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Introduction Results
Autoregressive (AR) models have been employed for feature extraction in L Subjectz ~ Subjectz ~ Subject 3
brain—computer interfaces (BCIs) using either AR coefficients directly [1] 09 A A B

or the estimated spectrum [2|.
From the perspective of spectral analysis, a model of order p can resolve

p/2 frequency peaks. With sampling rate fs, the frequency resolution of
an AR spectrum depends on the time window of length p/ fs spanned by

the AR model |2|. To increase the length of the time window, the model
order can be increased, which may lead to overfitting caused by increased
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model complexity. Alternatively, reduction of f, does not increase model
complexity, but limits bandwidth.

This work attempts to provide an answer to the question: Can we im-
prove AR—based classification of motor imagery by reducing the sample
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. running | cross— Figure 2: Individual results. The effect of sampling rate on classification accuracy
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e Subjects 2 and 3 did not perform above chance level.

, | | S e Bandpower does not depend on sampling rate
Figure 1: Block diagram of the offline system. For classification either AR or

Bandpower features were utilized. e Prominent rise in accuracy for subject 6 below 125 Hz
Data: BCI Competition IV, data set 2b [3]. 0.8 mean accuracy
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Recording: Figure 3: Mean classification accuracy of all subjects. The dashed line shows the
e 3 bipolar EEG channels (C3 Cz C4) 95 % confidence limit of classification accuracy compared to 250 Hz sampling rate.
T ) )

e 250 Hz sampling rate e t-statistics for improvement of classification accuracy

Signal Processing: e significant improvement at 75 and 80 Hz

e Resampling to 5245 Hz in 5 Hz steps

e A: Adaptive AR Model Discussion
o Model order p =6
o Update coefficient UC = 107 The significant improvement in classification accuracy for 2 out of 50

e B: Bandpower sampling rates is meaningless, considering that 5% of all results are ex-

o 10-12 Hz
o 16-24 Nz improved by reducing sample rate, but when tuning a system for an

Classification: individual subject this is an option to consider.

e Linear Discriminant Analysis (LDA)

pected to be significant by chance.
In general, it cannot be stated that classification of AR features can be

e Running Classifier procedure finds optimal training time

e 10x10 cross—validation
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