to achieve a better control of the BCI.
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SUMMARY: This study investigated if changes in rate
of force development, during perceived and real wrist
flexion performed by an amputee, could be classi-
fied from multichannel electroencephalographic (EEG)
data. An approach based on optimization of wavelets
for feature extraction and K-nearest neighbor for clas-
sification has been applied. As a main result, classifi-
cation of perceived wrist flexion at the amputated side
presented errors as low as 5 %.

INTRODUCTION
Differentiation of movement-related parameters in
movement-related cortical potentials (MRCP) during
motor imagination can considerably improve EEG-
based brain-computer interfaces (BCI). Previous stud-
ies have demonstrated the correlation between MRCPs
and motor tasks involving different rates of torque de-
velopment and levels of torque both during actual ex-
ecution and imagination of motor tasks [1, 2]. The
present study was designed to identify similar move-
ment parameters in tasks performed by an amputee.

MATERIALS AND METHODS
Experiment setup: A 28 years old male with an am-
putation of the left hand/wrist participated in the
experiment. The amputation, about 5 cm above the
left wrist, occurred approximately 2 years prior to the
experiment. The experimental procedures were ap-
proved by the local ethical committee and informed
consent was obtained before the experiment.
The experimental tasks consisted of voluntary real
(right side) and perceived/imaginary (left and right
sides, respectively) isometric wrist flexions at two rates
of force development (moderate and ballistic tasks).
The ballistic task was defined as the attainment of
60 % of maximum voluntary contraction (MVC) as
fast as possible, whereas the moderate task as a 4-s
linear force increase followed by a plateau of 1 s. A
total of 6 tasks were performed in random order and
evaluated: Ballistic Real Right (BRR), Moderate Real
Right (MRR), Ballistic Imaginary Left (BIL), Moder-
ate Imaginary Left (MIL), Ballistic Imaginary Right
(BIR) and Moderate Imaginary Right (MIR) wrist
flexions. Each task consisted of 50 trials.
The isometric wrist flexion was measured as the down-
wards force exertion on a multi-axis force transducer
set as a handlebar (FS-6, AMTI) with force signal ac-
quired and sampled at 500Hz.
The EEG recordings were performed with standard 10-
20 system. The channels FP1, FP2, F7, F3, FZ, F4,
F8, FC1, FC2, T7, T8, C3, C1, CZ, C2, C4, CP3, CP1,

CPZ, CP2, CP4, P7, P3, PZ, P4, P8, PO7, PO8, O1
and O2 were recorded with reference to electrodes (tin)
on the earlobes (A1, A2). The EOG were recorded by
four standard tin electrodes. The EEG/EOG signals
were digitized at 500 Hz.
Surface electromyography (EMG) was recorded from
digital flexors and extensor muscles of both forearms
using standard self-adhesive disposable Ag/AgCl elec-
trodes and digitized at 2000 Hz. The raw EMG data
were high-pass filtered at 10 Hz, rectified and low-pass
filtered at 6Hz.
Data pre-processing: Pre-processing included:

1. Setting exact movement onset by means of
threshold and extracting time intervals for EEG:
1 s before and after movement onset.

2. Discarding trials contaminated by EOG activity
that exceeded 75µV.

3. High-pass filtering EEG signals at 0.05 Hz to re-
move baseline drift and notch filtering at 50Hz
to remove power line noise.

Discrete Wavelet Transform (DWT): The DWT is
based on the Multi Resolution Analysis (MRA).
Mother wavelet can be parameterized through Finite
Impulse Response (FIR) filters h and g associated re-
spectively to the scaling function φ and wavelet func-
tion ψ by the two-scale relations:

φ(t/2) =
√

2
∑

n

h[n]φ(t− n) (1)

ψ(t/2) =
√

2
∑

n

g[n]ψ(t− n) (2)

In order to generate an orthogonal MRA wavelet, h
must satisfy some conditions. g can be deduced from
h according to the relationship g[n] = (−1)nh[1 − n].
When the length of h is L, the number of free param-
eters to design h is L/2 − 1 to allow perfect recon-
struction. Each free parameter θ varies independently
from 0 to π. In our application, with L = 4, we need
one design parameter θ and h is given by Sherlock and
Monro [3].

h(1) = (1/
√

2)cos(θ)cos(π/4− θ)
h(2) = (1/

√
2)sin(θ)cos(π/4− θ)

h(3) = −(1/
√

2)sin(θ)sin(π/4− θ)
h(4) = (1/

√
2)cos(θ)sin(π/4− θ)
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 In this study, 20 parameters θ between 0 and π with
equal step were used to design h, therefore 20 mother
wavelets were obtained for optimization.
Feature Extraction: The features for classification were
extracted from the DWT coefficients by Root-Mean
Square (RMS) for each subband:

y(j) =

√√√√∑j
i=1

∑
ni
Di[n]2∑j

i=1 ni

(3)

where Di and ni are the detail coefficients and the
number of detail coefficients at ith level. The feature
vector was obtained by y(j), (j = 1 . . . N). N was the
deepest level of decomposition.
Classification: The K-Nearest Neighbor classifier was
used. In our application, K, the number of nearest
neighbors, was chosen as 5. Leave-one-out approach
was applied for estimation of the probability of error:
the tested signal is not used for training [4].
Optimization: The probability of classification error
is represented by P θ

e (ωi) for a given free parameter θ
and given class ωi. The overall probability of classi-
fication error is the average of N (number of classes)
probabilities P θ

e (ωi):

P θ
e =

1
N

N∑
i=1

P θ
e (ωi) (4)

Then θ is optimized by minimizing the criterion (4)
[5].

RESULTS

Figure 1: Interpolated scalp maps of classification
errors (%) between two classes, 1 s before (left) and

1 s after (right) movement onset.

Classification has been done between two tasks on mul-
tiple channels. Each channel has its own optimized
DWT and accordingly a lowest classification error. Re-
sults are shown in Figure 1. For classification of MRR
and BRR, after movement onset, MRCP in primary
motor cortex result in best performance. MIL and
BIL can be classified with classification error lower
than 5 % in channels C3, located in the shoulder to
wrist area of primary motor cortex [6] and CP3. For
MIR and BIR, F3 gives lowest (11 %) classification
error among channels before movement onset, while
F7 and T7 give lowest (11 %) classification error after
movement onset. For BIL and BIR, T7 gives lowest
(5 %) classification error among channels. For MIL
and MIR, they can be classified with lowest classifica-
tion error (0 %) on T8.

DISCUSSION
The low classification error in the differentiation
between moderate and ballistic imaginary/perceived
wrist flexion in the amputated side is particularly in-
teresting and inspiring. According to the purpose of
this experiment, the main outcome is the possibility
of discriminating between two different rates of force
development in the amputated side, which open the
possibility for the development of BCIs for control of
force-related parameters in prosthetic devices.
Since performance of classification between two classes
are dependant on channels that show the locations of
brain activities, the future work on classification will
combine the spatial information.
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SUMMARY: Brain-Computer Interfaces (BCIs) pro-
vide a direct communication channel from the brain to
an output device. This paper focuses on the pyscholog-
ical concept of the “locus of control of reinforcement”
(LOC) developed by Julian Rotter. Here we report
from a study with twelve subjects who had no prior
experience with BCI feedback. In the beginning of the
experiment the subjects filled out two questionnaires
for assessing different aspects of LOC. After a calibra-
tion measurement the subjects performed a feedback
run in which they could BCI-control a cursor horizon-
tally. The analysis pointed out a positive correlation
between a LOC score related to dealing with technol-
ogy and the accuracy of BCI control. These prelimi-
nary results suggest that a LOC score can be used as
predictor of BCI performance.

INTRODUCTION
One major goal of Brain-Computer Interface (BCI)
research [6] is to improve performance. While great
efforts are being made to develop better algorithms,
it is conjectured that also many different psychologi-
cal variables influence the performance. Nevertheless
only few studies on this topic exist (e. g. [3]). Here we
focus on the “locus of control of reinforcement” (LOC)
introduced in [5] which has so far not been considered
in BCI context. This concept was developed in Rot-
ter’s theory of social learning. The fundamental idea
is that a specific behavior in a specific situation can be
explained by subjective reinforcement of performance
results, and by subjective expectations, that a specific
result will appear as an action result.
The subject of investigations was to see whether a
LOC related score of a subject measured before an
experiment is a predictor of her/his BCI performance.
If this is the case, a further strategy to enhance BCI
usage could be to influence the LOC of BCI users to
be more internal.

THEORY
Locus of control of reinforcement (LOC): The concept
“locus of control of reinforcement” [5] roughly divides
people into two groups according to their tendency
to ascribe their chances either to external or internal
causes. Persons with an external LOC perceive the
results of their actions not as a result of their own
performance but as a result of good or bad luck, coin-
cidence, destiny, not predictable or dependent by other
people. Persons with an internal LOC perceive rein-
forcement and events, that follow their own actions, as
dependent to their own performance or personality.

For a detailed assessment of the LOC characteristics
of a person there exist several different questionnaires
that allow to quantify the LOC with respect to various
aspects. For this study we used the german question-
naires IPC [4] to determine external (condensed PC-
Scale) and internal (I-Scale) LOC, and the KUT [1],
which has a focus on the LOC with regard to dealing
with technology. It is a one dimensional construction
of LOC, that was developed to analyse technology.
The Berlin Brain-Computer Interface: This study was
carried out using the Berlin Brain-Computer Interface
(BBCI) which is an EEG-based system operating on
the spatio-spectral changes during different kinds of
motor imagery. The BBCI uses machine learning tech-
niques to adapt to the specific brain signatures of each
user. This concept allows to achieve high quality feed-
back already in the very first session without subject
training [2]. This unique feature makes the BBCI par-
ticularly attractive for studies like this.

MATERIALS AND METHODS
Seventeen subjects (12 male, 5 female, with a mean age
of 26) took part in the experiment. All subjects had
been novices for BCI experiments. The brain-activity
was recorded with multi-channel EEG amplifiers us-
ing 64 channels. Surface EMG at both forearms and
the right leg was additionally recorded. They were not
used for generating feedback but only to ensure (on-
and off-line) that no real movements were performed.
In a calibration measurement subjects performed mo-
tor imagery regarding the left hand, the right hand
and the right foot according to visual stimuli (L/R/F).
Then the two classes given the best discrimination
were identified. For twelve subjects (9 male, 3 female)
this discrimination was satisfactory and a binary clas-
sifier was trained. These subjects then performed a
feedback run of 50 trials in which they could control a
cursor horizontally by using motor imagery. The cur-
sor started in the center of the screen and was to be
moved to either the left or the right edge of the screen
as indicated by a highlighted target (25 left and 25
right targets in random order). A trial ended when
the cursor touched one of the edges of the screen or
after a time limit of 5 seconds. When the cursor was
on the target side, the trial was counted as a HIT.
For the current study we analysed the correlation be-
tween LOC and coping with the BBCI feedback as
explained above. The used independent variables were
IV1: internal locus of control of reinforcement (IPC-I-
Scale), IV2: external locus of control of reinforcement
(IPC condensed PC-Scale) and IV3: locus of control
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 by dealing with technology (KUT). The only depen-
dent variable to operationalise the performance was:
DV1: Number of hits (HITS).

RESULTS
The one tailed correlation (Pearson) for the indepen-
dent variables with the dependent variables showed a
significant correlation of 0.59 (α = 0.05) for KUT and
HITS. No significant correlation was found for the I-,
and the condensed PC-Scale of the IPC.

Figure 1: The scatter plot of HITS and KUT.

DISCUSSION
The results implicate that a person who has a strong
internal LOC can perform better with the BBCI than
somebody who has ordinary or below average LOC.
This was specially found in the analysis of the correla-
tion between the KUT and the HITS. The higher the
KUT results were the better was the performance. The
IPC is a more general questionnaire to look at LOC. In
view of the fact that we analyse interaction with tech-
nology it is understandable that only the questionnaire
that focuses specially on this aspect shows a significant
correlation.
The results of the study suggest that a specific aspect
of the LOC may be a predictor of BCI performance.
People who feel very comfortable with technology and
believe in their own abilities seem to be good in this
kind of experiments. Furthermore a novel method for

improving BCI performance is conceiveable. When
users can successfully be confirmed in their internal
LOC, it can be expected that their BCI-performance
will increase. However, this was to be verified in fur-
ther studies.
This study can only give preliminary indications due
to the limited number of subjects. Furthermore it re-
mains open, whether similar implications are true for
other BCI systems, e. g. ones involving subject train-
ing.
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trollüberzeugungen, 1981.

[5] Rotter JB, Generalized expectancies for internal
versus external control of reinforcement. Psy-
chological Monographs, 1966; 609.

[6] Wolpaw JR, Birbaumer N, McFarland DJ,
Pfurtscheller G, Vaughan TM. Brain-computer
interfaces for communication and control. Clin
Neurophysiol, 2002; 113: 767-791.

3rd Int. BCI Workshop & Training Course 2006

77



 

 

 THE RELEVANCE OF FEEDBACK TYPE ON BCI CLASSIFICATION
RESULTS

S. Wriessnegger2 , R. Scherer1, C. Maier2, K. Mörth2, G. Pfurtscheller 1, C. Neuper2

1BCI-Lab, Institute for Knowledge Discovery, Graz University of Technology
2Department of Psychology, University of Graz

SUMMARY: In the present paper we describe the re-
sults of two different types of feedback, abstract ver-
sus concrete, on classification results obtained with the
Graz Brain-Computer-Interface. The EEG of thirty-
four healthy subjects, performing a left or right mo-
tor imagery task, was recorded in a primary screening
session. Afterwards the subjects were divided into two
comparable groups based on their mean classification
values, resulting in 10 subjects per group. In the ex-
perimental session, one group obtained abstract feed-
back (moving bar), whereas the other group obtained
concrete feedback (moving hand). The classification
results show no difference between the two feedback
groups.

INTRODUCTION
Brain-Computer Interfaces (BCI) provide users with
an alternative output channel other than the normal
output path of the brain, i. e. the efferent nervous sys-
tem and muscles. The purpose of a BCI is to detect
physiological signals from the brain, typically electri-
cal signals resulting from neural firing and to translate
this signal in order to control an output device.
To control such a BCI, several technical, physiologi-
cal and psychological factors play an important role.
The Graz-BCI, presented in this paper, is based on the
classification and detection of changes in the sensori-
motor electroencephalogram (EEG, usually two bipo-
lar channels), induced by the imagination of motor
activity (e. g. hand movement) [1]. Important factors
for the identification of the changing oscillatory brain
activity are 1) electrode location and 2) reactive fre-
quency components.
Second, but also important are some psychological fac-
tors like motivation, attention or excitement. Such fac-
tors, which are closely related to the learning process,
could be influenced by the choice of feedback presen-
tation, which might determine the success in following
BCI applications [2, 3]. In the present paper two types
of feedback (abstract vs. concrete) were investigated
regarding their impact on classification results.

METHODS
The EEG from thirty-four healthy, naive subjects (19
females, age 24.1 ± 2.0, 15 males, age 28.2 ± 8.7) was
recorded from 6 sintered Ag/AgCl electrodes placed
over the cortical hand areas (at positions C3 and C4
as well as positions 2.5 cm anterior and posterior to
these (Figure 1). The subjects were without any med-
ical or psychological diseases, had normal or corrected
to normal vision and got paid for attending to the
experiments. The acquired signal was analog filtered

between 0.5 and 100 Hz (2nd order, attenuation 40 dB)
and sampled with 250Hz.

Figure 1: Electrode setup and analyzed bipolar
derivations

Sitting in a comfortable armchair, subjects had to
imagine left and right hand movements, following a
fixed repetitive time scheme. In the screening session
each trial started with the presentation of an acous-
tical warning tone and a fixation cross. One second
later, an arrow (cue) pointing to the left (left hand) or
to the right (right hand) specified the motor imagery
task to perform. Each subject had to perform the mo-
tor imagery for 4 seconds, until the screen content was
erased. After a short pause (random duration) the
next trial started. Each training run consisted of 40
trials with 20 trials per class (left/right) presented in
randomized order.
Five training runs were recorded for each subject and
according to their accuracy they have been divided in
two comparable groups (median based), receiving dif-
ferent types of feedback (Figure 2).
Band power features were computed by bandpass fil-
tering the EEG signal, squaring and averaging the
samples in the analyzed 1-second time window. From
this averaged value the logarithm was calculated.
For classification Fisher’s linear discriminant analysis
(LDA) was applied to the band power estimates. In
subsequent sessions, the system uses the classifier to
translate the user’s motor imagery into a continuous
output, which is presented to the subjects as online
feedback on a computer screen.

Figure 2. A: Concrete Feedback; B: Abstract
Feedback

One group received concrete feedback, where accord-
ing to their brain states caused by the required motor
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 imagery a real hand starts moving to reach a glass.
The second group received abstract feedback by ma-
nipulating a bar in the predefined direction (Figure 2).
For example, if the subject has to imagine a right hand
movement in the concrete feedback, the right hand
starts moving to reach the green glass. In the abstract
feedback condition the subjects had to expand a grey
bar in the required direction previously indicated by a
red arrow (Figure 2). Subjects performed 3 feedback
sessions with 40 trials each.

RESULTS
A one-way ANOVA was computed comparing the clas-
sification results of three feedback sessions from sub-
jects who received concrete versus abstract feedback.
No significant difference was found between the types
of feedback obtained in session one (FB1: F (1, 18) =
0.275; p = 0.606), session two (FB2: F (1, 18) = 1.151;
p = 0.297) and session three (FB3: F (1, 18) = 0.512;
p = 0.484). Furthermore no significant differences
were found within the three feedback sessions. The in-
dividual classification results for each feedback group
(abstract vs. concrete) are illustrated in Figure 3. The
mean classification results over all feedback sessions
and subjects were 62.95 (SD = 6.80) for concrete FB
and 60.06 (SD = 8.94) for abstract FB.

Figure 3: Mean classification results for concrete and
abstract FB of all subjects overall sessions (FB1,

FB2, FB3).

DISCUSSION
The results of this study indicate that feedback is a
necessary and useful method improving learning, at-

tention and motivation in BCI applications, but the
type of feedback (concrete vs. abstract) does not influ-
ence the performance, at least in initial feedback ses-
sions. These results are contrary to the assumptions
of Pineda et al. (2003), who suggested that feedback
conditions in a stimulus-rich, more realistic environ-
ment (e. g. shooter games) led to better performance
and shorter training times. This could be attributed to
the low number of training sessions (3 sessions) in our
study and the third person movement imagery arising
by observation of the moving hand, which is known to
be less effective compared to first person imagery [4].

CONCLUSION
The type of feedback (concrete/abstract) does not in-
fluence classification results. Particularly, to move a
virtual bar (abstract FB) seems to be enough infor-
mation for individuals to perform accurately. However
the number of feedback sessions should be extended in
further experiments.
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SUMMARY: The goal of the study was to identify rele-
vant features from the ongoing electroen-cephalogram
(EEG, i. e. electrode location and reactive frequency
components) that represent the specific mental pro-
cesses during execution and imagination of hand move-
ments in stroke patients with hemiparesis. The results
of this first study show that single-trial analysis rep-
resents an appropriate method to detect task-related
EEG patterns in stroke patients.

INTRODUCTION
Rehabilitation of hemiparesis after stroke is well es-
tablished for lower limbs, whereas therapy of upper
limb motor skills is less developed. One way of inter-
vention is to treat the paretic upper limb actively or
passively [1]. Another therapeutic approach may be
the concept of motor imagery, i. e. to imagine or sim-
ulate the movement of the affected limb [2]. Based
on this idea the main goal of this study was to de-
velop an additional rehabilitation method to improve
the motor function of the affected upper limb on the
basis of the electroencephalogram (EEG)-based Graz
Brain-Computer Interface (BCI) operated by motor
imagery [3]. For this purpose, in a first step, we in-
vestigated, whether there are EEG patterns in stroke
patients which are detectable and stable enough to be
used for BCI feedback training. Single-trial classifica-
tion of executed and imagined hand movements was
performed. At the same time, we tried to identify the
relevant frequency components, which can be used for
BCI training to enhance the cortical activity on the
lesional hemisphere.

MATERIALS AND METHODS
Subjects and data acquisition: Ten right-handed pa-
tients (5 females, 5 males, mean age 45.7 years, SD =
11.6) gave their informed consent to participate in this
study after the experimental procedure had been ex-
plained to them. They had sustained their first-time
stroke between 2 and 36 months prior to the study
(mean time since onset: 12 months, SD = 12.9).
All subjects suffered from unilateral lesion (cortical
and/or subcortical) as a consequence of the cerebrovas-
cular damage. The lesions were located either in the
left (n = 3) or right (n = 7) hemisphere and had led
to hemiparesis of the contalateral upper extremity di-
rectly after stroke onset. Three bipolar EEG-channels
were recorded from 6 Ag/AgCl scalp electrodes placed
over hand and foot representation areas (2.5 cm ante-
rior and posterior to electrode positions C3, Cz and

C4, 10-20 system). The EEG signal was acquired and
band pass filtered between 0.5 and 30 Hz with notch
on. The recordings, including trigger signals indicating
movement/imagination onset, were sampled at 125Hz.
Experimental Procedure: Each participant performed
each of the two experimental conditions twice with
each hand, starting with the unaffected hand:

1. Motor execution (ME). Participants were asked
to clench or even move their fingers considering
the severity code of the hemiparesis (approxi-
mately 2 s).

2. Motor imagery (MI). Participants were asked to
imagine the movement they were asked to per-
form within the first experimental task.

Throughout the experiment subjects sat relaxed on
their chair with their eyes open. Within one experi-
mental condition the participant had to repeat (cue-
based, trial duration randomly selected between 8–
10 s) the movement/imagination 30 times (resulting in
60 repetitions per hand and condition). Before the be-
ginning of each run, the researcher explained the task
by using simple instructions and showing the sequence
of movements that should be performed with his own
hands. MI consisted of imagining the performance of
motor sequences and the kinesthesic sensations asso-
ciated with it while holding the finger still.
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Figure 1: Mean DSLVQ classification accuracy

Signal processing: From the continuous EEG time seg-
ments with a length of 8 s each (2 s before and 6 s after
cue onset) were analysed. All trials were visually con-
trolled for artefacts and affected trials were excluded
from further analyses. For single-trial classification
and identification of reactive frequency components
the Distinction Sensitive Learning Vector Quantiza-
tion (DSLVQ) algorithm was used [4]. Two time seg-
ments of 1 s length were extracted, one was taken from
0.5–1.5 s (reference period, class 1) the other from 3.5–
4.5 s (task period, class 2) and classified against each
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 other. For each segment, 21 overlapping (1Hz) fre-
quency components between 8 and 30 Hz with a band-
width of 2 Hz were calculated. Separately for each task
and for each electrode position, a DSLVQ classification
was performed. The analysis was repeated for the task
period defined from 4.5–5.5 s (class 2).

RESULTS
The mean DSLVQ single-trial classification results are
summarized in Figure 1. Table 1 gives a more detailed
overview of all patients. The classification accuracies
were subjected to a repeated measures ANOVA with
the factors TASK (2 levels: ME, MI), HEMISPHERE
(2 levels: unaffected, affected) and LIMB (2 levels: un-
affected, affected) as within subject variables. Aside
from the prominent TASK effect (F (1, 9) = 8.55;
p < 0.05) for the “real” motor versus imagined task
conditions, indicating higher recognition rate for ME
than for MI, we found also a significant 2-way interac-
tion between LIMB × HEMISPHERE (F (1, 9) = 7.58;
p < 0.05). Post-hoc comparisons of the respective
means support that the recognition rate was higher
at the contralesional than at the affected hemisphere,
irrespectively whether the motor task involved the af-
fected or intact hand. The accuracy rate at the con-
tralesional hemisphere was higher for the healthy hand
area than for the affected one.
The relevance values of different frequency components
between 8 and 30Hz pointed out that basically the
frequency components of the lower beta (16–22) and
alpha or mu (9–14) play an important role for ME as
well as MI.

DISCUSSION
The results demonstrate more pronounced cortical ac-
tivity changes as reflected in higher classification rates,
at the contralesional than at the affected hemisphere,
independent of whether the hand movement was exe-
cuted or imagined at the unaffected or affected side.
This finding is in line with previous studies suggest-
ing increased task-related activation of the ipsilateral
cerebral motor cortex in stroke patients with hemi-
paresis [5, 6]. It was shown that for unrecovered stroke
patients, most task-related information flow between
the sensorimotor cortices in the low beta band of the
EEG came from the ipsilateral (undamaged) hemi-
sphere during a movement with the affected hand.
Of interest is that a similar pattern of results, i. e. con-
tralesional preponderance, was also found for the im-
agery task in our study. The lower classification rate
obtained for MI than for ME is in agreement with a
previous study in healthy subjects [4]. Moreover, con-
sidering the task relevant frequency ranges, the present
data confirm that during ME as well as MI, mainly the
frequency components between 16–22 Hz and 9–14Hz
play a very important role for the intact as well as the
paretic hand.

Table 1: Classification accuracy rates (%, highest
accuracy of the two analyzed time periods) for the

different tasks (ME, MI), hand movement (unaffected
limb: UL; affected limb: AL) and hemisphere

(unaffected hemisphere: UH; affected hemisphere:
AH). Side of lesion: L

ME MI
UL AL UL AL

Subj. L UH AH UH AH UH AH UH AH
V02 R 87.0 53.1 66.9 70.4 73.3 57.3 66.6 61.9
V05 R 77.4 58.0 68.0 59.8 64.8 47.0 70.7 55.1
V10 R 77.7 66.9 77.1 56.4 79.7 61.7 69.8 59.8
V12 R 78.2 57.7 70.6 54.1 80.8 53.7 70.8 47.6
V14 R 94.4 82.3 85.4 83.9 81.2 69.3 78.9 72.2
V15 R 68.2 59.5 66.2 62.3 91.2 59.7 75.5 61.3
V22 R 69.9 68.4 61.4 76.1 62.6 60.3 59.6 66.0
V01 L 70.0 66.4 73.2 76.3 59.0 65.9 56.3 68.1
V18 L 73.1 73.7 73.6 72.9 60.4 68.7 68.0 67.1
V19 L 94.0 93.9 82.7 86.6 71.6 71.6 82.7 86.6
Mean 79.0 68.0 72.5 69.9 72.5 61.5 69.9 64.6
SD 9.7 12.5 7.5 11.3 10.7 7.7 8.0 10.4

The main objective of this study was to find out, which
classification rates can be achieved in single trial anal-
ysis of motor imagery related EEG in stroke patients,
and which task-related frequencies are the most impor-
tant for this classification. In this regard, the present
study revealed moderate classification accuracy rates
for MI in stroke patients.
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CORRELATION TO EVENT-RELATED DESYNCHRONIZATION
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SUMMARY: The new phase-related feature called
“delta-phase” first introduced in [1] is investigated
here as a physiological phenomenon. We present and
discuss here for the first time a visualization tool called
the delta-phase map used to visualize the occurrence
of this feature over the time courses of motor imagery
trials. In this study, the delta-phase feature is shown
to be proportional to instantaneous frequency and is
presented here in that context. It was found that the
most reactive delta phase features are highly corre-
lated with the most reactive band power feature dur-
ing an event-related desynchronization.

INTRODUCTION
With an increase in the number of groups focusing
on Brain-Computer Interfaces (BCIs) [2], more re-
searchers are beginning to look at ways to improve
the restricted data throughput. One way to accom-
plish this is to discover new features such as the Com-
plex Band Power (CBP) features discussed in [1]. This
feature set contains two components, delta-phase and
amplitude (a band power-like component), which were
used together to achieve improved results. Unlike
band power however, which has been extensively stud-
ied and analyzed in many ways, delta-phase has only
been exploited to improve classification results, but
never studied as a physiological phenomenon. Phase
information contained in EEG has been studied in-
directly, appearing implicitly in some other kind of
feature, however it has not been visualized explicitly
before in the same way as band power. For example,
the ERD/ERS map gives a consolidated view of the
available data, and is ideally suited as a visualization
tool for this purpose. It is only natural to extend the
concept of an ERD/ERS map to the new delta-phase
map considered here. This new visualization tool is
used here to show a correlation between ERD and
delta-phase. The data from [1] is used along with the
CBP features originally used in that study. Since these
features were already shown to produce good classifi-
cation results with the data set in question, the goal
of the present study was to determine why this was
so, or in other words, to determine what physiological
phenomenon was being captured by the features used.
The data recordings used were available on the Graz
site during the 2005 BCI competition.

MATERIALS AND METHODS
The CBP features produced from EEG recordings dur-
ing a four-class BCI motor imagery experiment were
used for this study. Details of the experiment can be
found in [1]. Only left and right hand imagery are

considered here. Each trial was 10 s in length. Motor
imagery began at t = 3 s. Features derived from elec-
trodes C3 and C4 were considered in this experiment
since they reveal the most important signals [4] for
this motor imagery. The instantaneous phase angle is
derived from an FFT of the raw EEG as described in
[1], and differentiated to form the delta-phase feature.
This step is described in (1). ∆t corresponds to one
sample.

φ̂f =
∆φf

∆t
= φf − φf−1 (1)

In the original study [1], the delta-phase feature was
the difference in phase angle of two adjacent samples.
Clearly the units of delta-phase are radians/second,
however this is simply frequency. With 2π radians in
a cycle, and a 250 Hz sampling rate, the original delta-
phase feature can be converted directly to Hertz by
multiplying by 2π/250. This is the perspective taken
in this study. The CBP amplitude component, was
used to produce ERD/ERS maps. The delta-phase
component was shown in a similar way to provide the
“delta-phase” maps shown here, however the feature
was scaled as discussed above to produce a frequency
in Hertz, and then normalized by subtracting out the
mean of the frequency in the pre-trigger period so that
the result captures the change in frequency during mo-
tor imagery. Since 4 Hz bands are used in the FFT,
this scaled delta-phase feature will range from ±4 Hz.
In the description above, the original delta-phase fea-
ture is not only scaled to a frequency expressed in
Hertz, but also offset to 0Hz based on the mean fre-
quency prior to the trigger. Similarly, based on the
definition of ERD/ERS, the amplitude information is
also normalized in the same way so that the mean of
the band power prior to the trigger is considered to be
100 %. To review for clarity, in the pre-trigger trial pe-
riod, the delta-phase component is normalized to 0Hz,
and the amplitude component is normalized to 100%.

RESULTS
In all cases, the 12–16Hz band showed the most pre-
dominant ERD activity, consistent with [3]. In all but
one subject, the most predominant ERD activity was
at C3 for right trials and C4 for left. For one sub-
ject, immediately adjacent electrodes were predom-
inant. All subjects and trials showed the following
phenomenon. In the 12–16 Hz band, the delta-phase
activity wanders around at 0 Hz. The most predomi-
nant delta-phase activity occurs in the next higher and
next lower bands. In the higher band, the frequency
of the delta-phase feature rises in lock-step with the
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 ERD activity, while in the lower band, it falls. For
subjects s1 and s4, who produced very good classifica-
tion results [1], the frequency change is on the order
of ±2 Hz. The other subjects showed similar behavior,
but with changes under ±1 Hz. Figure 1 shows the
time-courses of the ERD and delta-phase activities for
the averaged left trials of subject s1.

Figure 1: Time courses for ERD/ERS (left) and
delta-phase (right) for averaged left hand motor
imagery from subject s1, electrode C4. Onset of

motor imagery begins at t = 3 s. The most
predominate ERD occurs in 12–16 Hz band, while
most predominate delta-phase activity occurs in

adjacent bands above and below. Dotted lines give
standard deviation above/below mean.

Figure 2 shows ERD/ERS and delta-phase activity in
visual maps. Activity at values near the baseline has
been suppressed for clarity. White indicates that no
activity being shown. Where other shades of grey ap-
pear, the lighter shades indicate ERS activity or in-
creased frequency in the case of the ERD/ERS maps
and delta-phase maps respectively, while the darker
shades indicate ERD activity or decreased frequency
correspondingly.

DISCUSSION
The results show that ERD is accompanied by fre-
quency increases and decreases in the bands above and
below the band in which the ERD occurs. Alterna-
tively, this can also be viewed as a positive phase shift
in the upper adjacent band, and a negative phase shift
in the lower one. Since the band power in the adja-
cent bands decreases, the frequency changes must be

due to oscillations already present in other nearby net-
works “pulling” the observed frequency further away
from what was the predominant signal in each band
prior to the ERD. In any case, the results show a clear
correlation between ERD and delta-phase.

Figure 2: ERD/ERS (upper) and delta-phase maps
(lower) for averaged left hand motor imagery from

subject s1, electrode C4. Onset of imagery begins at
t = 3 s. Most predominate ERD is in 12–16 Hz band,

while the most predominate delta-phase activity
occurs in adjacent bands.
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SUMMARY: Electrocorticographically-based (ECoG-
based), closed loop cursor control paradigms for three
patients are examined. Each patient obtained con-
trol in two separate control paradigms: a left-right
cursor to target task mediated by overt hand move-
ment and an up-down task mediated by overt tongue
movement. The relationship between the signals used
for the two independent movement related-features are
evaluated using the cross-correlation values from each
feature during relevant states in each task.

INTRODUCTION
One-dimensional BCI has been demonstrated using
the BCI2000 program [1] for cursor control with
narrow spectral bands from single electrodes [2, 3].
This paper examines separate one dimensional con-
trol paradigms to quantify cross talk between control
features. Such quantification is important because the
independence of control features will dictate whether
simultaneous control of separate degrees of freedom is
feasible.

MATERIALS AND METHODS
Electrode Arrays: Epileptic patients were implanted
with subdural electrode arrays for monitoring prior to
seizure focus resection. During their monitoring du-
ration, the patients participated in BCI screening and
online control experiments.
Screening: Thirty 3-second interval stimuli for hand
movement, and thirty 3-second intervals for tongue
movement (shown in random order) were interleaved
with three-second rest periods. Comparisons of inter-
vals for each movement type with rest intervals were
used to identify appropriate channel-frequency band
features for closed loop control.

p2
ab =

(
a− b

)
σc

NaNb

Nc
(1)

c = a ∪ b

BCI: Features identified during screening tasks were
coupled with cursor movement for control of a cursor
in either the horizontal or vertical dimension. In a
left-right target experiment, patients controlled a cur-
sor using the hand movement feature. In a separate,
up-down target experiment, patients used the tongue
movement feature. Cursor feedback was based upon
the ratio between the instantaneous power in the given
feature vs. a dynamically calculated mean [1, 2, 3].

Feature significance: The significance of each feature
during screening and feedback was quantified using the
square of the cross-correlation coefficient (1).

Table 1
Patient Mode Freq Electrode Accuracy

(Hz) Location (L.T.)
1 Hand 79–85 -60, -3, 30 100% (2)

Tongue 79–87 -44, -14, 56 97 % (8)
2 Hand 77–83 54, -29, 49 85 % (0)

Tongue 29–35 63, -1, 17 76% (20)
3 Hand 97–103 -42, -14, 55 98 % (0)

Tongue 77–83 -25, 21, -28 98% (22)

RESULTS AND DISCUSSION
Task Perfomance: Table 1 shows the features used and
the results of one-dimensional control tasks. The fre-
quency ranges used for control varied from 29–103 Hz,
although the majority of feature ranges were centered
around 80Hz. Five of the six electrode locations used
were in somatosensory cortex, while one was subtem-
poral (pt 3, tongue feature). Patients 1 and 3 ob-
tained complete control in both tasks (97–100 % tar-
get accuracy), while Patient 2 had more difficulty. The
learning times (L.T.) required before the listed results
ranged from 0 to 22 minutes.

Figure 1

Figures 1-3 [5]: These figures illustrate the spatial
distribution of the cross-correlation coefficients of se-
lect frequency bands during each screening task and
the associated one-dimensional feedback BCI task, for
patients 1 and 2. Light shading indicates higher acti-
vation. Electrode locations are shown with white dots.
Patients 1 and 2 exhibited contrasting strategies: Pa-
tient 1’s cortical changes became more focused and less
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 extreme with feedback, whereas Patient 2’s became
less focused and more extreme. This suggests either
that the features hand picked in Patient 1’s case were
better as a control schema, or that the two simply
adopted two different strategies in response to feed-
back. The case of Patient 2 may reflect the idea that
low frequency changes with motor movement are more
broadly distributed spatially [4].

Figure 2

Figure 3

Table 2: The squared cross-correlation across many
tasks quantifies the involvement of each feature. Pa-
tient 1’s features were significant only for the appropri-
ate screening movement intervals, and both could dis-
criminate between the two motor screen intervals. Pa-
tient 1 also had significant correlation for each feature
during the proper one dimensional task, but not dur-
ing the other task, suggesting a smooth transition to
simultaneous two-dimensional control. Patient 2 had
mediocre hand feature resolution in the screening task

and even worse during the closed loop one dimensional
task. The tongue feature was more highly correlated
with the target task than the hand feature during the
closed loop hand control task. This implies that this
patient would need a significant amount of cortical fea-
ture separation during feedback tasks to obtain viable
two dimensional cursor control. Patient 3’s screen-
ing for hand produced a strongly discernable feature.
Tongue movement, however, did not, and so a subtem-
poral site was chosen which did not show strong change
during the hand intervals, but showed a reasonable
(0.3) change during the tongue intervals. The patient,
who appeared to have little control over this feature,
learned (over the course of 22 minutes) to elicit a broad
hemispheric change (Figure 3) which ranged over the
entire range of surveyed cortex, including the feature
chosen for the closed-loop hand movement paradigm.
This might present difficulty when combining the two
features for simultaneous control.

CONCLUSION
The significant cross correlation between features cho-
sen in individual one dimensional cursor control tasks
suggest that, in some cases, significant changes during
two dimensional feedback will be required for control
of independent degrees of freedom.
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Table 2
Squared Cross- Patient 1: Patient 2: Patient 3:

correlation values hand tongue hand tongue hand tongue
screening: rest cue vs. tongue cue 0.06 0.58 0.19 0.03 0.73 0.06
screening: hand cue vs. rest cue 0.76 0.004 0.03 0.45 0.002 0.30
screening: hand cue vs. tongue cue 0.85 0.57 0.22 0.61 0.82 0.06
hand feedback task: target vs. target 0.74 0.0001 0.17 0.28 0.79 0.39
tongue feedback task: target vs. target 0.02 0.66 0.40 0.54 0.41 0.60
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SUMMARY: We examine the problem of classifying
electrocorticographic changes during overt movement
of two different body parts (tongue and hand) for de-
signing closed-loop BCI control. We overcome the
problem of extremely small training data sets via judi-
cious feature selection and the use of powerful sparse
classification methods (LPM). Our results show very
high accuracy on quarter-second windows of data, and
in addition succeed in identifying neurophysiologically
relevant spatial features.

INTRODUCTION
Electrocorticography (ECoG) [1,2,3] has gained atten-
tion as a potential minimally invasive recording tech-
nique for use in brain-computer interfaces. ECoG has
a much higher signal-to-noise ratio than EEG, as well
as higher spectral and spatial resolution. However,
using ECoG for BCI necessitates a reengineering of
the signal processing and classification techniques used
in traditional EEG-based BCIs, to accomodate these
characteristics.
We present a choice of features and classification meth-
ods that reliably captures the difference between the
chosen motor tasks. A single set of simple spatial and
spectral features is used across a large number of pa-
tients to obtain reproducible classification results. Our
methods naively identify the neurophysiologically rel-
evant cortical areas involved in these tasks. While our
results are for overt motor actions, we have shown that
overt and covert motor actions elicit similar spectral
changes in motor cortex [4]. This has also been shown
for EEG signals [5].

MATERIALS AND METHODS
Data Collection: Each subject performed an interval-
based motor repetition task consisting of randomly in-
terspersed hand clenching and tongue protrusion with
alternating rest periods. A total of 30 trials of each
class were recorded, each trial being 3 s of repetitive
movement, cued visually. 26–104 ECoG channels were
recorded at 1000 Hz, and stored along with stimulus
times.
Feature Selection: Each specified window of data from
a channel is processed into two bandpower features,
the lowband (11–40Hz) and highband features (71–
100 Hz) (see Figure 1). Our choice of feature selec-
tion was motivated by two compelling reasons. Firstly,
we have consistently seen quantitative differences in
these bands between average spectra for motor and
rest across patients and motor actions [6], showing that

this is a general physiological phenomenon. Secondly,
the extreme paucity of data (only 30 trials per class,
for upto 100 channels) forces us to use a single, simple
set of features across all patients in order to prevent
overfitting.
Classification: We use the linear programming ma-
chine (LPM, see [7] for details), a sparse variant of the
support vector machine, for classification. The LPM
uses a weight vector w that linearly combines the fea-
tures of a data point to compute the distance of the
data point from a classification boundary. The ad-
vantage of the LPM is that it computes highly sparse
vectors w (i. e., most of the entries are zero or close
to zero), automatically performing feature selection in
addition to classification. The components of the vec-
tor w can be visualized as a spatial distribution over
the cortical electrode positions in order to interpret
the significance w attaches to each channel.
Evaluation: We use double-crossvalidation to measure
the performance of our classifier. Specifically, we ran-
domly divide the trials into 6 blocks, using 5 for train-
ing and 1 for testing. For each train step, we minimize
5-fold cross-validation error over the data in order to
pick a cost parameter C for the LPM. This process
is repeated 5 times, and the resulting error averaged.
The features for the training data are computed on a
2 second window (1–3 s) from each trial. The trained
classifier is tested on non-overlapping 0.25 s windows
of the test trials from 1 s to 3 s, yielding 8 independent
data points per trial.

BRIEF RESULTS
We evaluated our algorithms on data collected from 9
patients.
Classifier Performance: The LPM classification error
averaged across all subjects was 13.7%, for individ-
ual quarter-second windows of data (see evaluation
above). These errors do not take into account the ben-
efit obtainable from temporal integration of classifier
output.
Figure 3 displays the classification time course, and
classifier output for a single subject, averaged across
all test trials, with standard deviation (hatching).
This demonstrates that the two classes are quickly dis-
ambiguated, and that the performance of the LPM is
excellent on even 0.25 s slices of data. Each trial begins
with a visual stimulus, and the low initial classification
rate reflects the behavioral response time of the sub-
jects. Smoothing over time brings down the error rate
further (not shown).
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Figure 1: Spatial and Spectral Feature Selection: We choose two simple features, bandpower in low and high
bands, that have consistently shown modulation during motor actions. Shown are average spectra for two

electrodes in the classical tongue and hand areas, respectively. The bottom left and right figures show features
selected by the sparse classifier (LPM).

Spatial Feature Selection: We use the electrode po-
sitions [8] for each subject to project the electrode
weights onto a standard brain, to visualize the low-
band and highband features selected by the classifier.
The data is interpolated by linearly superimposing
gaussian kernels of fixed width about each electrode
(Figure 1, lower left and right). The figure clearly
shows general agreement across subjects on the ac-
tual electrode positions picked by the LPM classifier.
This sparse selection also corresponds to classically de-
scribed neuroanatomy.

Figure 3: LPM classifier output on independent
0.25 s windows of data across the trial. Hatching

shows standard deviation.

DISCUSSION AND CONCLUSION
We have presented a method for binary classification
of ECoG signals recorded during motor actions. Our
method can classify 0.25 s slices of data as “tongue”
or “hand” movement with an average error of 13.7%
across 9 patients, and is currently being evaluated on-
line in closed-loop scenarios. We have shown that a
simple set of spatial and spectral features produces ro-
bust classifiability across many subjects, and naively
converges upon the underlying neuroanatomical fea-
tures.
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 MOVEMENT ONSET RELATED CHANGES IN ECOG RECORDINGS
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SUMMARY: In former studies on movement direction
inference during self-paced movement, our group found
the highest decoding power in electrodes in primary
and premotor cortex, but less information in inferior
parietal regions [1]. In the present study we have de-
tected groups of electrodes with a reproducibly similar
dynamic behavior around movement onset irrespective
of movement direction. In contrast to directional de-
coding, movement onset related changes showed an
additional peak in the inferior parietal lobule (IPL).
The IPL therefore is a promising region for movement
detection in brain-machine-interfacing applications.

INTRODUCTION
For brain-machine interfacing aiming at the restora-
tion of movement capabilities in paralysed patients it
is not only crucial to extract movement parameters
such as movement direction from brain signals, but
it is also important to distinguish movement per se
from rest, i. e. to achieve movement detection. In an
ongoing project we have shown that movement direc-
tion specific electrocorticographic signals (ECoG) are
generated in the human frontal lobe, allowing for sin-
gle trial decoding of arm movement direction [1]. In
this work, we have investigated arm movement direc-
tion unspecific potentials which might still be useful
for detection of movement in ongoing recordings.

MATERIALS AND METHODS
An epilepsy patient with electrodes implanted for pre-
neurosurgical diagnostics (Figure 1) performed center-
out arm reaching movements to four targets.

Figure 1: Subdural Electrocorticogram grid on the
premotor (PM), primary motor cortex (M1) and the

inferior parietal lobule (IPL). Modified from [2].

To record ECoG we used a densely spaced electrode

grid of 112 electrodes with 4 mm diameter covering an
area of approximately 7×7 cm2 of the fronto-temporo-
parietal cortex. The function of the cortex underlying
the individual electrode contacts was determined by
direct electrical cortical stimulation. We investigated
ECoG time series of ±2 seconds around movement on-
set.
In order to identify optimal electrodes for movement
detection, we developed the following three step pro-
cedure:

1. Detection of electrodes with a reproducible move-
ment onset behavior across trials: For each elec-
trode the pair wise correlation between all 88 tri-
als in different directions was calculated and the
significantly reliable electrodes were determined.
The significance level was assessed by compari-
son with the distribution of equally preprocessed
white noise.

2. Classification of groups of electrodes with simi-
lar response: To classify different groups of elec-
trodes exhibiting a similar averaged temporal be-
havior around movement onset, we used a corre-
lation based hierarchical clustering with distance
metric

d = 1− |< xi(t), xj(t) >| ,

with xi(t) being the ECoG signal of electrode i
at time point t.

Figure 2: For a threshold correlation of 0.65,
the clustered electrodes formed twelve distinct

groups
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 3. Determination of electrodes with specific move-
ment onset behavior: In the third part of our
analysis we determined the electrodes with the
highest significance of ECoG differences between
pre- and post-movement onset periods. There-
fore we tested whether a channel’s mean poten-
tial over all trials irrespective of movement di-
rection at a pre-movement time point was signif-
icantly different from the mean potential of the
distribution of any of the following time points
using a Student’s t-test. The significance of the
signal change is visualized in Figure 3. The dark
areas in the center of lighter ones indicate highly
significant differences between pre-movement po-
tentials and later movement related potentials.

Figure 3: Areas of electrodes with significant
potential differences before and after movement onset

RESULTS
Groups of electrodes with a reproducible, similar po-
tential behavior around movement onset were de-
tected. Electrodes above motor cortex gave the most
reproducible movement onset related ECoG response.
With a threshold correlation of 0.65, twelve groups
of recording channels could be determined (Figure 2).
The remaining thirty electrodes were not correlated.
The two largest groups of similarly behaving electrodes
were located around the superior part of the central
sulcus (darkest gray) as well as in the inferior part of
the postcentral gyrus and the inferior parietal lobule
(IPL) (lightest gray). Regarding the differences be-
tween pre- and post-movement onset time series, in the
resulting cortical map (Figure 3) local peaks were not
only found in the primary motor cortex (M1) and pre-
motor cortex (PM), marked by the upper white box,
but also in a second area in the inferior parietal lobule.

DISCUSSION
As a preparation for future online movement detection
for BMI applications, we investigated the temporal be-
havior of cortical potentials around movement onset.
Based on a cluster analysis, the two largest groups
of correlated electrodes were found in the region of

PM/M1 and of IPL. Generally, the IPL is often found
to be activated during voluntary movement tasks [3,
4] and shows activity already early during movement
preparation [3]. The same two regions also showed sig-
nificant differences between pre- and post-movement
onset ECoG amplitude. As these two areas were sep-
arated by the cluster analysis, it will be interesting
to further investigate whether the two regions actu-
ally contain non-redundant information about move-
ment onset. Further, by combining the most efficient
electrodes, movement detection could be facilitated for
future online analysis where movement onset is un-
known.

CONCLUSION
Among the discovered robust electrodes, several
groups with similar movement onset specific behav-
ior could be identified. The two largest groups were
located above PM/M1 and IPL, respectively. Such
groups of electrodes may be helpful for an online ap-
plication where averaged signals can not be obtained
from several trials, but across a group of electrodes.
Highly significant differences between pre-movement
potentials and potentials occurring later during move-
ment preparation and execution were located not only
in the region of the primary motor arm and hand rep-
resentations, where ECoG signals were also movement
direction specific, but an additional maximum in the
topographical distribution was found in the inferior
parietal cortex. Therefore, in addition to M1 and PM,
this region might be a useful source of information for
movement detection in BMI applications.
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SUMMARY: In this work we validate the results of
using the Multiple Signal Classification algorithm to
determine the presence of stimulation frequency in
EEG recordings of steady-state visual evoked poten-
tials. Support vector machines were used to detect
one out of two stimulation frequencies in a number of
averaged epochs using pseudospectral features. The
results show advantages over the Fourier transform-
based approaches.

INTRODUCTION
The detection of a stimulation frequency in record-
ings of steady-state visual evoked potentials (SSVEP)
is usually solved by means of spectral computations
using the fast Fourier transform (FFT) algorithm fol-
lowed by power averaging at specific frecuencies. Al-
though this method is useful and simple to implement,
other alternatives are still available. The main prob-
lem is to detect a nearly sinusoidal signal, the SSVEP,
immerse in noise, background EEG. The Multiple Sig-
nal Classification (MUSIC) algorithm is a statistical
subspace method specifically aimed at this kind of
detection task [1]. The evaluation of MUSIC-based
SSVEP detection is described in this paper.

MATERIALS AND METHODS
SSVEP recordings and stimuli: The SSVEP record-
ings used in this work were kindly facilitated by Dr.
Brendan Allison from the Scripps Research Institute,
La Jolla, CA and Dr. Jonathan Wolpaw from the
Wadsworth Center, Albany, NY. The data collection
was made with a 64-channel electrode cap, EEG chan-
nels were referenced to an electrode attached to the
right earlobe, a ground electrode was placed behind
the right mastoid. All data were sampled at 160Hz
and band-pass filtered between 0.1–50 Hz. Data were
collected in a work area with occasional uncontrolled
distractions. SSVEP were induced with two checker-
boxes oscillating at 6 Hz and 15 Hz.
Feature extraction: The MUSIC algorithm is a sub-
space projection method that uses the fact that for
an observed signal x[n] composed of a sinusoidal sig-
nal s[n] = Aejωsn of frequency ωs, embedded in white
noise η[n]

x[n] = s[n] + η[n] (1)
the sinusoid ejωsn is an eigenvector of the observed
sequence’s correlation matrix Rx = E {xx′}

Rxs = λs (2)

where s =
[
1, ejωs , ej2ωs , . . . , ej(N−1)ωs

]′
[1, 2]. Since

the rest of the eigensubspace (the noise subspace) will

be orthogonal to the observed sinusoid, and so will be
any sinusoid of a different frequency ωk, the projection
of x[n] onto the noise subspace is expected to be very
close to zero. Any signal not containing the sinusoid at
the reference frequency will have a non-zero projection
over the noise subspace.
Based on the previous fact, a principal component de-
composition Rxν = Λν, is made to find the eigen-
vectors, ν = [e0 . . . eN−1], of the estimated correla-
tion matrix and its corresponding eigenvalues, Λ =
diag(λi).
Those eigenvectors associated with the eigenvalues
smaller than or equal to some chosen threshold, σ0,
are selected to form the basis of the noise subspace,
Enoise:

Enoise =
[
eN−(M+1) . . . eN−1

]
(3)

where

λk ≤ σ0, k ∈ {N − (M + 1) : N − 1} . (4)

A probe vector W is then formed by sampling a sinu-
soid of the frequency being investigated, ω:

W =
[
1 ejω . . . ej(N−1)ω

]′
(5)

The next step in the MUSIC algorithm is to calculate
the pseudospectrum of x[n], this is accomplished by
the function:

P̂ (ejω) =
1

W ∗′EnoiseE∗′
noiseW

(6)

which is the inverse of the norm of the projection of
W onto the noise subspace. When ω = ωs, since W is
orthogonal to the noise subspace, its projection onto
Enoise is close or equal to zero, therefore the function
P̂ (ejω) will show a peak at frequency ωs. It is impor-
tant to remark that P̂ (ejω) is not a spectral estimator
because it does not provide information about the sig-
nal power, however it is useful to spot the frequencies
contained in a signal. Pseudospectral values at spe-
cific frequencies can be used as features to describe
the signal content of an observation.
Analysis: The MUSIC algorithm was implemented
in Octave [3] and the threshold was experimentally
choosen as σ0 = 0.1

∑N−1
i=0 λi. The pseudospectrum

was calculated for 240 one-second SSVEP epochs over
electrodes O1 and O2 of the international 10-20 stan-
dard; the features chosen were the pseudospectrum
values at the first subharmonic, the stimulation fre-
quencies and their first two harmonics. Different num-
bers of epochs were averaged and measurements of ac-
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 curacy were made to establish the performance of the
classifiers, Support Vector Machines with radial basis
function (rbf-SVM) and linear kernels (lin-SVM) [4],
as function of the number of averaged epochs. The
measurements were made in a leave-one-out scheme
using the libSVM library [5].

RESULTS
The measurements of accuracy for one to five averaged
epochs are shown in Table 1.

Table 1: Accuracy for k averaged epochs
k 1 2 3 4 5

linearO1 88.75 95.00 97.91 98.75 100.00
linearO2 85.83 95.00 97.91 98.33 99.16
rbfO1 91.66 95.00 97.91 99.58 99.58
rbfO2 86.66 96.25 98.33 98.33 100.00

The results show an excellent performance for all the
SVM, reaching accuracies close to the ninety percent
in single epoch classification. All the SVM used in this
work reach one hundred percent accuracy for ten and
fifteen averaged epochs.

DISCUSSION
Application of MUSIC algorithm to the SSVEP de-
tection task showed a better performance, in terms
of both accuracy and time, than the results reported
in [6, 7, 8] which are FFT-based. Moreover, there is
no need to calculate a full pseudospectrum, to extract
features it is sufficient to calculate the values of the
pseudospectrum in a reduced collection of frequencies
as there is theoretically infinite resolution to the algo-
rithm. The current epoch length to detect a SSVEP is
one second, but smaller lengths (450 to 600 ms) could
be used.

CONCLUSIONS
We have introduced the use of the MUSIC algorithm
to solve the SSVEP detection task. It showed to be-

have better than the typical FFT-based approaches
and might constitute an alternative way to improve
the bit rate in the SSVEP based BCI.
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SUMMARY: We propose a P300-based BCI mouse.
The system is analogue: the pointer is controlled by
directly combining the amplitudes of the outputs pro-
duced by a filter in the presence of different stimuli.
The system is optimised by a genetic algorithm.

INTRODUCTION
We present a P300-based system for the two-
dimensional control of a pointer on a computer screen,
inspired by Donchin’s Speller [1]. In our BCI mouse,
four unobtrusive rectangles are superimposed on the
screen, near its edges, and are used to represent the
directions up, right, down and left (Figure 1). The
rectangles are flashed in random order at 180 ms in-
tervals. To limit the risk of perceptual errors [2], the
same rectangle is not allowed to flash twice in a row.
By focusing their attention to one particular rectan-
gle, users produce P300s when the rectangle flashes.
The system processes responses and moves the mouse
pointer in the appropriate direction. The approach is
similar to that used in [3] but with a substantial differ-
ence: logically our BCI mouse is an analogue device,
since the responses for the four directions directly af-
fect the movement of the pointer without requiring any
binary classification.
Unlike previous approaches, we use a genetic algorithm
(GA) to optimise the parameters of the system for each
user and each session – a technology which provided
promising results in our earlier work in medical signal
processing [4, 5] and BCI [6].
The system makes it possible for a person with no pre-
vious training and within 15 minutes of wearing the
electrode cap, to move a pointer to any location of a
computer screen.

SYSTEM
We used the 19 channels corresponding to the 10-20
international system to acquire EEG. The analysis of
the P300 components is preceeded by a preprocess-
ing phase in which: a) each channel is low-pass fil-
tered using a FIR filter (order 30, fpass = 34Hz,
fstop = 47 Hz), b) the signal is decimated to a sam-
pling rate of 128 Hz, c) the Continuous Wavelet Trans-
form (CWT) of each EEG channel is performed. CWT
was done at 30 different scales between 2 and 40 and
for a temporal window from 235ms and 540ms after
the presentation of stimuli. So, the ERP response to
each stimulus gives us a 3–D array V(c, s, t) of fea-
tures, where c indexes the channel, s the scale and t
the time corresponding to a feature. In total we have
19 · 30 · 40 = 22, 800 components.

Because of the large numbers of features we performed
feature selection using a wrapper approach where the
selection of features and the training of a classifier are
performed jointly.
Computer mice are fundamentally analogue devices.
So, it seemed inappropriate to turn analogue brain ac-
tivity recorded in the EEG into binary form, as it is
done traditionally in P300-based BCI by thresholding
the output of classifiers, to later turn the signal in
analogue form again. So, we felt that an analogic BCI
approach would offer the potential to better use the
information present in P300s.
To obtain this, the motion of the pointer is directly
determined by the output of a filter. More precisely,
the vertical motion of the pointer is proportional to
the difference between the output produced by the fil-
ter when processing an epoch where the “up” rectangle
was flashed and the output produced by the filter when
processing an epoch where the “down” rectangle was
flashed. Horizontal motion is determined similarly.
Therefore, the task of the GA is not just selecting fea-
tures and designing detectors to best discriminate be-
tween P300 and non-P300 responses, but also to do
so in such a way that the responses to pairs of stimuli
provide the fastest and most precise way of moving the
pointer in the desired direction.
To control the motion we used the output of the fol-
lowing filter which combines a subset of elements of
the feature matrix V:

O(V) = arctan

a0 +
N∑

j=1

aj ·V(cj , sj , tj)

 (1)

where N is the number of terms in the filter, the coef-
ficients cj , sj , tj identify which component of V is used
as the jth feature, and finally the values aj are coef-
ficients weighing the relative effect of each term. We
take a single trial approach. This allows our mice to
move approximately once per second.
Each individual in the GA represents a tentative solu-
tion to the problem, i. e. it is a collection of the param-
eters aj , cj , sj and tj that need optimising. In the GA
runs we used tournament selection, blend crossover,
headless-chicken mutation, populations of size 50, 000,
and 40 generations.
The problem of evolving a mouse is multi-objective:
we want to obtain both maximum motion in the de-
sired direction and minimal motion in the orthogonal
direction. To achieve this we used the following fitness
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 function:

f = α

(
N∑

t=1

30∑
i=1

(
vi,t

d − 0.2
∣∣vi,t

o

∣∣)− 0.2

∣∣∣∣∣
N∑

t=1

30∑
i=1

vi,t
o

∣∣∣∣∣
)

where α = 1/(30N), N is the number of groups of 30
repetitions of a command (up, down, left or right), vi,t

d

represents the motion in the target direction produced
at repetition i in the tth group of 30, while vi,t

o repre-
sents the motion produced in the direction orthogonal
to the desired direction.

RESULTS
We report results with 3 participants: A (male, age
25), B (male, age 28) and C (female, age 35). Dur-
ing the phases of acquisition of training and validation
sets, the experimenter selected one of the rectangles
on the screen as a target, and participants were asked
to count the number of flashes of the target. During
testing, participants are asked to perform the same
task, except the trajectory of the mouse pointer pro-
duced by their efforts was also shown. Each run of our
experiment involved presenting a full series of 4 flash-
ing rectangles for 30 times. The process was repeated
multiple times for each direction. For participant A,
12 runs were recorded while B and C performed 16
runs.
3- and 4-fold cross-validation was used to train the
filters and test their performance and generalisation
ability. For each participant a total of 12 different
classifiers have been evolved.

Figure 1: The stimuli used for BCI mouse control.
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Figure 2: Performance on validation set.

The accuracy results for the validation set are depicted
in Figure 2. The arrows represent the average distance
travelled in the direction of the target and in a direc-
tion orthogonal to the target. The crosses represent

standard deviations over the performance of different
classifiers. Clearly users were able to move the mouse
pointer in the desired direction with only minor inac-
curacies.

CONCLUSIONS
In this paper we have proposed a BCI mouse based on
the manipulation of P300s. The system is analogue,
in that at no point a binary decision is made as to
whether or not a P300 was actually produced in re-
sponse to a particular stimulus. Instead, the motion
of the pointer on the screen is controlled by directly
combining the amplitudes of the output produced by
a filter in the presence of different stimuli.
The performance of our BCI mouse is very encourag-
ing. Control in testing was accurate and all partici-
pants were able to use the system within 15 minutes
of wearing the electrode cap.
The hardest part of the design in this system (i. e. the
feature selection and the selection of the order and pa-
rameters of the controller) was entirely left to a genetic
algorithm. We only provided carefully designed stim-
uli, a rich set of features (wavelet coefficients) and a
simple combination mechanism (a squashed linear fil-
ter) through which we thought a solution to the prob-
lem of controlling a pointer via EEG could be found.
The GA has been very effective and efficient at find-
ing good designs for the system. Indeed, it succeed
in every run, suggesting that we had chosen a good
infrastructure and feature set for the system.
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SUMMARY: Two of actual BCIs system requirements
are the improvement of the communication speed and
the classification accuracy. The higher speed and ac-
curacy, the greater use of BCI system to solve difficult
tasks. To tackle this problem in a P300-based BCI sys-
tem, the elicitation paradigm and the stimuli presen-
tation should be deeply considered [2]. Also the data
processing and the classification system should not be
neglected. Our study evaluates three visual elicita-
tion paradigms which use a different number of stim-
uli with dissimilar meaning. The four arrows paradigm
[5] is compared with variants of Farwell and Donchin
[3] spelling paradigm (multiple letter keys paradigm).
A comparison between the two methods suggests that
increasing the paradigm complexity, the correct single-
sweep ERPs recognition task becomes more difficult.

INTRODUCTION
In the P300-based BCI research, recent studies inves-
tigate accuracy of ERPs recognition using traces aver-
age method [7] and different classification algorithms.
These studies have shown that this type of system can
be potentially used to help locked-in subjects to com-
municate with the environment. Differently, few stud-
ies have focused the attention to the structure of elic-
itation paradigm, the modality of stimulus presenta-
tion, the complexity of stimulus meaning, in order to
permit a single-sweep P300 wave detection [1, 6]. As
reported in literature, the P300 wave parameters (la-
tency, amplitude) and its morphology strongly depend
on these variants [4]. Our study evaluates the recorded
ERPs behaviour related to different paradigms in or-
der to check the single-sweep P300 wave recognition
capability.

MATERIALS AND METHODS
Subjects: 5 healthy subjects voluntarily participated
to the study (2 females and 3 males, mean age of
36 years, range 26–43 years). Participants did not
present cognitive deficits and had P300 wave parame-
ters within the normative guidelines.
Tasks and stimulation paradigms: The first paradigm
is described in a previous report [5] (P1: four arrows):
the task is to move a cursor until it reaches a tar-
get, using the directional meaning of each stimulus.
The second and third alphabetical paradigms are vari-
ants of Farwell and Donchin spelling paradigm [3] (re-
spectively, P2: colored keys; P3: grey-scale keys): the
task is to compose a word of 5 letters length (such as

“bread”, etc.), then to select the “ok” button, using a
multiple letter keypad. The stimulus (single trial) con-
sists in a single flash of a key border at a time (flash
time equal to 200 ms); the inter-stimulus interval (ISI)
is 2 s, and a stimulus is called target if the flashed key
contains the target character (Figure 1), otherwise it
is called non-target. The main hypothesis is that ev-
ery target stimulus elicits a P300. All ten keys are
highlighted with an occurrence probability of 0.1 in a
randomize sequence of trials. We call “session” the
whole trials sequence until the “ok” button is selected
(after the five characters selection). In this context we
carry out only learning sessions, where the feedback
for the subject is the appearance of the target letter
when it is selected. Each subject is tested by 5 learning
sessions per paradigm (one paradigm a day).

Figure 1: Multiple letters keypad interface.

Data acquisition: Registration electrodes were placed
according to the international 10-20 system at Fz, Cz,
Pz and Oz; the EOG was placed at SO2; all elec-
trodes are referenced to bilateral earlobes. The five
channels were amplified, band-pass filtered between
0.15Hz and 30 Hz, and digitized (with a 16-bit res-
olution) at 200Hz sampling rate. Every ERP epoch,
synchronized with the stimulus, began 100 ms before
the stimulus onset, up to 900ms after stimulus trigger
signal (tot. 1000ms). Thus, after every stimulus the
system recorded a matrix of 200 samples per 5 chan-
nels, available for the off-line data processing.
Data analysis: During off-line operations we primarily
extracted a direct index (called “ra”) of the difference
between the two types of ERPs response for each sub-
ject and each paradigm session sequence; thus, con-
sidering a subject and a paradigm, we evaluated the 5
sessions raw traces average of the channel PZ, then the
“ra” index as follow: the sum of absolute differences
between target and non-target average traces (respec-
tively avgPZ

2 (k) and avgPZ
1 (k), k ∈ [1, 200]) in the
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 interval 200–700ms (1):

ra =
∑

k

∣∣avgPZ
2 (k)− avgPZ

1 (k)
∣∣ , k ∈ [60, 160] (1)

Secondarily, we applied the procedure described in [5]
to assess the single-sweep P300 wave recognition; for
each subject and each paradigm, we trained a specific
classifier extracting the target traces recognition error
ratio (2):

ep3 =
n2− p3ok

n2
(2)

where n2 is the number of target stimuli and p3ok is
the number of target traces correctly recognised.

Table 1: P1, P2 and P3 paradigms comparison
(ra, ep3)

P1 P2 P3
subject ra (uV) ep3 ra (uV) ep3 ra (uV) ep3

1 714 0.42 167 0.83 419 0.83
2 521 0.44 307 0.83 102 0.83
3 312 0.72 145 0.83 105 0.83
4 331 0.59 162 0.83 256 0.83
5 201 0.52 201 0.83 107 0.83

RESULTS
We reported the results (Table 1) of our analysis in
terms of “ra” index and error ratio in the target traces
recognition (ep3). Friedman’s Analysis of Variance
(ANOVA) for repeated measures revealed a significant
difference in the distribution of the PZ “ra” index for
the three paradigms, χ2(2) = 7.6, p < 0.05. Pairwise
comparisons for repeated measures using the Wilcoxon
test showed significant differences between P1 and P2
(p < 0.05) and between P1 and P3 (p < 0.05). In con-
trast, the difference between P2 and P3 was not signif-
icant. Figure 2 underlines the differences between tar-
get and non-target average traces for each paradigm.

DISCUSSION
The results indicate that relevant distinctions between
the paradigm P1 and the paradigms P2 and P3 ex-
ist. As we can see (Table 1, ep3 parameter), all sub-
jects elicit a single sweep detectable P300 wave dur-
ing paradigm P1; conversely, a slight detectable sin-
gle sweep P300 was elicited by means of P2 and P3.
In this case a correct ERPs recognition is possible as
well, using traces average method. Moreover, we ob-
serve significant differences also comparing the “ra”
index (see Table 1, Figure 2). The dissimilarities be-
tween the first two paradigms are related to the num-
ber of stimuli, 4 vs. 10 stimuli, and the meaning of
each stimulus target, directional vs. alphabetical ones;
the third paradigm differs from the second one only
for the black/white vision. Others differentiation re-
gard the position of the flashed stimuli, screen bor-
der arrows vs. equally positioned keys, and the stimuli
shape, arrows vs. smoothed rectangles. The number
of stimuli difference implies that in the multiple letter
keys paradigms the occurrence of a target stimulus de-
creases from 0.25 to 0.1; besides, by a cognitive point of

view, all other differences yield to an increment of the
subjects recognition task complexity. Altogether, the
increment of the task difficulty can be quantitatively
observed evaluating the recorded ERPs behaviour.

Figure 2: Comparison of the target and non-target
grand average traces (for each paradigm the average
of all subjects traces was considered, channel PZ).

CONCLUSION
In this paper, we have analysed the ERPs response of
three paradigms that can be used in a P300-based BCI
environment. Many factors influence the cognitive po-
tential elicitation, modifying the differences between
the target and non-target response. Comparing the
three methods, the ERPs behaviour changes reflecting
the increment of the task difficulty.
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SUMMARY: An ensemble of EEG recordings of event
related potentials from the P300 speller BCI is typi-
cally used to detect the character being communicated.
As more trials in the ensemble are used, the detection
accuracy increases. However, the price to be paid is
a reduced bit rate. In this paper, an algorithm using
grammatical rules and language probability is coupled
with support vector machine classifiers in order to re-
duce both the number of misclassified characters and
the number of trials required for accurate detection,
so that the highest possible bit-rate is achieved with a
minimum loss of accuracy. The prediction model pro-
posed is independent from the chosen language and
can be utilized in any method of P300 based spelling.

INTRODUCTION
The P300 is a characteristic waveform in the human
EEG that occurs as a response to rare event-stimuli.
Farwell and Donchin were the first to introduce the
use of the P300 potential into BCI [1]. In the P300
speller, the key task is to detect P300 events in the
EEG recording, both accurately and immediately, to
ensure the highest possible bit-rate transfer between
human and computer.
In a P300-based BCI system, P300 events are usually
detected using signal enhancement and pattern recog-
nition techniques on the basis of ensemble averaging
of several trials. In general, the more averaged trials,
the higher the detection accuracy. But, at the same
time, the more averaged trials, the lower the bit-rate.
Therefore, the performance in terms of BCI communi-
cation rate is determined by both the number of trials
and the detection accuracy.
The introduction of grammatical rules and language
probability in a P300 speller system could minimize
the number of trials used to infer a symbol, especially
when the data doesn’t have good quality due to com-
mon online BCI artifacts such as EOG or EMG.

METHODS
EEG Recording and Experimental Paradigm: One
hundred and seventy 64-channel EEG recordings, cor-
responding to the training data set II provided for the
BCI Competition III [2] were utilized in this study.
Such recordings were obtained from two different sub-
jects (85 records each) performing a visual speller task,
following the paradigm described by Donchin et. al. [1],
which evokes P300 event related potentials (ERP) un-
der directed spelling. Each record corresponds to 15
trials of speller matrix intensifications.
Data pre-processing: Every character epoch was band-
pass filtered with a zero-phase, 120th order FIR filter

with low cutoff at 0.5Hz and high cutoff at 10 Hz,
and undersampled accordingly. Temporal windows
from 0 to 850 ms were extracted and divided into row-
and column-wise stimuli. All epochs were biased and
scaled to attain zero mean and unit standard deviation
normalization. EEG recordings were not restored nor
manually intervened to select or reject components.

Classification: Non-linear (RBF) support vector ma-
chine (SVM) classifiers were trained per trial and repe-
tition, to differentiate patterns with and without P300
events. Subsampling of the non-P300 class pattern
pool in the training set was performed to equalize prior
probabilities. Outputs of the SVM’s were transformed
into estimates of posterior probability through logistic
regression. Independent SVM’s were designed for row-
or column-wise stimuli and a subset of the 10 channels
providing the best classification efficiency was selected
per subject. Cumulative values of the row and col-
umn posterior probabilities along several trials were
used for decision-making, selecting the character with
the largest value of cumulative posterior probability
[3]. Classification efficiency was estimated by six-fold
cross validation.

Word Formation: Assuming that in the P300 speller,
the ERPs are independent events from character to
character, the pool of 170 character responses was used
to assemble a collection of 50 words in Spanish (al-
though the approach is independent of the chosen lan-
guage). Whenever more that one response associated
to the same character was available, it was chosen ran-
domly among the options. The words built were cho-
sen randomly as well, but trying to incorporate all the
characters.

Word Prediction: An algorithm using grammatical
rules and language probability, based on the Prediction
by Partial Matching algorithm (PPM) [4] is introduced
once the cumulative values of the row and column pos-
terior probabilities are available. The next character
is predicted using the k previous characters, with the
prediction order of the model increasing dynamically
with the number of characters in the word. The pre-
diction model uses a suite of fixed-order context with
different values of k, from 1 up to some pre-determined
maximum given by the length of the word itself. The
first character in a word is always determined using
cumulatives of the row and column posterior probabil-
ities after N trials, to ensure that the first character
will be maximally correct. Given the first character,
obtained solely from ERP classification, the prediction
procedure can be summarized as follows:
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 1. Using grammatical rules, only cumulative poste-
rior probabilities for characters with probability
not equal to zero are considered. For example,
having detected letter ‘p’, letter ‘x’ has proba-
bility zero to occur.

2. For characters with probability not equal to zero,
a relevance score is computed as the product of
cumulative values of the row and column poste-
rior probabilities and the language probability.
Language probability is the conditional prob-
ability of the ith character given the previous
i − 1 detected characters. These probabilities
are precomputed based on a language dictionary
of more than 3000 words [5], in terms of relative
frequencies of occurrence of the letter sequence.

3. A dynamic score threshold for prediction is then
established, as the value of the maximum score
minus n-times the standard deviation of all pos-
sible character products (n = 0.8, 1.0, 1.5).

4. If there is just one product score above the
threshold, the corresponding character is se-
lected. If more than one character exceeds the
threshold, the next EEG trial is used (from the
15 available) and the process is repeated until
only one character is selected.

5. The next character is predicted repeating steps
1–4, but with language prediction order k in-
creased by one.

RESULTS

Table 1: Electrode subsets used for classification
Channels used for analysis in the classification

Subject A {Fcz,C1,Cz,Cpz,Fp1,Fp2,F3,Pz,Po3,Po8}
Subject B {Fc4,C2,Cp2,F2,Pz,Po7,Po4,Po8,O1,O2}

Table 2: Number of trials and prediction accuracy,
where ∗ is the value of decision threshold, while ∗∗

means the use of the same threshold as in (a) but
without considering language probability. Using the
largest value of cumulative posterior probability after

10 trials for all characters 100 % accuracy was
achieved.

Method Number of Bit-rate Accuracy
of Word trials/character (bits/min) (%)

Prediction (mean)

SVM + language model

(a) n = 1.5∗ 6.83 19.52 95.42
(b) n = 1.0∗ 5.39 23.32 92.57
(c) n = 0.8∗ 4.70 25.76 90.28

SVM alone∗∗ 8.43 10.47 75.42

Table 1 lists the electrodes used in classification for
each subject. Table 2 shows the number of trials, bit-
rate and detection accuracy obtained for different val-
ues of decision threshold, on the set of 50 different
words for both subjects. The first character within a
word was determined using 10 EEG trials in all cases.

DISCUSSION
The prediction model has a direct impact on the num-
ber of trials used to ensure a high accuracy in charac-
ter detection. Its use accelerates BCI communication
by improving character classification with a minimum
loss of accuracy, due to the introduction of language
probability.
There are some considerations to include in the algo-
rithm described above. If we have just one possibility
given by the language probability we infer the upcom-
ing character in just one trial. When we have a difficult
decision, (the statistical threshold is unable to select
a maximum), we choose that character that has been
selected 3 consecutive times in the last trials.
The model proposed in this work can be used as an
auxiliary tool for any other method of P300 detection
in the speller task. Furthermore, the algorithm of lan-
guage prediction implemented is independent of the
language, which makes it flexible and reliable.
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SUMMARY: Selective attention can offer new possibil-
ities for Brain Computer Interfacing (BCI) by separat-
ing compound streams of presented stimuli. An added
watermark in the stimuli that can easily be extracted
from the EEG signals yields possibilities for increased
reliability in classification. The effect strength of the
watermarks on cerebral activity is influenced by pur-
posefully directed attention.

INTRODUCTION
Imagining temporal patterns (auditory, tactile, mo-
tor) as a cognitive task is a viable means of driving a
BCI. As such, no stimulus is needed. However, asyn-
chronous BCI analyses, not needing information on
when a pattern of brain activity is generated, are com-
plicated because of the weak and noisy signals, and
thus some synchronization, or time-lock, is used. How-
ever, the time-lock in such tasks often becomes rather
loosely coupled to brain activity, as the lock is only
based on a prompting cue. Due to the high frequency
and the short duration of the waveforms, the jitter in
the time-lock should however be kept minimal.
For patterns which can be represented on a regular
temporal grid (such as a musical rhythm) the grid
can be presented (e. g. as a metronome), inducing a
framework against which to imagine the pattern, thus
minimising the jitter. Instead of imagining events
that strictly fall on this grid, the cognitive task can
be shifted to focusing attention on only part of the
stimulus presented by the metronome. The task of
BCI analysis is to distinguish between attended and
non-attended events. In the auditory domain sequen-
tial selective attention occurs spontaneously in the
so called clock-illusion, in which an identical train of
isochronous beats is heard as a ‘tick-tock’ percept [1].
This has been shown to elicit attention-modulated dif-
ferences in EEG P300 traces [2].
Adding to sequentially varying attention, one can also
selectively attend to one of several simultaneously pre-
sented stimuli, consisting e. g. of a mixture of tones,
tactile stimuli, or spatially divided auditory sources.
Natural cognitive mechanisms that mute non-attended
streams of information from the environment can be
used towards driving a BCI. Imprinting the differ-
ent streams with unique and easily identifiable water-
marks, the BCI only needs to detect the strongest wa-
termark and as an added advantage, the time-lock will
be tight.
The auditory stimulus used here is a combination of
two frequencies. The subject is instructed to focus on
one of them, each is watermarked by an AM modula-

tion of a different frequency. Although the fundamen-
tal pitch of a presented tones may not be easily recov-
ered from measurement of brain activity, the AM fre-
quency can be detected, making this a suitable method
for hearing tests [3]. For BCI, the AM frequency tag
is used as a watermark whose salience is modulated by
selective attention [4]. Likewise, the trill-frequency of
vibration can be used for the tactile sense [5, 6]. The
signal processing needed for detection of such tags is
relatively easy (filtering at a known frequency, power
and phase estimation) and the BCI performance de-
pends on the amount and robustness of the modula-
tion of these signals by attention, and the classification
of these features (albeit possibly in many channels and
with a specific spatio-temporal evolution).

MATERIALS AND METHODS
Apparatus: Frequency tagged stimuli are presented in
two modalities; auditory (presented through passive
loudspeakers) and tactile. For the tactile stimuli, a de-
vice was designed and made using 8 separately move-
able pins that produce braille-like patterns that can
be presented to one or more fingers in parallel, using
different frequencies of stimulation (see Figure 1).

Figure 1: Tactile stimulator

Data-analysis: When attending to a frequency-tagged
stimulus, the EEG signal is processed in two steps (see
Figure 2): First, two filters are applied in parallel to
the data, each with a pass-band of one of the frequen-
cies that have been added to the stimulus. Second, a
Hilbert transform is applied, which – by taking the ab-
solute value and the angle respectively – yieds the am-
plitude and phase of the frequency of interest. These
features are then fed to a classifier.
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Figure 2: Data analysis schema
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 RESULTS
In order to examine the proper configuration of the
data-analysis, a simulation was performed. Here, the
two attention effects reported in the literature (an in-
creased power and a phase-shift of the oscillation of
the AM frequency in a frequency tagged sine tone) are
implemented.
The output of the analysis of these simulated data is
shown in Figure 3. The top plot of the figure shows the
simulated EEG measurement. It consists of a 16Hz
and a 20Hz sine wave, corrupted by noise. In the first
half, the 16Hz was larger in amplitude and leading in
phase, while for the second half the 20 Hz component
was larger in amplitude and leading in phase. This
is predicted when shifting the focus from the 16Hz
modulated sine to the 20 Hz modulated sine [3].
The second plot from the top shows the output of the
bandpass filters, while the third plot shows the esti-
mate of the phase and magnitude of both filter out-
puts. The bottom plot shows the amplitude and phase
for 100 repeated trials.

DISCUSSION
The analysis on the simulated data shows that the
data-analysis is able to reveal the effects that have
been described in the literature. Although these sim-
ulated results do not yield any conclusive evidence,
they support the feasibility of using selective atten-
tion towards driving a BCI device given the reported
findings of the processing of frequency-tagged stimuli.
Eventually, the combination of two modalities could
produce binding effects that can improve classification
even further. That possibility is, however, still to be
investigated.

CONCLUSION
By using stimuli to respond (or attend) to when driv-
ing a BCI device, the problem of synchronization or

time-locking of EEG activity is tackled in an efficient
and natural way. As the time dimension is extremely
precise in EEG measurements, not exploiting this in
developing methods for BCI appears to be a missed
opportunity for increased reliability and speed.
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 HEART RATE-CONTROLLED EEG-BASED BCI: THE GRAZ HYBRID BCI

G. Pfurtscheller, R. Scherer, G.R. Müller-Putz

Laboratory of Brain-Computer Interfaces (BCI-Lab), Institute for Knowledge Discovery,
Graz University of Technology, Austria

E-mail: pfurtscheller@tugraz.at

SUMMARY: A novel steady state visual evoked
potential-based (SSVEP) BCI is introduced where the
battery of flicking lights is switched on and off by the
respiratory heart rate (HR) response. This “Graz hy-
brid BCI” has two modes, the slow intentional control
based on the detection of the respiratory HR response
and the fast intentional control based on SSVEP de-
tection. Preliminary data of 3 healthy subjects are re-
ported. One important aspect is that the Graz hybrid
BCI needs only one EEG and one ECG signal and op-
erates satisfactorily also during verbal interaction with
the user.

INTRODUCTION
A Brain-Computer Interface (BCI) can be operated by
different mental strategies such as operant condition-
ing, motor imagery, P300 paradigm or focused visual-
spatial attention to a flickering light [1, 2]. Of special
interest in terms of speed, accuracy and simple EEG
recording is the induced oscillatory response due to pe-
riodic light stimulation known as steady-state visual
evoked potential (SSVEP) [3]. In the case of an e. g.
prosthetic control, longer breaks can occur between
2 control states and therefore it is recommended to
switch “on” the lights only when needed for control.
One possibility to realize such a switch-function is to
use the ECG for detecting transient heart rate (HR)
changes associated with a brisk inspiration. The HR is
influenced by a number of physiological mechanisms.
Beside others, reflex mechanisms and high level brain
stimuli (central commands) modulate sympathetic and
vagal outflow from the brain stem. For example, a sin-
gle, brisk inspiration results in a HR response in form
of an initial acceleration, followed by a deceleration
and return to the baseline.
The goal of this paper is to introduce a novel SSVEP-
based 4-class asynchronous BCI which is controlled by
the HR response.

MATERIALS AND METHODS
Three subjects aged between 18 and 30 participated in
the study. All had normal vision and were seated 1m
in front of the stimulation unit (SU) during the train-
ing session. The SU was composed of 4 light-emitting
diods (LEDs) flickering with 6, 7, 8 and 13Hz. For
the prosthetic device control (hand prosthesis, Otto
Bock, Vienna, Austria) 4 LEDs were fixed on different
parts of the prosthesis with the goal to control different
types of movement (with different flicker frequencies):
lateral 5th finger → turn left (6 Hz), lateral index fin-
ger→ turn right (7 Hz), wrist→ hand open (8 Hz) and
wrist → hand close (13 Hz) (Figure 1).

Figure 1: Hand prosthesis with LEDs mounted

Continuous EEG signals were recorded bipolarly over
the occipital cortex, filtered between 0.5 and 30 Hz and
digitalized at a rate of 256Hz. Simultaneously the
ECG was recorded bipolarly from the thorax and also
sampled with 256 Hz.
The EEG was analyzed by calculating 1-s power spec-
tra in steps of 250 ms. For classification the sums of the
harmonic components were computed at each stimula-
tion frequency. The maximum of the harmonic sums
(HS) was used to define the detection threshold which
had to be exceeded for at least 1 s (dwell time). After
this 1-s period a prosthetic movement was triggered,
followed by a refractory period of 8 s (details see [3]).
The instantaneous heart rate (IHR) was computed by
the detection of beat-to-beat intervals in the ECG.
From the IHR the first derivative was calculated and
a subject-specific threshold (THECG) was determined
by help of ROC curves. When this differentiated IHR
time series (dIHR) exceeded THECG a switch opera-
tion (switching on or off the flickering lights) was trig-
gered.
The following experimental protocol was used for opti-
mizing the subject-specific threshold of the HR-switch:

1. Cue-based brisk inspiration in randomized inter-
vals over a period of 380 s (20 trials, mean dura-
tion 19 s).

2. Alternating periods of resting and activity, like
loud reading of a newspaper, SSVEP-control and
an interview, over a period of 900 s.

Experiment 1 was primarily used to define the true
positive and false negative (TP and FN) and experi-
ment 2 was necessary especially to define the true neg-
ative (TN) and the false positive (FP) responses. The
analysis was done sample-by-sample (beat-to-beat),
with the same threshold for both experiments and a
cue-based time window of 4 s to define the TP. In the
case of a duration of 1240 s (340+900) for both exper-
iments and a mean beat-to-beat interval of 1 s (corre-
sponding to 60 bpm) the total number of samples (TN
+ TP + FP + FN) was 1240.
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 The optimized HR-detector was used to switch on/off
the flickering lights of the 4-class (2-axis hand pros-
thetic control) SSVEP-based BCI. The subjects were
instructed to autonomously start and finish the
SSVEP-based BCI operation within a 10 min period
and perform the following movement sequence: turn
right (TR), hand open (HO), hand close (HC), turn
left (TL), HO, TR, TL and HC.

RESULTS
An example of different time courses of one represen-
tative subject for the experiments 1 and 2 are dis-
played in Figure 2. IHR and dIHR curves are dis-
played below the respiratory signal. The vertical lines
indicate the cue-stimulus presentation in experiment 1
and the changes of different conditions in experiment
2. The horizontal line marks the threshold defined by
ROC analyses. The results of the ROC analyses and
the corresponding performance of the “HR-Switch” is
summarized in Table 1. The averaged IHR and the av-
erage derivative IHR (dIHR) of the cue-based training
experiment 1 are shown in Figure 3.
Altogether 1 to 3 repetitions of the predefined pros-
thetic hand movement sequence were realized. The
SSVEP performance is summarized in Table 2. Dur-
ing the experiment for 2 subjects only 1 FP HR-change
was detected.

Table 1: Performance measures of the HR-switch
(ROC-Analysis). The detection threshold (THECG) and

TP/FP rates are listed for each subject. Additionally to the
FP rate also the number of FP (FP#) and total number of TN

are reported.
Subject THECG TP% FP% FP# (TN#)

s1 -0.046 90.0 11.0 151 (1369)
s2 -0.024 90.0 3.3 50 (1515)
s3 -0.070 90.0 10.0 125 (1252)
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Figure 2: Example of respiratory signal, IHR and
differentiated IHR (dIHR) for experiment 1 (upper panel) and

experiment 2 (lower panel)

Table 2: True positives (TP) and false negatives (FN) for best
peformance of a predefined sequence of 8 prosthetic

movements for 3 subjects. “moves” indicate the number of
correct movements.

Subject TP FN moves
s1 9 1 8
s2 9 1 8
s3 12 18 7

0 3 8
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0 3 8
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0

0.1
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Figure 3: Averaged IHR (RR-interval) (left) and average dIHR
(right) for 3 subjects

DISCUSSION
It was demonstrated for the first time that both, EEG
and ECG recording can be used to create a hybrid BCI
with two modes. One mode is the slow intentional con-
trol (SIC) based on the detection of the respiratory
heart rate response, the other is the fast intentional
control (FIC) based on the induced EEG oscillations
while focusing on one of 4 flickering light sources. Af-
ter a short training time of some minutes subjects were
able to obtain SIC control and to deliberately switch
on and off a battery of 4 flickering lights. The robust-
ness of the method can further be improved by us-
ing a multistream approach with e. g. both dIHR and
template matching. Details about FIC with SSVEP
were reported elsewhere [3]. Of interest is that dur-
ing relative long periods (minutes) when no control
was intended, only a relative small number of false
positive control signals (non-intentional control) were
obtained. The aspect of relative immunity to verbal
interactions and the simple recording of the ECG sig-
nal with 2 chest electrodes are advantages of the Graz
hybrid BCI with slow and fast intentional control.
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SUMMARY: In a Brain-Computer Interface (BCI),
the electrical activity of the cortex (EEG) is mostly
used as input signal. Beside that also the functional
activity of the cerebral cortex, the alteration in the
cerebral blood circulation in terms of concentration
changes of the hemoglobin can be detected with near-
infrared spectroscopy (NIRS). In this work, a custom-
built NIRS-based BCI is used and the results of the
first measurements and the emerging problems, espe-
cially the influence of artifacts, are discussed.

INTRODUCTION
A Brain-Computer Interface (BCI) allows users who
suffer from neuromuscular impairments the possibility
to communicate or interact through thought processes
alone. Neural activity (EEG) within the motor cor-
tex is a typical physiological signal used in this con-
text [1]. On the other hand non-invasive near-infrared
techniques (NIRS) can also be used to detect func-
tional activity of the cerebral cortex. Thus, the opti-
cal response denoting functional brain activation can
be used as an alternative to electrical signals. The in-
tention of such a NIRS-based BCI is to develop a more
practical, user-friendly BCI and to overcome the limi-
tations and restrictions of EEG acquisition, such as the
influence of electrooculogram (EOG), electromyogram
(EMG), electrode failures and conductivity problems.
An area where it may be disadvantaged, when com-
pared to EEG, is its slower temporal response after
brain stimulation. A full description of a BCI we have
developed using the above principles [2] is given else-
where [3].

MATERIALS AND METHODS
NIRS measurement: NIRS measures concentration
changes in hemoglobin in the human brain non-
invasively. It relies on the principle that light ab-
sorption depends on the oxygenation level of the
blood, in particular the absorption coefficients of
oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb).
Oxy-hemoglobin and deoxy-hemoglobin, which are the
main absorbers, have different attenuation spectra (see
Figure 1). Near-infrared light in the range of the tis-
sue window (630–1300 nm) can penetrate the human
adult head to sufficient depths so as to allow functional
mapping of the cerebral cortex [4]. The photons are
mostly scattered and absorbed, but some are reflected
and exit the head at positions up to a few centime-
ters away from their original source location, thereby
the photons travel in an arc-shaped path from source
to detector [5]. By measuring the optical attenuation

changes at various wavelengths, qualitative measures
of brain activity can be obtained [6]. The concentra-
tions of all other absorbers in the blood such as water,
lipids and surface tissue are assumed to remain con-
stant over the measurement time.

Figure 1: Absorption spectra of Hb and HbO2

The absorption of light can be described by the Beer-
Lambert Law A = log(I0/I) = a · c · x · d, where A is
the attenuation, I0 is the light intensity entering the
tissue, I is the light intensity exiting the tissue, a is
the specific extinction coefficient, c is the concentra-
tion of the absorption, x is the differential path length
factor and d is the geometrical distance between emit-
ter and detector. The NIRS response in the brain is
comprised of two signals: 1) there is a slow response
(around 5–8 s) as a result of attenuation changes due to
cerebral hemodynamics (yielding localized blood cir-
culation and oxygenation changes) [6] and 2) a fast
response (in the order of milliseconds) that is thought
to be due to changes in the scattering properties of
the neuronal membranes during firing [7]. Our cur-
rent BCI system focuses on the slow vascular response,
which can be continuously monitored in real-time.
As sources, LEDs at 670 nm and 890 nm are modulated
with a sine at 3 kHz and 7 kHz and placed in direct
contact with the scalp. The detector is an avalanche
photodiode (APD), which is placed around 3 cm from
the light source. With a dual lock-in amplifier the in-
tensities of the two wavelengths are obtained and the
oxy- and deoxy-hemoglobin can be determined. It is
important to note that the chosen modulation frequen-
cies have no influence on the absorptions and there-
fore on the detected signals, because the absorptions
are only determined by the wavelengths of the LED
lights (see Figure 1). With the implemented contin-
uous wave method only relative absorption changes
can be detected. Modulation of the light sources and
lock-in amplification allows the hemoglobin-detection
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 to be almost insensitive to ambient light. Nevertheless
the room has to be darkened during the experiment to
prevent the APD going into saturation.
Experiment: The subject was seated in a comfortable
arm-chair. The sources and the detector was placed
1.5 cm to the left and right of position FP1 accord-
ing to the international 10/20 system. After a visual
cue the subject had to subtract two presented numbers
from each other within 10 seconds, afterwards a pause
of 30 seconds was given. One recording lasted over 4.5
minutes with 6 cues. For each subject two recordings
have been performed in minimum.
Artifact reduction: As seen in Figure 2 the pulse
strongly influences the recorded signals. The fre-
quency of the pulse waves is in the range between
1 Hz (60 bpm) and 2 Hz (120 bpm), and the responses
of the oxy- and deoxy-hemoglobin are much slower.
Therefore a digital lowpass butterworth filter of or-
der 5 with a ripple of 60 dB in the stop band was de-
signed to remove the pulse (see enlarged picture in
Figure 2). In one subject the effects of respiration
could still be found in the results because this sub-
ject aligned his respiration with the given task, that
is, he always stopped breathing during the calculation.
The result of this subject has been discarded. It can
be observed that the effects of the pulse and the res-
piration are much stronger on the oxy- than on the
deoxy-hemoglobin (see Figure 2).

Figure 2: Pulse influences on hemodynamic response

RESULTS
The results on three subjects can be reported.
The mean concentration change of oxy- and deoxy-
hemoglobin during the averaged arithmetic tasks are
displayed in Figure 3.

Figure 3: Hemodynamic response

The mental task was always performed between sec-
ond 0 and 10 (marked with a rectangle). The results
demonstrate that independently of the recording, the
day of the experiment and the subject, the same results
could be obtained. During the mental task the con-
centration change of the oxy-hemoglobin ∆CHbO2 and
deoxy-hemoglobin ∆CHb (both in µ molar) shows an
opposite characteristic. The maximum change occurs
when the task is fulfilled and after that both curves
returns to their baseline. It must be noted that the
absolute values are different between the subjects, but
the trends are the same.

DISCUSSION
Near-infrared spectroscopy is a cost-effective, very
easy to use and non-invasive technology for physio-
logical monitoring and future BCI-applications. With
the presented results it could be demonstrated that
the system is working very reliably and that hemo-
dynamic changes in the oxy- and deoxy-hemoglobin
during mental tasks can be detected. At the moment
only a single channel setup was used, but in a further
step we want to duplicate the hardware and build a
multi-channel system. Especially the replacement of
the hardware lock-in amplifier with a software solu-
tion, e. g. in Simulink, would remove the most expen-
sive component which is currently one of the existing
limiting factors in the current setup.
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SUMMARY: A Brain-computer Interface (BCI) can
be developed using the optical response of Near In-
frared Spectroscopy (NIRS) which measures metabolic
brain activation. NIRS can localize brain regions with
a spatial resolution in mm and temporal resolution
in hundreds of ms. NIRS has the advantages of non-
invasiveness, portability and affordability. We have de-
veloped a multi-channel NIRS-BCI that distinguishes
the brain activation during imagination of left hand
and right hand movement. This mechanism is being
incorporated in a word speller, in an on-going research
project, to help severely disabled persons to commu-
nicate.

INTRODUCTION
Infrared light at a wavelength in the range from 670 nm
to about 850 nm penetrates tissue, goes through the
skull, and reaches about 2 cm below the skull’s surface
all the way to the cortex area where most of the grey
matter is located. Regional brain activation is accom-
panied by increase in oxygenated hemoglobin (oxy-hb)
and decrease in deoxygenated hemoglobin (deoxy-hb)
[1]. This signal occurs in the range of 5–8 seconds after
the onset of stimulation and reflects mainly changes in
light absorption. NIRS signal is recently reported to
be well correlated with the fMRI BOLD signal, pro-
viding a sound basis for NIRS-BCI research [2]. Pre-
vious electrophysiological studies have reported that
brain activation during motor imagery is similar to
the activation during actual execution of movement
[3]. Sitaram et al. [4, 5] and Coyle et al. [6] reported
optical response during overt and covert hand move-
ments for implementing BCIs.

MATERIALS AND METHODS
Figure 1 gives a schematic overview of our NIRS-BCI
system. It has the following subsystems: signal acqui-
sition, signal processing and classification, signal feed-
back, application e. g. word speller, and the partici-
pant. The signal acquisition subsystem acquires the
hemodynamic response from both hemispheres over
the motor cortex in real-time using a multi-channel
NIRS instrument. We have explored the use of two
commercially available instruments for our NIRS-BCI
development: 1) OMM1000 from Shimadzu Corpora-
tion, Japan, and 2) Imagent Functional Brain Imaging

System from ISS Inc., USA.

Figure 1: Overview of the NIRS-BCI system

The experiment was conducted on a right handed male
subject aged 33 years. A set of 4 illuminator and 4 de-
tector optodes were arranged to form 10 channels on
each hemisphere as shown in Figure 1, around C3 (left
hemisphere) and C4 (right hemisphere) areas (Inter-
national 10-20 System). Infrared rays leave each illu-
minator, pass through the skull and the brain tissue
of the cortex, and are received by the detector op-
todes. The NIRS photomultiplier cycles through all
the illuminator-detector pairings (channels) to acquire
data at every sampling period. The data are acquired
at a sampling rate of 14Hz and digitized by the ana-
log to digital converter. The change in concentration
of oxy-hb and deoxy-hb are calculated by the system
in real-time based on the modified Beer-Lambert equa-
tion [1]. The signals are preprocessed by applying the
Chebyshev type II filter (cutoff frequency ∼0.7Hz)
for removing artifacts from heart beat and high fre-
quency noise such as from muscle activity. Motor im-
agery produces an increase in oxy-hb and a decrease
in deoxy-hb in the NIRS optodes in the contralateral
hemisphere. Amplitudes of oxy-hb and deoxy-hb after
stimulation for each trial is extracted from the prepro-
cessed data and fed to a pattern classification system.
In total, we used NIRS data from 4 sessions, each ses-
sion having 4 runs, each run comprising 20 trials each
of left hand and right hand imagery. We have ex-
plored the application of two different types of clas-
sifiers: Support Vector Machine (SVM) and Hidden
Markov Model (HMM). For the SVM, the acquired sig-

3rd Int. BCI Workshop & Training Course 2006

104



 

 

 nals were combined in a joint feature vector per trial
to train a linear SVM kernel. We conducted 8 runs
of 5-fold cross-validation to evaluate the classification
accuracy. Single trials data during real and imagined
hand movements usually exhibit rather dynamic and
complex patterns. Hence, it is beneficial to capture
the patterns using dynamic Bayes networks like HMM.
We designed different HMM models for left and right
hand movements. The HMMs was implemented us-
ing the Hidden Markov Model Toolkit (HTK) from
the Department of Engineering of Cambridge Univer-
sity, United Kingdom. Each model is trained using
the data described above. When an un-labeled NIRS
trial is presented, the machine will estimate the hid-
den states using the Viterbi algorithm. In this method,
likelihood is calculated for each model, and the clas-
sification is then made using the maximum likelihood
criterion.
The word speller application provides a means to use
NIRS responses created by left and right hand motor
imagery to spell words, create sentences and eventu-
ally write messages. The letters of the alphabet are
divided between left and right boxes at the bottom of
the word speller application window (Figure 1). The
program works in the synchronous mode of BCI exe-
cution. During its operation, a cursor moves at a con-
stant speed from the top-center of the speller window
towards the bottom. The user has to use left or right
hand imagery to move the cursor in the left or right
direction, respectively, to select a box that contains
the letter of choice. The pattern classifier classifies
the real-time NIRS response as left or right imagery.
Aided by the cursor feedback in this manner, the user
learns to adjust the execution of motor imagery to se-
lect a letter of his choice.

RESULTS AND DISCUSSION
Figure 2 shows sample oxy-hb and deoxy-hb data from
3 channels on the left hemisphere during right hand
imagery. Our experiments with the volunteer have
shown that the HMM classifier performers better (av-
erage accuracy of 91.29%) than the SVM classifier
(average accuracy of 75.62%). This might be due to
considerable variations in the temporal domain in the
performance of the tasks, and such variations may be
better dealt with by dynamic machines like HMM.
NIRS avoids the noise prominent in the EEG, and is
less cumbersome to use, as there is no need for apply-
ing conducting gel. The most important advantage of
the NIRS is its ability to localize brain activity non-
invasively. This provides us with an excellent opportu-
nity to use a variety of motor and cognitive tasks, and
to detect signals from specific regions of the cortex for
the development of powerful and user-friendly BCIs.

Ch-8

Ch-9

Ch-10

Concentration

changes

Time (sec)

Figure 2: oxy-hb and deoxy-hb sample data from left
hemisphere during right hand imagery
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1Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany
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SUMMARY: We have developed a Brain-Computer
Interface (BCI) based on functional magnetic reso-
nance imaging (fMRI) that provides real-time feedback
of blood oxygen level-dependent (BOLD) response
from specific, localized regions of the brain. The ap-
proach presents new opportunities for behaviour ther-
apy by training patients to control abnormal activity
in selected brain regions. Study of neuroplasticity and
functional reorganisation for recovery after neurologi-
cal diseases, such as stroke, is of clinical importance.
Here, we report results of self-regulation training of
supplementary motor area (SMA) on 4 healthy volun-
teers.

INTRODUCTION
Functional brain imaging is a non-invasive measure-
ment of task induced blood oxygen level-dependent
(BOLD) response. With innovations in high perfor-
mance magnetic resonance scanners, computers, and
developments in techniques for faster acquisition, pro-
cessing and analysis of MR images, fMRI-BCI has re-
cently become a topic of research and development [1,
2]. Hemiparesis (paralysis or weakness affecting one
side of the body) is a common neurological deficit af-
ter stroke [3]. Recent studies have suggested that the
recovery after stroke is facilitated by the reorganiza-
tion of cortical motor areas in both damaged and non-
damaged hemispheres. A treatment modality consists
of training patients first to learn to modulate brain
areas involved in the process of functional reorganiza-
tion, such as the motor cortex, basal ganglia and cere-
bellum. This re-organizational process of the brain
could be assisted by fMRI-BCI. The aim of our study
was to investigate the effect of training subjects to
self-regulate the supplementary motor area (SMA) on
their cortical activity and re-organization.

MATERIALS AND METHODS
The study was performed using our fMRI-BCI system,
a closed loop system having the following major com-
ponents: 1) Signal Acquisition, 2) Signal Analysis, 3)
Signal Feedback, and 4) the Participant. The first 3
components are usually executed on separate comput-
ers for optimizing the system performance, and are
connected together by a local area network (LAN).
Commonly, fMRI signals are acquired by echo pla-
nar imaging (EPI). After on-line reconstruction of im-
ages by the scanner, the Signal Analysis component,
based on the software Turbo-Brain Voyager (TBV)
(Brain Innovations, Maastricht, the Netherlands) re-

trieves the reconstructed images and performs data
preprocessing, including 3D motion correction, and
statistical analysis to display brain activation maps
in real-time. We have developed a custom software
called BCI-GUI that provides a graphical user inter-
face to configure the fMRI-BCI experiment, enter user
input, choose one among a variety of feedback modal-
ities, present feedback to the subject in real-time, and
report experimental results as graphs and charts at the
end of the training session.

Four healthy right handed volunteers (2 male and 2
female, mean age 25) participated in this study. Each
participant gave written informed consent. The study
was approved by the medical faculty of the Univer-
sity of Tuebingen, Germany. The experiment was con-
ducted in a Siemens 1.5T Vision scanner using Echo
Planar Imaging (EPI) with the following parameters:
repetition time TR = 1.5 s, echo time TE = 45ms,
flip angle = 70◦, 16 slices, FOVPE = 210, FOVRO =
210, image matrix = 64× 64, voxel size 3× 3× 5 mm3.
Each participant had to undergo a functional localizer
session followed by 5 feedback sessions. During the
functional localizer session, participants were asked to
perform finger tapping in alternating blocks of 30 s ac-
tivation and 20 s rest. Rectangular region of interest
(ROI) of SMA containing an average of 36 voxels was
then selected by visual examination of the activation
maps (see Figure 1c). During the feedback session,
participants were asked to self-regulate the ROI in 2 al-
ternating blocks: up-regulation block (45 s), and base-
line block (30 s). There were in total 5 up-regulation
blocks and 6 baseline blocks in each feedback session.
Participants were given feedback, updated approxi-
mately every 1.8 s, of the average BOLD activity in the
selected ROI subtracted by the average BOLD activity
in the baseline blocks, using one of the two methods:
1) Thermometer display, or 2) Virtual reality (VR)
game, called ‘Seaworld’. Two participants were given
the thermometer feedback and two others were given
the VR feedback. The first feedback method shows
snapshots of BOLD activity in the ROI (as computed
above) as graduations in a thermometer (see Figure
1a). Using this feedback participants have an intuitive
grasp of increasing or decreasing the thermometer vari-
ations during self-regulation. In the second method
(see Figure 1b), participants have to control a 3D an-
imated fish, to move the fish towards a food item (a
smaller fish) to eat it. During up-regulation, partici-
pants have to increase their BOLD activity in the SMA
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 by motor imagery in order to increase the red gradua-
tions in the thermometer, or move the fish towards the
food item, depending on the type of feedback. During
the baseline block, participants had to count numbers.
Offline analysis of the images was carried out using
SPM2 (Wellcome Department of Cognitive Neurology,
Queens Square, London, UK).

Figure 1: Figure (a) shows the thermometer feedback
that gives a regularly updated snap shot of brain

activity as graduations in the thermometer. Positive
BOLD activity with respect to baseline activity can
be shown in one color (red) to differentiate negative
BOLD activity (blue). Figure (b) shows the virtual
reality environment for feedback. Volunteers have to
control a 3D animated character, a fish in water, by
self-regulating their BOLD response to carry out a
task of moving the 3D fish towards a food item (a

smaller fish) for eating it. Figure (c) shows the
localization of supplementary motor area (SMA) as

the region of interest (ROI). Figure (d) shows a
participant’s time series of self-regulation of BOLD
response from SMA after 3 training sessions. Green

and gray bars indicate activation and baseline blocks,
respectively.

RESULTS AND DISCUSSION
All the participants learned to self-regulate BOLD ac-
tivity in the SMA successfully by the end of 5 feedback
sessions. Figure 1 (d) shows exemplary BOLD time-
series after 3 feedback sessions for subject 2. There
was no significant difference in performance between
participants who used the thermometer feedback and
the VR feedback. However, participants who used the
VR feedback reported that the game was fun and en-
couraged them to continue training. Importantly, sig-
nificant activation (P < 0.05, FEW corrected) was
observed for each participant in the SMA during the
up-regulation blocks as compared to baseline blocks.
Furthermore, we observed focussed SMA activation
and less widespread activation in other regions with

increasing training. Figure 2 shows this aspect of our
observation for subject 2 during the first session, mid-
session and the last session. Our results indicate that
fMRI-BCI can be potentially applied in neuroscientific
research and clinical treatment of patients with motor
deficits due to brain lesions and stroke.

Figure 2: Figure (a) shows significant activity around
the SMA (marked by a circle) during the functional
localization session when the volunteer carried out

self-paced finger tapping task. Figures (b)–(d) show
brain activity during the first, middle and last session

of self-regulation training.
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SUMMARY: We present a novel typewriter applica-
tion ‘Hex-o-Spell’ that is specifically tailored to the
characteristics of direct brain-to-computer interaction.
The high bandwidth at which a user may perceive in-
formation from the display is used in an appealing vi-
sualization based on hexagons. On the other hand the
control of the application is possible at low bandwidth
using only two control commands (mental states) and
is relatively stable against delays and the like. The ef-
fectiveness and robustness of the interface was demon-
strated at the CeBIT 2006 (world’s largest IT fair)
where two subjects operated the mental typewriter at
a speed of up to 7.6 char/min. It was developed within
the Berlin Brain-Computer Interface project in coop-
eration with specialists for Human Computer Interac-
tion.

INTRODUCTION
Brain-Computer Interfaces (BCIs) translate the intent
of a subject measured from brain signals directly into
control commands, e. g. for a computer application or
a neuroprosthesis [3]. Although the proof-of-concept
of BCI systems was given decades ago, several major
challenges are still to be faced. One of those chal-
lenges is to develop BCI applications which take the
specific characteristics of BCI communication into ac-
count. Apart from being prone to error and having
a rather uncontrolled variability in timing, its band-
width is heavily unbalanced: BCI users can perceive a
high rate of information transfer from the display, but
have a low-bandwidth communication in their control
actions.
The Berlin Brain-Computer Interface (BBCI) is an
EEG-based BCI system which operates on the spatio-
spectral changes during different kinds of motor im-
agery. It uses machine learning techniques to adapt
to the specific brain signatures of each user, thereby
achieving high quality feedback already in the first ses-
sion [1]. The mental typewriter presented here incor-
porates state-of-the-art knowledge from Human Com-
puter Interaction (HCI) and report results of a public
performance with two subjects.

METHODOLOGY
The challenge in designing a mental typewriter is to
map a small number of BCI control states (typically
two) to the high number of symbols (26 letters plus

punctuation marks) while accounting for the low sig-
nal to noise ratio in the control signal. The more fluid
interaction in the BBCI system was made possible by
introducing an approach which combined probabilistic
data and dynamic systems theory based on our earlier
work [2] on mobile interfaces.
Here we take the example that the typewriter is con-
trolled by the two mental states imagined right hand
movement and imagined right foot movement. The ini-
tial configuration is shown in the leftmost plot of Fig-
ure 1. Six hexagonal fields are surrounding a circle. In
each of them five letters or other symbols (including
‘<’ for backspace) are arranged. For the selection of
a symbol there is an arrow in the center of the cir-
cle. By imagining a right hand movement the arrow
turns clockwise. An imagined foot movement stops
the rotation and the arrow starts extending. If this
imagination is performed in a longer period the arrow
touches the hexagon and thereby selects it. Then all
other hexagons are cleared and the five symbols of the
selected hexagon are moved to individual hexagons as
shown in Figure 1. The arrow is reset to its minimal
length. Now the same procedure (rotation if desired
and extension of the arrow) is repeated to select one
symbol.
A language model determines the order of the symbols
in one hexagon depending on the context, but this and
many more important details go beyond the scope of
this note.

RESULTS
On two days in the course of the CeBIT fair 2006 in
Hannover, Germany, live demonstrations were given
with two subjects simultaneously using the BBCI sys-
tem. These demonstrations turned out to be BBCI ro-
bustness tests par excellence. All over the fair pavilion,
noise sources of different kinds (electric, acoustic, . . . )
were potentially jeopardizing the performance. A low
air humidity made the EEG electrode gel dry out and
last but not least the subjects were under psychological
pressure to perform well for instance in front of several
running TV cameras or in the presence of the German
minister of research. The preparation of the experi-
ments started at 9:15 a.m. and the live performance at
11 a.m. The two subjects were either playing ‘Brain-
Pong’ against each other or writing sentences with
the typewriter Hex-o-Spell. Except for short breaks
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Figure 1: The mental typewriter ‘Hex-o-Spell’. The two states classified by the BBCI system control the turning
and growing of the gray arrow respectively (see also text). Letters can thus be chosen in a two step procedure.

and a longer lunch break, the subjects continued until
5 p.m. without degradation of performance over time
which is a demonstration of great stability. The typing
speed was between 2.3 and 5 char/min for one sub-
ject and between 4.6 and 7.6 char/min for the other
subject. This speed was measured for error-free, com-
pleted phrases, i. e. all typing errors that have been
committed had to be corrected by using the backspace
of the mental typewriter. The total number of char-
acters spelled in error-free phrases was up to 560 per
subject per day.

For a BCI driven typewriter not operating on evoked
potentials this is a world class spelling speed, espe-
cially taking into account the environment and the fact
that the subjects did not train the usage of the BBCI
typewriter interface: the subjects used the typewriter
application only twice before.

DISCUSSION

The prospective value of BCI research for rehabilita-
tion is well known. In light of the work presented
here we would advocate a further point. BCI pro-
vides stimulation to HCI researchers as an extreme
example of the sort of interaction which is becoming
more common: interaction with ‘unconventional’ com-
puters in mobile phones, or with devices embedded
in the environment. These have a number of shared
attributes: high-dimensional, noisy inputs, which de-
scribe intrinsically low-dimensional content; data with
content at multiple time-scales; and a significant un-
controlled variability. The mismatch in the bandwidth
between the display and control channels (as explained
in the introduction) and the slow, frustrating error
correction motivate a more ‘negotiated’ style of inter-
action, where commitments are withheld until appro-
priate levels of evidence have been accumulated (i. e.

the entropy of the beliefs inferred from the behavior
of the joint human-computer system should change
smoothly, limited by the maximum input bandwidth).
The dynamics of a cursor, given such noisy inputs,
should be stabilized by controllers which infer poten-
tial actions, as well as the structure of the variabil-
ity in the sensed data. Hex-o-Spell demonstrates the
potential of such intelligent stabilising dynamics in a
noisy, but richly-sensed medium. The results suggest
that the approach is a fruitful one, and one which leav-
ing open the potential for incorporating sophisticated
models without ad hoc modifications.
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SUMMARY: In this paper, we present how subjects
learned to operate an asynchronously (self-based) con-
trolled Brain-Computer Interface and with it to navi-
gate through a Virtual Environment (VE). Similar to
computer games, the task was to pick-up items within
a limited time period. In doing so, motor imagery
related mental activity was mapped to the following
three navigation commands: rotate left, rotate right
and move forward. No cues, routing directives or in-
structions were given to the subjects who had to make
self-paced decisions on type and duration of mental ac-
tivity. Three able-bodied subjects participated in the
experiments and each was able to navigate through
the VE and collect the hidden items. Two succeeded
in collecting all items within the time limit.

INTRODUCTION
The majority of Brain-Computer Interfaces (BCIs) are
designed for the cue-based or synchronous operation
mode. Following a fixed repetitive procedure subjects
have to wait for a cue-signal from the system before
switching to the next mental state. Since the changes
in the brain patterns are time-locked to the cue, only
data in a defined time window is analyzed and used
for classification. A more natural interaction would
require that the user is in command of timing and
speed of communication. Only a minority of BCIs are
designed to operate in the self-paced or asynchronous
mode. Each time the user needs BCI-based interaction
he can autonomously switch into corresponding mental
states. The task of the BCI is to detect voluntarily in-
duced mental patterns (intentional control, IC) in the
ongoing brain activity (non-intentional control, NC).
In this paper, we present an enhanced version of the
asynchronously controlled 3-class Graz-BCI [1], based
on the detection of changes in the sensorimotor elec-
troencephalogram (EEG) induced by motor imagery
(MI). With the proposed system three healthy sub-
jects had the task of exploring a Virtual Environment
(VE) with the goal to find scattered items.

MATERIALS AND METHODS
Subjects and data acquisition: Three healthy subjects
(s1, s2 and s3) participated in the experiments. Three
bipolar EEG-channels were recorded from 6 sintered
Ag/AgCl electrodes placed over hand and foot rep-
resentation areas. The EEG was analog band pass
filtered between 0.5 and 100 Hz and sampled with
250 Hz.
Signal processing: Logarithmic band power (BP) fea-

tures were extracted from the ongoing EEG (band pass
filtering, squaring and moving average over one sec-
ond) and classified using Fisher’s linear discriminant
analysis (LDA). To ensure that EEG was used to con-
trol the BCI on-line detection and reduction of elec-
trooculographic (EOG) and electromyographic (EMG)
artifacts was performed [2]. Since Fisher’s LDA is de-
signed for 2-class problems, 3 independently trained
LDAs in combination with majority voting was used
to solve the 3-class problem.

Gaining asynchronous control: Subjects participated
in cue-based 3-class feedback training after identifying
highly subject-specific parameters like electrode posi-
tions, reactive frequency components and MI task by
means of Distinction Sensitive Learning Vector Quan-
tization (DSLVQ, [3]). For each subject maximal 6
band power features in the range between 8–30Hz
were selected from maximal 3 bipolar channels ar-
ranged symmetrically over both hemispheres. 5 to 7
sessions with 4 runs (10 trials per class) were recorded.
During this training subjects and classifier CFR#1 (3
LDAs) were mutually adapting to each other. From
the collected cue-based data, as well as from addi-
tionally EEG recordings without MI, a second clas-
sifier (CFR#2) was computed. CFR#2 (single LDA)
was trained to identify the collected MI patterns (left,
right and foot or tongue MI mixed) in the ongoing
EEG. To increase the robustness of CFR#2 a thresh-
old had to be exceeded for a certain time (transition
time) in order to cause a switch between NC and
IC and vice versa. Receiver Operator Characteris-
tic (ROC) analysis was performed with the criteria
to maximize true positive detections within the MI-
period and minimizes false positives (FP) anywhere
else. Again DSLVQ was used to identify the 6 most
reactive frequency bands. By combining both, CFR#1
(3-classes) and CFR#2 (MI vs. NC), we created a sys-
tem able to discriminate between 4 classes: 1) left
hand, 2) right hand, 3) foot or tongue MI and 4)
non-control. The output of CFR#1 was triggered by
CFR#2: Each time IC was detected the classification
result of CFR#1 was feed trough. Otherwise the out-
put was “zero”.

Virtual environment and experimental setup: The 3-D
modeling software Maya (Alias Wavefront, Toronto,
Canada) was used to create and the Qt applica-
tion framework (Trolltech, Oslo, Norway) to visual-
ize and to animate the “freeSpace” Virtual Environ-
ment (VE). The virtual park, dimension 30×30 units,
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 consisted of a flat meadow, several hedges and a tree.
Three items (coins) were positioned on fixed locations
inside the park. Subjects had the task of picking
up the three coins within a three minute time limit.
From a randomly selected starting point (same po-
sitions for all subject), subjects could explore (first-
person view) the park in the following way: Left/right
hand MI resulted in a rotation to the left/right (45◦/s)
whereas foot or tongue MI resulted in a forward mo-
tion (1 unit/s). Whenever NC was detected, no action
was performed. With this control, each part of the
park could be reached. Like in computer games, the
coins were automatically collected by contact; hedges
or the three had to be bypassed (collision detection).
For orientation a bird view map of the VE, showing
the actual position was presented. Figure 1 A shows a
screen snapshot.
No instructions on how to reach the coins were given
to the subjects. Two sessions with 3 feedback training
runs were recorded. Each session started with free-
training lasting about 20 minutes.

RESULTS
Each subject was able to navigate through the VE
and collect items. Subjects s2 and s3 succeeded in
collecting all three items within the 3 minutes time
limit. Subject s1 was able to collect only 2 of the
3 coins. While s1 and s2 could improve their perfor-
mance (reflected in the covered distance and number of
collected items), the results of session two for s3 were
poor compared to the first. The best performance for
each subject is shown in Figure 1 B. Interesting is that
best results were achieved from each subject indepen-
dently when starting from the same initial position.
The routes, however, show that subjects had different
strategies (depending also on the ability to control the
BCI) and consequently choose different ways to collect
the coins.
The distribution of the BCI classification output, sum-
marized in Table 1, show that all four classes oc-
curred during the experiment. Interviews with the
subjects confirmed that all 3 motor imagery mental
states as well as NC were deliberately used for navi-
gation. It was necessary that no navigation command
was send to the VE during non-MI related mental ac-
tivity, like e. g. orientation or routing, or whenever sub-
jects needed a break.

CONCLUSION
The “freeSpace” paradigm was introduced because no
instructions, except the overall aim to collect coins,
had to be given to the subjects. The paradigm is mo-
tivating, entertaining and most important there is an
endless number of ways to reach the goal.
The results of the experiments show that sub-
jects learned to successfully navigate through the
“freeSpace” VE and were able to collect coins by au-
tonomously switching between different mental states.
These properties make BCIs become a real alternative
to standard communication channels.

A

B

Figure 1: A: Screenshot of the “freeSpace” VE. The
big arrow indicates the selected navigation command

(here forward movement). During NC the three
arrows had the same (small) size. B: Map of the
freeSpace virtual environment showing the best

performance (route) for each subject (s1, dashed; s2,
continuous; s3, dotted line).

Table 1: Motor imagery task distribution
(percentage)

Subject Left Right Foot/Tongue NC
s1 13.8 16.7 12.3 57.2
s2 18.7 19.0 30.8 31.5
s3 15.0 14.5 25.5 45.0
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[2] Scherer R, Schlögl A, Pfurtscheller G. Online
detection and reduction of electrooculographic
(EOG) and electromyographic (EMG) artifacts,
BMT 3-Ländertreffen, 6.–9. September 2006,
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SUMMARY: This poster presents results obtained
from experiments of driving a brain-actuated simu-
lated wheelchair that incorporates the shared-control
intelligence method. The simulated wheelchair is con-
trolled offline using band power features. The task is
to drive the wheelchair along a corridor avoiding two
obstacles. We have analyzed data from 4 nave subjects
during 25 sessions carried out in two days. To mea-
sure the performance of the brain-actuated wheelchair
we have compared the final position of the wheelchair
with the end point of the desired trajectory. The ex-
periments show that the incorporation of a higher in-
telligence level in the control device significantly helps
the subject to drive the robot device.

INTRODUCTION

Recent experiments have shown the possibility of us-
ing the brain electrical activity to directly control the
movement of robots or prosthetic devices in real time
[1]. In order to provide a more practical environment
for the subject to use the BCI for control, there is a
need to have an adaptive shared autonomy between
two intelligent agents – the human user and the robot
– so that the user only conveys intents that the robot
performs autonomously [2]. Although the initial brain-
actuated robot had already some form of cooperative
control, shared autonomy is a more principled and flex-
ible framework.

METHODS

In this paper, the experiment protocol is similar to
that described in [3]. In order to control the simu-
lated wheelchair, the classifier embedded in the BCI
is fed with the power of the frequency band 8–14Hz
from 10 scalp EEG electrodes and it sent its output
every 0.5 s to the robot. The simulated wheelchair
has two levels of intelligence, namely A0 (it allows the
wheelchair to detect obstacles and stop before collid-
ing) and A1 (it detects obstacles and avoids them).
The task is to drive the wheelchair along a corridor
avoiding two obstacles (Figure 1). We have analyzed
data from 4 naive subjects during 25 sessions carried
out in two days. The classifier embedded in the BCI
was trained with data from 5 consecutive sessions and
tested over the next 5 consecutive sessions. To mea-
sure the performance of the brain-actuated wheelchair
we have compared the final position of the wheelchair
with the end point of the desired trajectory.

Figure 1: Example of trajectories in the simulated
environment. The starting point for the wheelchair is
at the bottom left in front of the obstacle. The axes
give the coordinates of the simulated environment in

centimeters.

RESULTS
Figure 1 shows a few trajectories obtained from the
experiments. Using intelligence level A0, most of the
time, the wheelchair stops moving whenever it comes
across any obstacles, causing it to stay near the start-
ing point as in the dashed line path (labeled 1) in
Figure 1. The solid line (labeled 4) is the desired tra-
jectory and the end point of this trajectory is used as a
reference for comparison with other end points reached
by the brain-actuated wheelchair for each session and
subject. The dotted line (labeled 3) is an example of a
trajectory reaching the target. Distance from starting
point to the target is 1262 cm. The dotted-dash line
(labeled 2) shows the wheelchair turning to the oppo-
site direction further away from the starting point. If
the simulated wheelchair ends within 50 cm from the
target, it is considered the task has been achieved. Re-
sults for the 4 subjects are tested with the simulator
using intelligence level A1 as shown in the graphs of
Figures 2 to 5 with the comparison between trajecto-
ries generated with online learning [4] and without on-
line learning. In these figures, distances of more than
1262 cm correspond to trajectories where the subject
sent a series of wrong mental commands at the begin-
ning and the wheelchair turned away from the target
as in the case of trajectory labeled 2 in Figure 1.

DISCUSSION
Despite the fact that the subjects’ performance are
quite far from optimal – because among other reason,
they are novel – the results show that the incorpo-
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 ration of shared autonomy with A1 intelligence level
allows subjects to achieve the task a considerable num-
ber of times. This is not the case when the simulated
wheelchair has only A0 intelligence level, when the tar-
get is never reached.

Figure 2: Subject 1 hits the target in 8 (without online
learning) vs. 12 (with online learning) out of 25 sessions

Figure 3: Subject 2 hits the target in 9 (without online
learning) vs. 13 (with online learning) out of 25 sessions

Figure 4: Subject 3 hits the target in 7 (without online
learning) vs. 8 (with online learning) out of 25 sessions

Figure 5: Subject 4 hits the target in 8 (without online
learning) vs. 9 (with online learning) out of 25 sessions

It is also worth noting that the performance of sub-
ject 1 and subject 4 increased at the last few sessions
while subject 3 performs best in the beginning of the
sessions and subject 2 is able to reach the target more
frequent in the middle of the sessions. Finally, as ex-
pected, the incorporation of online learning [4], im-
proves the performance for all the subjects especially
subjects 1 and 2 with more drastic increase in number
of times hitting the target with online learning.

CONCLUSION
This paper shows the importance of having a higher
intelligence level in the wheelchair (or control device)
to help the subject achieve the task with a high prob-
ability from the very first trial, although performance
between subjects varies across sessions. For future
work, we plan to estimate the subject’s intention using
a probabilistic framework, as in [2], and to incorporate
learning capabilities in the robot controller to improve
the entire brain-actuated device.
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SUMMARY: Neural Internet is a system which uses
neuronal signals from the brain and transforms them
to binary or multidimensional computer commands en-
abling severely paralysed patients to surf the inter-
net, read and send e-mails independently of any vol-
untary muscle control. Here we introduce two types of
EEG controlled web browsers based on self-regulation
of slow cortical potentials (SCP): Descartes and Nessi.
The functioning of Neural Internet and its clinical im-
plications for motor impaired patients are highlighted.

INTRODUCTION
Amyotrophic lateral sclerosis (ALS), also known
as “Lou Gehrig’s disease”, is a progressive neuro-
degenerative disease that causes widespread loss of
both upper and lower motor neurons [1]. With vol-
untary muscle action progressively affected, patients
in the later stages of the disease may become to-
tally paralysed. Yet, for the vast majority of ALS
patients, their sensory and cognitive functions re-
main largely unaffected [2]. One of the most ter-
rifying aspects of this “locked-in syndrome” is that
the loss of muscle control prevents the expression of
even the most basic needs. Therefore, we developed a
brain-computer interface (BCI) controlled by SCP self-
regulation enabling ALS patients to write messages
independently of voluntary muscle control [3]. The
goal of this study was to investigate the feasibility of
a web browser based on self-regulation of brain poten-
tials for locked-in patients. This technology, which we
call Neural Internet, could enable severely paralysed
patients to regain autonomy by using the unique com-
munication and interaction possibilities of the world
wide web independently of any voluntary muscle con-
trol. Here, we introduce two types of EEG controlled
web browsers, which can be operated by SCP self-
regulation: Descartes and Nessi.

PATIENTS
Descartes has been developed and tested since 1999
with a locked-in patient (HPS) diagnosed with ALS,
rendering him the first paralysed patient to surf the
internet only with his brain waves [4]. Usability tests
with Nessi are currently ongoing with five ALS pa-
tients.

WEB SURFING WITH DESCARTES
In Descartes the commands are arranged in a dichoto-
mous decision tree based on a modified Huffman’s al-

gorithm. EEG data acquisition, online signal process-
ing and classification was performed using the Thought
Translation Device software [3]. SCP were extracted
by appropriate filtering, corrected for EOG activity
and fed back to the patient as a cursor movement
on a laptop screen. For selecting a command the pa-
tient produces positive SCP shifts (above a predefined
threshold of 7 µV), which move the cursor downwards.
For rejecting a command the patient produces nega-
tive SCP shifts, which move a cursor on a computer
screen upwards. At the first level of the decision tree
the patient can choose whether to write an e-mail or
to surf the internet. If the patient decides to write
an e-mail, the e-mail address and the text body has
to be spelled out using the BCI spelling device [3]. If
the patient decides to surf the internet, he/she first
receives a number of predefined links arranged in the
dichotomous decision tree. Each web page is offered
successively for selection at the bottom of the monitor
(cf. Figure 1).

Figure 1: Web surfing with Descartes

Once the patient has selected a web page it will be
automatically loaded and shown for a predefined time
until the SCP feedback mode will start again offer-
ing the patient to choose a link from the selected web
page, to go one page back or to start from the ini-
tial list again. In order to test the patient’s ability
to reliably operate Descartes, two or three test runs

3rd Int. BCI Workshop & Training Course 2006

114



 

 

 were conducted at the beginning of each web surfing
session. Patient HPS has achieved a mean accuracy of
80 % (± SD 6.2 %), which varies on different days from
68 % to 95%. HPS is now using Descartes regularly 1–
2 times a week, for example to read his favourite Ger-
man newspaper online, to search and order recently
published law books especially those of his former col-
leagues, or to read and write e-mails to friends and
relatives (for more BCI data from this patient using
Descartes see [4]).
However, due to modern web coding practices, it is
quite often impossible to obtain a textual label associ-
ated with a link on a web page. Very often, links are
associated with graphics instead of a descriptive text,
but even for a textual link its semantic content may
depend on its position on the web page. To overcome
this problem we developed a second Neural Internet
system, called Nessi, which uses graphical “in-place”
markers instead of textual labelling, whereas differ-
ent brain responses correspond to two different frame
colours placed around selectable items on a web page.

WEB SURFING WITH NESSI
In Nessi (Neural Signal Surfing Interface) the open-
source browser Mozilla was extended by graphical “in-
place” markers. Coloured frames are placed around se-
lectable items on a web page, circumventing any need
to maintain a separate presentation of choices (cf. Fig-
ure 2). By default, red frames are selected by produc-
ing cortical negativity and green frames are selected
by the production of cortical positivity. As an aid,
feedback is displayed at the left rim of the screen by
depicting the vertical movement of a cursor that can
be moved upwards into a red area or downwards into a
green area. By presenting a series of brain responses as
indicated by changing colour of the frame around that
link, it can be chosen with binary decision neglecting
any knowledge about its position in a selection tree [5].

Figure 2: Web surfing with Nessi

Besides links, other interactive elements on web pages
are accessible to the user, particularly text fields for
which a virtual keyboard is provided, opening up a
wide range of hypertext based applications. However,

to avoid overexertion the number of navigation ele-
ments can be reduced while the patient is learning to
operate the web browser. First usability tests with five
ALS patients showed difficulties only when a web page
contained too many links.

CONCLUSION
We have shown here that an EEG controlled web
browser based on self-regulation of SCP can be reli-
ably operated by a nearly completely paralysed ALS
patient. To avoid constraints in web surfing caused by
problems in identifying the textual labelling of a web
link, we are currently testing the usability of graph-
ical “in-place” markers instead of textual labelling,
whereas different brain responses correspond to two
different frame colours placed around selectable items.
Neural Internet seems to be a very promising approach
for connecting motor-impaired users to the world wide
web and offering them unique communication and in-
teraction possibilities with the outside world, which
they would not otherwise be able to use due to their
motor disability, such as shopping, receiving informa-
tion or even running a business. Moreover, using op-
tions like e-mail with a BCI web browser may offer
for completely paralysed patients the only possibility
to read, write and send confidential letters to relatives
or friends without an intermediator (a caregiver or a
nurse). Thus, Neural Internet can help motor impaired
patients to regain a certain level of autonomy in the in-
teraction with the outside world and thereby enhance
their quality of life.
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SUMMARY: Electroencephalograph (EEG) record-
ings during right and left motor imagery can be used to
move a cursor to a target on a computer screen. Such
an EEG-based brain-computer interface (BCI) can
provide a new communication channel to replace an
impaired motor function. It can be used by e. g., hand-
icap users with amyotrophic lateral sclerosis (ALS).
In this study, statistical pattern recognition method
based on AR model was introduced to discriminate
the EEG signals recorded during right and left motor
imagery, and is applied to operate a robot. The ef-
fectiveness of our method was confirmed through the
experimental studies.

INTRODUCTION
Classification of EEG signals during motor imagery
can be used to control an electronic device. Such a
system which transforms signals from the brain into
control signals is known as a brain-computer interface
(BCI) [1, 2, 3]. We also have proposed such a system
based on AR model [4], and investigated the learning
effects of subjects on our system [5]. In these studies,
it was confirmed that the detection of the operation
imagination of the hand was possible with high accu-
racy for the subject who trained enough. This fact
suggests that robot operation will be possible by us-
ing our method. In this study, robot (AIBO: SONY
entertainment robot) operation was tried by using the
statistical pattern recognition method based on AR
model. And the effectiveness of our method was con-
firmed through the experimental studies.

MATERIALS AND METHODS
Three subjects (22–24 years old) participated in this
study. All were right-handed, and were free of medi-
cation and central nervous system abnormality. Elec-
trode positions are shown in Figure 1. The EEG sig-
nals were amplified by a Nihon Khoden amplifier and
then were sampled at 128Hz. In this study, the small
Laplacian filtered signals (SL signals) are used.
Pattern Recognition Method Based on AR Model: Fol-
lowing Bayes decision rule is adopted.

k∗ = arg max
k

Pr
ωk

ZDN
(1)

ZDN = {Y1N , Y2N}
Y1N = {y11, y12 . . . y1N} : Signals (C3)
Y2N = {y21, y22 . . . y2N} : Signals (C4)
ωk : Class (Right or Left)

A posteriori probability function Pr(ωk/ZDN ) can be
expressed as explicit form by assuming that the EEG
signals are generated from an autoregressive (AR)
model [4].
Training of the subject: Each of the subjects partic-
ipated in 10 sessions, all on different days. Timing
chart of feedback session are shown in Figure 2. Each
session consisted of 3 experimental runs of 60 trials
(30 ‘left’ and 30 ‘right’ trials) and lasted for about 1
hour. The sequence of ‘left’ and ‘right’ trials, as well as
the duration of the breaks between consecutive trials
(ranging between 500 and 2500 ms), were randomized
throughout each experimental run.

Figure 1: Position Figure 2: Timing chart
of the electrodes of feedback session

Robot operation: The robot is programmed to execute
the following two kinds of instructions. One is one-
step-walking to the right-front direction. Another is
one-step-walking to the left-front direction. The time
required to execute each instruction is 1.5 seconds.
The control system is shown in Figure 3. The con-
trol system sends the instruction to AIBO every 1.5
seconds according to the pattern recognition result of
the previous 2.0 seconds data. The timing chart of
control is shown in Figure 4.

Figure 3: Control system of robot (AIBO)
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Figure 4: Timing chart of AIBO control

Figure 5: Environment of Experiment 2

In this study, two kinds of experiment were tried.
Experiment 1: Single direction walking Subjects try to
let AIBO walking to only one direction (right or left)
during experiments (about 50 s).
Experiment 2: Walking like the character eight. Sub-
jects try to let AIBO walking like the character eight
to avoid two obstacles (see Figure 5). The AR param-
eters which are estimated from the data (data length:
2.0 s, data period: 6.0–8.0 s) of final session (10th ses-
sion) are used in the the control system.

RESULTS AND DISCUSSION
Pattern recognition results are shown in Figure 6. This
results suggest that number of the sessions which is
needed for the training depends on each subject. The
results of Experiment 1 (Single direction walking) are
shown in Figure 7, which is the histograms concerning
the moved distance in direction of right and left (Left:
30 trials, Right: 30 trials). These results suggest that
only subject m2 can completely control AIBO by only
thinking. Therefore, only subject m2 participated in
next experiment (Experiment 2). Figure 8 shows the
trace of AIBO movement. This result shows that he
could control the AIBO as he wills.

CONCLUSION
In this paper, robot operation system by the control
method built in EEG recognition method was devel-
oped.
And it was confirmed that the subject trained enough
was able to control the AIBO only by thinking about
the operation. This system is prototype system of
BCI. It is necessary to increase the kind of available
operation in order to make the system to a more prac-
ticable system. These studies are under consideration.

Figure 6: Pattern recognition results
(Subject: f1, m2, k3)

Figure 7: Walking distance
(Left: Subject m2, Right: Subject k3)

Figure 8: Trace of the AIBO movement (subject m2)
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SUMMARY: The ASPICE project aims to develop an
Assistive System for Patient’s Increase of Communica-
tion, ambient control and mobility in absence of mus-
cular Effort. Different disability level means different
system users: from people confined to a wheelchair to
neuromotor disabled persons. ASPICE tries to im-
prove or recover their mobility (directly or by em-
ulation) and communication within the surrounding
environment. The system pivots around a software
controller running on a portable computer to offer a
proper interface for the user through different inter-
faces, selected by the individual’s residual abilities.
This system links to the concept of user-centered in-
terface promoted by human-computer interaction re-
searchers. Each person has an own “individual abil-
ity”, thus the system must provide the possibility to
use an adaptive interface customized to their own abil-
ity and requirements, which stems from contingent fac-
tors or simple preferences, depending on the user and
on his or her life stage, task, and environment.

INTRODUCTION
The main goal in rehabilitation are the reduction of the
disability caused by any pathological condition using
orthesis, and the management of the social disadvan-
tage related to disability, using different aids.
The project described in this paper offers the opportu-
nity to integrate a technological core (Brain Computer
Interface, Domotics, Robotics) into a prototype, tak-
ing into account different disabilty levels, in order to
prove that a real application is always possible, though
the residual muscular strength (e. g. considering dis-
eases as Spinal Muscular Atrophy, Duchenne Dystro-
phy, Amyotrophic Lateral Sclerosis) cannot be ade-
quate for the utilization of conventional aids.

MATERIALS AND METHODS
The ASPICE project (Assistive System for Patient’s
Increase of Communication, ambient control and mo-
bility in absence of muscular Effort) fosters its aims
through the integration of disciplines brought from the
partners of the development consortium. The consti-
tutive elements of the system are:

1. Input devices

2. System core

3. Feedback

4. Actuator

The ASPICE architecture, with its input and output
devices, is outlined in Figure 1.

Figure 1: Outline of the architecture of the ASPICE
project. The figure shows that the system interfaces

the user to the surrounding environment. The
modularity is assured by the use of a core unit that
takes inputs by one of the possible input devices and

sends commands to one or more of the possible
actuators. A feedback is provided to keep the user

informed about the status of the system.

The system input devices are customized on the users’
residual motor abilities: users can access the system
through the aids they are already familiar with, and
that have been interfaced to provide a low level in-
put to a more sophisticated assistive device. On the
other hand, the variety of input devices provides ro-
bustness against worsening of patients’ abilities, which
is a typical consequence of degenerative diseases. The
software implementation of this modular attitude ben-
efited from the use of the ICon package [1].
An extreme instance of input devices that can be inter-
faced to the system are Braincomputer interfaces [2].
The ability to control the system via a brain computer
interface relies on the BCI2000 software system. The
users learn to control their own mu rhythm by being
fed back during a training period. This acquired skill
is used to move a cursor on a screen and the interface
allows him to navigate an icon based menu [3–6].
The System core receives the logical signals from the
input devices and converts them into commands that
can be used to drive the output devices. Whenever
the user selects an action that, rather than changing
the internal context of the core (i. e. selects a non-leaf
item of the cascaded menu), it instructs the system to
undertake a physical action, the Control Unit fulfils
the user’s demands by sending the appropriate control
signals to the output appliances. Drivers are used to
offer a homogeneous interface from the Control Unit’s
point of view.
Feedback: The user can select the commands and mon-
itor the system’s behaviour through a Graphic Inter-
face. Like all other modules, inter-module communica-
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 tion is transported via TCP/IP socket; among others,
this allows each module to run on a different comput-
ers. The Feedback can significantly benefit from this,
since a lighter an low power computer such as a palm-
top PC or even a smart phone can be used to give the
subject the feedback he/she needs, while being of min-
imum burden for the user. Figure 2 shows a possible
appearance of the feedback screen.

Figure 2: Appearance of the feedback screen. The
Feedback application has been instructed to divide
the window into three panels. In the top panel, the
available selections (commands) appear as icons. In
the bottom right panel, a feedback stimulus by the
BCI. In the bottom left panel, the Feedback module

displays the video stream.

Actuators: The Aspice system allows the user to oper-
ate remotely with electric devices (e. g. TV, fan, lights)
as well as monitoring the environment with remotely
controlled video-cameras. Moreover, a robot naviga-
tion system has been developed, based on a small set of
commands, which has been interfaced with the Aspice
system [7].

RESULTS
Clinical validation of the prototype has been carried
out with the voluntary collaboration of 15 adult sub-
jects affected by motor disability of variable degree
due to neuromuscular diseases. These subjects were
asked to interact with the prototype and to provide
information about how it was perceived in terms of
augmented independence in daily life activity. The
results indicated that the individual’s needs and inter-
est must be analyzed and reinforced. Environmental
control is a strong positive reinforcement even if the
subject partially regains some independency in operat-
ing domotic devices. It remains to be tested how these
positive reinforces could be integrated into a general
training framework.

CONCLUSION
The quality of the life of an individual, suffering from
severe motor impairments, is mainly affected by its
complete dependence upon the caregivers. An assistive
device, even the most advanced, cannot substitute, at
the state of the art, the assistance provided by a hu-
man skill. Nevertheless, it can contribute to relief the
caregiver from a continuous presence in the room of
the patient. Most importantly, the perception of the
patient is that he has no more to rely on the caregiver
for any action. The ASPICE system can increase the
sense of independence of a patient, granting a sense of
privacy, that is almost absent if another person has to
take his care. For these reasons, the quality of life of
the patient can be sensibly improved.
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SUMMARY: In our work we addressed the problem
of porting BCI algorithms to different platforms es-
pecially the those not supporting Matlab R© based de-
velopment, and focused our attention mainly to em-
bedded devices. A careful management of the pro-
gramming code was realized after a deep analysis of
the hardware characteristics of the computers: all the
necessary optimizations were adopted in order to ob-
tain fast execution of functions. Special attention was
also dedicated to the management of the memory. The
here presented C4M library is a powerful tool for the
efficient porting of generic algorithms on single chip
embedded system, which have limited performances in
terms of speed and memory resources, when compared
with those available in a standard PC.

INTRODUCTION
For a real usability Brain Computer Interface is a new
man machine interface which can lead many disabled
people to an higher quality of life. In order to avoid
undesired or unsafe behavior of the controlled system,
algorithms have to operate in real-time. Many state of
the art BCI algorithms have been designed using spe-
cific mathematical languages strictly dependant from
the use of a PC or similar devices [1]. Notwithstanding
the importance of studying and developing more reli-
able algorithms, the possible future diffusion of daily
life application, will also face the problems related to
the possibility to transport the BCI from the tradi-
tional PC to the devices and systems used by the dis-
abled people.
Furthermore we point out that the most of the high
level digital signal processing languages are typically
oriented to the reduction of the developing time rather
than optimizing the resources and the real-time exe-
cution. Considering those assumptions, in our work
we addressed the problem of providing a framework
able to facilitate the porting of BCI algorithms to any
platform, devoting a special attention to the embedded
solutions and without affecting the realization time.

Table 1: The c4mMatrix struct
c4mMatrix

∗pdata void
rows uint32
cols uint32
esize uint8

This work was based on the development of a library
of mathematical functions written in C language (the

C4M library) allowing numerical computation and sig-
nal processing either on PC, using standard instru-
ments and on specific devices with less resources.

MATERIALS AND METHODS
Since the most diffused tool for the prototyping of
BCI algorithms is Matlab R© (Mathworks Inc., Mas-
sachusetts, USA) [1, 2], the structure of the proposed
library was organized in order to simplify the porting
from Matlab to C language. The features that make
Matlab suitable to design signal processing solutions
are the matrix-based architecture and the availability
of several basic and recurrent functions able to address
both time and frequency domain operations. In order
to obtain the maximum performances, portability and
usability the C4M proposed and used some specific
rules, structures and functions:

• the C4M functions are atomic operators: the
function can not dynamically allocate memory
(the program that operates in the higher level
must provide the necessary memory);

• in order to adapt the algorithm to the architec-
ture of the CPU and to the requirements in terms
of precision, both single and double floating-
point precision version of each function should
be provided;

• in order to avoid waste of memory, each function
should use the input variables space to store the
output variables: the calling level function will
make a copy of the input variables if necessary.

Input and output arguments are in the form of matri-
ces and are represented using a c4mMatrix struct:
The pdata member points to the memory area where
the data are stored; the rows and the cols elements
provide information about the matrix dimension; the
esize variable is the size of the single element of the
matrix and it allows the users to retrieve the amount of
memory used by the matrix. The C4M functions im-
plement recurrent mathematical methods: they pro-
vide the most common operations supplied by Matlab
libraries. The library is under continuous improve-
ment: the basic functions related to matrix operations
(e. g. matrix sum, product and inversion), frequency
and time domain functions (e. g. fast Fourier trans-
form and convolution) were developed. For every C4M
function a mex-file was created in order to execute it
directly from Matlab, taking advantage of the graphi-
cal and the data management tools provided by the
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 IDE (Integrated Development Environment) and to
test the speed and the reliability of each function. The
C4M library has been used in a SSVEP (Steady State
Visual Evoked Potential) protocol based BCI previ-
ously working fine with Matlab. The host system was
the complete BCI system previously developed by our
group[3] based on a wearable EEG acquisition device
and a Windows R© based software which managed the
graphical user interface, the protocol execution and
the visual stimulation. The SSVEP protocol was ap-
plied to a five state selection. Four high efficiency
LEDs provided the visual stimulation; the idle state
was considered as the fifth class.

RESULTS AND CONCLUSION
The C4M-based algorithm was integrated in the BCI
software using a C++ objects oriented programming.
In this way it has been possible to remove the calls to
Matlab and replace them with the calls to the newly
created algorithm. Figure 1 shows the structure of the
algorithm.

Figure 1: Structure of the algorithm

The Feature Extractor is the object that computed the
features vector from EEG signal, by means of some
spectral parameters. The BCI algorithm was based on
a supervised multiclass classifier obtained by combin-
ing different sub-classifiers. Each RLDA object oper-
ated a one versus all-type binary Regularized Linear
Discriminant Analysis [4]. The derived MultiLDA ob-
ject made a multiple classification taking the results
of 5 RLDA (4 associated to the luminous stimuli and
last one to the idle state), moreover it generated the
biofeedback by combining the resultant time signed
distance with quality index related to the number of
coherent identification.

Table 2: Time comparison obtained by using the
real-time counter of the CPU

Matlab version C version

Mean elaboration time 137.5ms 0.89ms

Some tests were conducted in order to compare the
performances obtained by the original Matlab-version
algorithm with the one based on the C4M library. Ta-
ble 2 shows the mean computation time during the
real-time operation of a trained system, on the same
platform. The software run on a laptop PC (Pentium
IV, 2.8GHz). The C version software had a consider-
ably higher execution speed if compared to the Matlab
version software. As a matter of fact some platforms
do not offer the possibility to allocate the memory dy-
namically; the C4M library provides a useful module

that enables the emulation of the dynamic allocation.
These special functions also allow the monitoring of
the memory during the execution of the program so
avoiding lack of resources due to omitted dealloca-
tions, and for memory requirements characterization.
Figure 2 shows the amount of allocated memory dur-
ing the training phase of the algorithm, both work-
ing with single precision and double precision floating-
point variables.

Figure 2: Memory allocation

The porting to C language made the operation of fea-
tures extraction and classification much faster than
the same operations executed using through the Mat-
lab environment. The Matlab algorithm was real time
capable, it was possible to perform two classifications
per second: thanks to this improvement it was possible
to obtain a hard real-time behaviour. Next steps will
be taken to move part of the elaboration load into the
EEG acquisition system CPU: by extracting the use-
ful information of the signal rather than sending the
whole acquired signal, it will be possible to reduce the
amount of data to be sent to the PC minimizing the
power consumption due to wireless transmission. At
the moment the library is available only for developers:
a proper license agreement will be proposed soon.
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SUMMARY: BCI-info.org is an international internet-
platform for the BCI community that facilitates the
exchange and discussion of BCI related information.
It is intended to be a repository for everything related
to BCI research, containing information for researchers
and patients alike. Membership to BCI-info.org is free
and everyone is invited to contribute to the site.

INTRODUCTION
The past few years have seen an increased interest in
BCI research resulting in a large number of new re-
search groups. BCI research is an interdisciplinary
field integrating knowledge from neuroscience, psy-
chology, engineering, computer science, and rehabili-
tation.
Seldom does any single group have the expertise in all
these fields required to develop and improve a work-
able BCI. Therefore, it is important to have forums
in which results and problems common to BCI re-
searchers from these diverse disciplines can be dis-
cussed. Unfortunately, these are usually limited to
conferences and special workshops, the rarity of which
often stifles the required discussion and exchange of
information.

Figure 1: Screenshots of BCI-info.org

Further, useful information about BCI research is scat-
tered over scientific publications and websites main-
tained by individual research groups. In order to miti-
gate this situation, we suggest an internet platform for
BCI research. This platform is intended to be a repos-
itory of everything related to BCI research, contain-
ing information for researchers and patients alike (e. g.
ALS patients). The site will also contain instructional
materials written for a lay audience, so that students,
media, and others from the general public can find
current, accurate, and easy-to-read information about
BCIs. A second prototype of the suggested platform

is already available at http://www.bci-info.org (Fig-
ure 1).
In this article we explain the technology upon which
BCI-info.org is based, the structure used to organize
content, and how anyone can become a member of
BCI-info.org and contribute content to the site.

MATERIALS AND METHODS
Content management system: BCI-info.org is based on
Plone [1]. Plone is a powerful and flexible open-source
content-management system (CMS) that is easy to
use and maintain. Most of the functionality of BCI-
info.org is already provided by Plone. This, however,
is only one reason why Plone is a suitable basis for
a community site like BCI-info.org. Other reasons
are [1]: It is open source and is licensed under the
GNU General Public License [2]. Unlike many other
open source CMS available, Plone is an already ma-
ture product and is supported by a strong and large
development team. It complies with standards for us-
ability and accessibility. And further, extensions such
as new content types can be created rather easily by a
programming framework called Archetypes [3]. Since
Plone is open source, a large number of useful exten-
sions are freely available.
In order to facilitate the organization of the content
and information available, BCI-info.org is structured
in different sections as depicted in Figure 1. Detailed
information about the content available in the indi-
vidual sections can be found in the help section of
BCI-info.org. The sections are either moderated (grey
boxes) or unmoderated (white boxes). Only reviewers
and site managers can directly contribute to moder-
ated sections.

Figure 2: Structure of BCI-info.org

Standard users are supposed to store their contribu-
tions in their member folders and can then submit
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 them for publication. The submissions are reviewed by
the BCI-info.org review board1 and are either accepted
for publication on the site or rejected. Figure 2 shows
the complete workflow for content on BCI-info.org as
it is currently implemented.
Published content will be listed in the appropriate
moderated sections or listed by the search facility of
the site. Rejected content and content retracted by
the user can remain in the user’s folder as public draft
where other site members or visitors can access it.
Content can also be made private. In this case, it is
invisible for other members except the content owner.
This workflow is maintained to ensure a certain quality
of the information provided in the moderated sections
and to avoid duplication and reduce redundancy.

Figure 3: Default workflow for content on
BCI-info.org

Available content types: The content type that most
closely represents a typical web page is a page item.
Therefore it can be used for static, general informa-
tion. Other standard content types are: news items
(can be used e. g. to announce new papers or press re-
leases), event items (e. g. upcoming conferences), and
files (e. g. data or multimedia files). Besides these stan-
dard types provided by Plone, BCI-info.org also pro-
vides customized content types particularly suitable
for BCI research: bibliography items (references to ar-
ticles, books, etc), journal items (descriptions of jour-
nals that publish BCI research), group items (short
descriptions of BCI groups), contact items (personal
contact information), job items (open vacancies), soft-
ware items (descriptions and links to useful software),
and web resource items (interesting resources on the
web).
Joining BCI-info.org and adding content: Only regis-
tered members of BCI-info.org can add content. Be-
coming a member is easy, and anyone can do it. For
the registration process, one has to provide their name
and a valid email address, which is used for sending

a provisional password. BCI-info.org guarantees that
the email address is not used for anything else except
the communication between the user and the platform.
After registration, the user will have an account on the
server, which can be used to add content to the site.
Adding content is also a simple process that always
follows the same basic procedure: The content type
appropriate for the information that is to be provided
has to be selected from a drop-down list and the corre-
sponding form has to be filled in. After completing the
form, it can be submitted for publication. Usually, a
submitted content item is then published within a view
days and can be found in search results or is listed in
the appropriate moderated sections. Detailed infor-
mation about adding content can be found in the help
section of BCI-info.org.

DISCUSSION
There are currently more than 220 registered users
on BCI-info.org. Considering that BCI research is a
rather small field, this is a surprisingly large num-
ber of members. Obviously, there is an interest for
a platform dedicated to BCI research. However, only
a small percentage of the members (about 2 percent)
have contributed content to the site. Compared with
other community sites, this is a small number of ac-
tive users. Since a community site depends on the
contributions of its members, we improved the docu-
mentation of BCI-info.org in the hope that short and
simple guidelines for contributing content will encour-
age and improve the number of contributions. Further,
a mailing-list/newsgroup and a discussion forum have
been established to facilitate unmoderated, immedi-
ate communication between members. Every member
is invited to participate in the forums and contribute
at least simple content like contact information, bibli-
ography items, news, or events. Members that want to
support BCI-info.org more actively (e. g. as reviewer)
are also welcome. BCI-info.org is not intended to be
the product of one single BCI group. In fact, it is
meant to serve the BCI community as a useful plat-
form, and as such it needs the help and participation
of the community.
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SUMMARY: Signals from the brain could provide
a non-muscular communication system, a brain-
computer interface (BCI), for people who are par-
alyzed. The BCI2000 software framework facili-
tates real-time implementations of BCI systems. The
MARIO Project aims at complementing BCI2000 by
building a software tool for offline analyses of brain
signals. These analyses can be performed within a
graphic environment or using modules written in the
Matlab language. At present, Mario supports mu
rhythm and P300 analyses. The combination of graph-
ical and script-based use provides a rapid learning
curve and also facilitates more comprehensive analyses
by advanced users.

INTRODUCTION

Brain-Computer Interfaces (BCIs) are systems that
depend on two adaptive controllers – the user and the
system. In order to optimize decoding of the user’s
intent and also to facilitate user learning, appropriate
machine adaptation should be ideally matched to a
specific user in the particular stage of his/her training.
While current algorithms have some adaptive capaci-
ties, human intervention and expert supervision is still
required. Progress requires the evaluation of different
approaches and the use of the resulting algorithms for
real-time communication and control.

BCI is a highly interdisciplinary research field. Thus,
not all research groups have the expertise to develop
and implement all aspects of effective BCI systems.
The BCI2000 project [1] marked an important mile-
stone, because BCI2000 already supports a number of
important BCI methods and facilitates implementa-
tion of modules to support new data acquisition sys-
tems, signal processing algorithms, or user tasks, to
be used for online experiments. At the same time, of-
fline analyses and their appropriate interpretation and
integration in subsequent online experiments are cur-
rently not adequately addressed by BCI2000 and are
also not documented in the literature.

The MARIO project aims at addressing this problem
by providing support for standard and more compre-
hensive analyses and by also providing adequate doc-
umentation.

MATERIALS AND METHODS
MARIO is an off-line analysis software, developed us-
ing the Matlab environment (The Mathworks, Inc.,
Natick, MA, USA). It is modular and object-oriented,
and can be easily integrated with other software pack-
ages for data analysis and visualization. MARIO
can be used for the analysis of data acquired with a
BCI2000 environment in mu-rhythm and P300 setups.

Figure 1: Main graphical interface of the Matlab
implementation of the MARIO Toolbox

It is targeted towards two classes of uses routine anal-
ysis by non-experts and more comprehensive analysis
by experts in signal analysis. The first use benefits
from a Graphical User Interface (GUI) that guides
users through standard analysis processes. The sec-
ond use benefits from software modules that are avail-
able for batch processing. This capacity will facilitate
1) repeating the same analysis on a large number of
recordings; 2) performing exhaustive analyses (using
different parameters) on a specific dataset; 3) experi-
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 menting with custom algorithms with no need to reim-
plement the entire processing pipeline.

Figure 2: Screenshot of one of the parameter dialogs
(montage set-up)

Internally, MARIO is decomposed into functional and
cascaded modules as described below:

• Data import (BCI2000 .dat or Matlab .mat files)

• Signal conditioning (spatial filtering, . . . )

• Feature extraction (spectral estimation, averag-
ing)

• Feature combination (manual selection, exhaus-
tive monovariate testing, LDA, . . . )

• Statistical analysis (r2, ANOVA)

• Visualization (feature matrix, topographic
maps, spectra, . . . )

All these modules are hidden in the graphical user
interface, but can be directly accessed in the batch
scripts. Each of these modules can be easily replaced
with an improved version, a custom version, or a dif-
ferent analysis.

RESULTS
An executable implementation of MARIO, and the
Matlab source code for mu-rhythm and P300 analysis
are included in the BCI2000 distribution [2]. Docu-
mentation can be also found on the Internet [3].
MARIO offers a wide set of visualization graphs that
can be combined to have a complete visualization of
the produced data.

Figure 3: Screenshot of some results of the mu
rhythm analysis: r2 matrix (channels by frequency);
r2 topographical distribution and spectrum; cursor

trajectories for a training session.

For a mu rhythm analysis, a user can request to visu-
alize:

• a trajectory plot that shows the actual (i. e. on-
line) cursor position for any sample in a BCI2000
trial;

• a matrix (channel × bin) that shows in color the
r2 value of any feature. A colorbar shows the
displayed range of r2 values;

• Another panel shows a detail of the previous ma-
trix. The upper topographic plot shows the r2

value for any channel in the selected bin of fre-
quencies; the lower one is the spectrum of the
selected channel for all the frequencies.

For a P300 analysis user can choose between:

• An r2 matrix

• An amplitude waveform graph;

• A topographic plot;

• An ERP response graph;

• A string prediction form.

All these results visualizations are shown by the GUI,
but can be also generated by the Matlab scripts.

DISCUSSION
We introduced the MARIO project, which comple-
ments BCI2000 with offline analysis capabilities. Us-
ing signal acquisition equipment, an installation of
BCI2000 for on-line operation, and of MARIO for off-
line analysis, is sufficient for a research group with ba-
sic knowledge on brain signals and PC management to
start BCI research efforts. We anticipate that this will
represent a strong “democratization” of the BCI pro-
cedure that should allow for even greater diffusion of
BCI research. As the wide dissemination of BCI2000
demonstrates, the use of common systems can facili-
tate collaborations between research groups and pos-
sibly the creation of consortia whose aim is large-scale
experimentation.
A second advantage of this scenario is that individual
groups with specific expertise or consortia of groups
with complementary expertise can carry on research
in one of the disciplines that compose BCI research,
without being forced to acquire detailed competence
in all of the others. As an example, a group involved in
machine learning could study, either offline or online,
a new classification strategy by simply plugging their
new analysis technique into the analysis pipeline of
MARIO or BCI2000, respectively, or a group involved
in assistive technology could test the effectiveness of
their brain-controlled keyboard in a clinical environ-
ment.
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SUMMARY: A brain-computer interface requires the
real-time analysis of brain signals. A new high-speed
online processing environment allows the easy usage of
Simulink for this task. Properties of this new technol-
ogy are discussed.

INTRODUCTION
A brain-computer interface (BCI) analyzes brain
waves in order to control external devices [1, 2]. BCI
input signals can be the Electroencephalogram (EEG),
the Electrocorticogram (ECoG) or even action poten-
tials. The subjects’ task is to imagine specific thoughts
in order to control the system. Therefore the biosignal
acquisition, the analysis and the experimental control
must be done in real-time.
A big advantage for the development and specific
adaptations is that a BCI system facilitates the real-
time implementation of EEG-analysis algorithms un-
der a Rapid Prototyping environment [3]. The de-
veloped system is based on MATLAB and Simulink.
Simulink is a signal-flow oriented programming lan-
guage that allows setting up the biosignal analysis with
graphical blocks. The Real-Time Workshop generates
then the code for real-time applications. This C code
is directly generated, compiled and linked from the
Simulink model and downloaded to a real-time Kernel
under Windows. This allows to run the whole Simulink
model in real-time.
This approach has several disadvantages:

1. Requirement of C code for analysis functions:
The Simulink blocks for the analysis must be
written in C code

2. Slow communication channel: The analysis
model loaded into the real-time Kernel of Win-
dows communicates over a communication chan-
nel with the graphical representation of the
Simulink model. Through this channel biosignal
data is sent to the Scope blocks or to MATLAB
S-functions (Simulink blocks) which are used to
program experimental paradigms. However, this
communication channel is very slow and there-
fore the achieved sampling frequencies, number
of channels and update times are limited.

3. Limitation of standard Simulink blocks and C
functions: The Real-time Workshop is used to
compile the Simulink model and to download the
generated code into the Real-time Kernel. The
compilation is not possible for functions contain-
ing a graphical output. Therefore standard func-

tions such as the FFT Scope of Simulink can not
be compiled and therefore not be used. It is fur-
thermore not possible to compile graphical out-
put commands into C functions.

The current work discusses the recently developed
high-speed online processing environment which over-
comes all of these limitations.

MATERIALS AND METHODS
For the biosignal acquisition a 16 channel biosignal
amplifier with 24 bit and an internal DSP was devel-
oped (g.USBamp). The amplifier can be directly con-
nected to a PC or notebook with an USB connector.
No additional data acquisition devices are therefore
needed. 16 analog to digital converters perform the
simultaneous sampling. Each analog to digital con-
verter is operating at 2.5476MHz and performs a 64
times oversampling. This results in a sampling rate
of 38.500 Hz for each channel. A powerful floating
point DSP performs an additional oversampling and
the real-time filtering of the biosignal data. The sam-
pling frequency can be adjusted between 16Hz and
38.400Hz. Therefore, a sampling frequency of 128Hz
yields to an over-sampling rate of 19.200 with a very
high signal to noise ratio.

Figure 1: Graphical controls of the amplifier unit

The g.USBamp high-speed block provides a graphi-
cal interface to the g.USBamp hardware which can be
used under Simulink to specify the amplifier proper-
ties and to acquire the data. The g.USBamp block
output contains the biosignal data. The block trans-
mits the data with a specific frame size depending on
the sampling frequency. The data format is float32
with 4 Byte. The graphical interface (see Figure 1)
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 allows to select the channels that shall be acquired, to
select a band pass filter (Butterworth characteristics)
and to select a notch filter for suppressing the power
line interferences. Additionally, a bipolar derivation
can be performed between specific channels. The bipo-
lar derivation is calculated on the DSP directly after
the over-sampling is done. Therefore, the band pass
and notch filtering is already performed for the bipolar
derivation.
An Unbuffer block follows the g.USBamp block sepa-
rating the bytes transmitted in one frame. Therefore
the Simulink model can work with the data sample by
sample. Important to note is, that the Simulink model
is driven by a special hardware interrupt control of the
g.USBamp and works therefore in real-time. Then the
data channels are split with a Demux block and con-
verted into double precision for the following signal
analysis. In Figure 2 the Simulink model calculates
the bandpower in the alpha (8–12 Hz) and beta (16–
24 Hz) ranges of each channel resulting in 4 parameters
for each sample.

Figure 2: Simulink model operating in real-time with
the hardware interrupt driven g.USBamp block

Then an on-line linear discriminant analysis is calcu-
lated to obtain the control signal for the experimental
paradigm. The paradigm is programmed as MATLAB
S-function to transform the BCI control signal into
cursor movement. The biosignal raw data is visual-
ized with the Scope block and stored in MATLAB file
format. Therefore the off-line analysis can easily be
done in MATLAB.

RESULTS
The presented new approach with the hardware in-
terrupt driven g.USBamp block allows to operate the
whole model in real-time. The exact timing is provided
by the external biosignal amplifier. Data is transmit-
ted to the Simulink model every ms. As soon as new
samples are sent into the Simulink model the analysis
is performed as fast as possible on the PC.
The computational demand of the algorithms must be

low enough to allow the PC to process the data with-
out a buffer overflow.
With this approach a sampling frequency of 38.400Hz
per channel for all 16 channels can be obtained. If
more channels are required the g.USBamp block has to
be copied multiple times into the model. The synchro-
nization is done directly on the amplifiers themselves.
Therefore the data is exactly synchronized.

DISCUSSION
A very important advantage of this approach is that all
standard Simulink blocks can be used in the individual
models. This can be done because the real-time code
generation with the Real-time Workshop was elimi-
nated with the hardware interrupt driven g.USBamp
block. Therefore, also blocks having graphical outputs
can be used.
The achievable sampling frequencies and therefore up-
date rates of the Simulink model are much higher than
those obtained with the Real-time Kernel, because
the timing is done by the external amplifier hard-
ware. Additionally, the slow communication chan-
nel between the Real-time Kernel and the graphical
Simulink model was eliminated. This results in very
fast updates of the Scope and Paradigm blocks and
eliminates the additional step of compiling the model.

CONCLUSION
The new approach allows an easier handling of biosig-
nal analysis under Simulink and enables higher sam-
pling frequencies and update rates. Additionally all
Simulink blocks can be used for the signal analysis
and this increases the Rapid Prototyping speed.
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A. Jiménez-Ramos 96
P. Jylänki 66

M.G.J. Kallenberg 98
S. Kanoh 64
A.A. Karim 114
L. Kauhanen 66
M. Kawanabe 54
C. Keinrath 80
M. Krauledat 54, 60, 108
G. Krausz 126
B.J. de Kruif 98
K. Kumamaru 116
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