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Abstract

We present a new fully automated algorithm for frequency band selection in band power

based brain-computer interfaces (BCIs). The algorithm performs a single pass and only

requires information on the training data in the form of time-frequency ERDS maps, which

visualize event-related desynchronization (ERD) and event-related synchronization (ERS).

Frequency bands are selected by segmentation of ERDS di↵erence images, similar to the way

a human expert would manually select bands by inspecting these maps. We could show that

bands selected by this approach perform almost as well as manually selected bands in an

o✏ine BCI experiment with data recorded from 18 users.

1 Introduction

Many brain-computer interfaces (BCIs) rely on a variety of di↵erent techniques to extract in-
formation from brain signals such as the electroencephalogram (EEG), which is often used in
non-invasive BCIs. The instantaneous power of selected frequency bands (band power) has been
successfully used to discriminate between di↵erent tasks in motor imagery (MI) based BCIs [1].
Band power can be estimated using filter banks [1] or autoregressive estimates of the spectrum [2].

Usually, frequency bands that contain discriminative information relevant to the BCI paradigm
must be selected. This can be done using knowledge of the underlying physiological processes, or
after analyzing a BCI user’s specific task-related brain patterns. Selecting bands corresponding
to fixed µ or � frequency bands may not be optimal for every user due to individually varying
frequency components [1]. Automatic feature selection algorithms such as distinction sensitive
learning vector quantization (DSLVQ) [1] or sequential floating forward selection (SFFS) [3] opti-
mize bands for individual persons but do not have any knowledge about the nature of the features,
which may lead to suboptimal or redundant band selection. Manual band selection by an expert
can account for di↵erences between individuals, as well as relevant physiological background.

An algorithm to select a frequency band for the common spatial patterns (CSP) approach is
briefly mentioned in [4]. This method selects a single frequency band for all channels, based on
a correlation score. We present a new algorithm based on image segmentation methods from the
field of computer vision, which mimics an expert inspecting time-frequency maps of event-related
desynchronization (ERD) and event-related synchronization (ERS) to select frequency bands.
Multiple bands are selected for each channel separately, so that they discriminate between two
di↵erent BCI tasks. In Section 2, we provide a detailed description of the algorithm and present
possible extensions. In Section 3, we compare the performance of the algorithm to a human expert
performing band selection on the same data set.
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2 Methods

2.1 Manual Band Selection

ERDS maps show changes in the power spectrum (with respect to a reference interval) related
to a recurring event such as MI. Power changes are averaged over many trials, and only if the
change is significantly higher or lower than zero, the map is shaded in color. An increase in power
is known as ERS (typically represented by blue color), whereas a power decrease is called ERD
(represented by red color) [5].

After calculating ERDS maps corresponding to each MI task (class), an experts inspects these
maps and selects those frequency bands where the maps di↵er most in a task-related way. However,
the selected bands depend on the expert’s subjective interpretation of the ERDS maps.

2.2 Automatic Band Selection

ERDS maps do not only produce visually appealing and informative images. On a lower level,
the mean power change and associated confidence interval are obtained for each pixel in the map.
Using this information from maps of two di↵erent classes, we can construct ERDS di↵erence maps.
The shading of these di↵erence maps show where and how much the ERDS maps of the classes
di↵er. Pixels with overlapping confidence intervals do not contain significant class di↵erences and
remain blank. One such di↵erence map is created for each EEG channel.

Simply plotting ERDS di↵erence maps would already provide a rough overview of which fre-
quency bands could be selected to cover the most prominent class di↵erences. Still, this would
have to be done by a human supervisor. Thus, we attempt to automate this process.

Automation is based on the idea of eliminating di↵erences caused by noise and fitting fre-
quency bands to the remaining patches of di↵erences. This is accomplished by first constructing
a significance bitmap, in which 1 and 0 encode significant and non-significant di↵erences at the
corresponding point in the ERDS di↵erence map. Groups of adjacent significant pixels are referred
to as regions. Regions that are smaller than a threshold area Ath are considered as noise and can
be removed by area-opening [6]. For each remaining region, a frequency band is created that
ranges from this region’s lowest to highest frequencies. Finally, overlapping frequency bands are
merged. Figure 1 shows a summary of the algorithm. Note that the algorithm treats each channel
individually. Thus, di↵erent bands may be selected for each channel.

Two parameters have direct impact on band selection: the Type I error probability of pixels
in the ERDS map (↵) and the area threshold for discarding small regions (Ath). Note that these
parameters are not independent. A lower ↵ leads to smaller regions, which causes more regions
to be discarded with constant Ath.

2.3 Evaluation of the Algorithm

We used MI data from 18 persons to compare automatic with manual band selection. The data
sets used are BCI Competition IV data sets 2A and 2B [7], each recorded from 9 di↵erent persons.
From data set 2A, only three bipolar channels (C3, Cz, and C4) and two MI tasks (left versus right
hand) were used to match the data available in data set 2B. All data available for each participant
was separated into training and testing sets. Trials with artifact markers were removed. On
average, the training set from participants of data set A consisted of 129± 9 trials, and 205± 29
trials from data set B. The testing set contained 131 ± 12 trials from data set A, and 360 ± 38
trials from data set B.

To test manual band selection, ERDS maps from the training data were inspected by an expert,
who selected frequency bands for each participant that would allow classification of the MI tasks
using band power features and linear discriminant analysis (LDA). The algorithm for automatic
band selection was applied to the training data with parameters ↵ = 0.01 and Atr = 2. If no
bands were found, a wide frequency range from 5–30Hz for every channel was selected.
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Figure 1: Processing steps of the band selection algorithm. (A) and (B) ERDS maps of each of
the two MI classes, (C) ERDS di↵erence map, (D) significance bitmap (E) significance bitmap
after area-opening, (F) ERDS di↵erence map with significance information and selected frequency
bands. Axes are not labelled to emphasize that the algorithm treats these maps simply as images.

An LDA classifier was trained on the selected bands and subsequently tested with the same
bands on the testing set. Classification accuracy was calculated from the continuous classifier
output for each trial. The 0.9 quantiles of classification accuracy are reported as robust and
comparable measures of classification accuracy for each participant.

2.4 Possible Extensions of the Algorithm

Extension of the band selection algorithm to an arbitrary number of N classes is straightforward
by using multiple classifiers and assuming that each classifier has its own set of bands. Consider
a three-class classification problem with classes A, B, and C. A pairwise classification scheme
requires training three classifiers A–B, A–C, and B–C. Thus, our algorithm can be applied to each
combination of classes to select the bands for each classifier. In a one versus the rest classification
scheme, classification for class A versus the combined classes B and C is performed. To select
bands for the A–BC classifier, our algorithm must be applied to the di↵erence of the ERDS maps
from class A and the combined ERDS maps from classes B and C.

If we wanted to select the same frequency bands for multiple channels, the di↵erence maps of
individual channels have to be merged into a single map. With this modification applied, and the
selection process restricted to select only the single most important frequency band, we expect
our approach to be suitable also for CSP-based classification.

Furthermore, our algorithm does not necessarily rely on ERDS di↵erence maps. Any measure
in time-frequency space that provides information about class discrimination and significance can
be subject to band selection. The most obvious example is using the di↵erence of power maps
directly instead of ERDS maps.

3 Results

Automatic band selection failed for 3 out of 18 participants (A2, A6, and B3). For these par-
ticipants, broadband features were used instead, as described above. Table 1 lists classification
accuracies for each participant for both automatic and manual band selection. Average accuracy
was 68.1± 13.5% with automatic and 70.5± 14.5% with manual band selection. According to a
paired t-test, the di↵erence between both methods was not significant (p = 0.198).
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Participant A1 A2 A3 A4 A5 A6 A7 A8 A9
Automatic 73.8 57.0 70.8 64.4 54.8 59.3 66.4 91.0 89.2
Manual 83.7 58.5 65.0 58.3 58.5 60.2 54.3 94.8 88.5

Participant B1 B2 B3 B4 B5 B6 B7 B8 B9
Automatic 54.6 53.2 53.2 94.1 85.8 67.3 61.4 64.3 65.8
Manual 63.6 53.2 54.6 95.4 84.5 65.0 78.1 82.7 70.8

Table 1: Classification accuracies for all participants with automatic and manual band selection.
The 0.9 quantiles of classification accuracy (in %) are listed in the table. Note that A1–A9 are
di↵erent persons than B1–B9.

4 Discussion and Conclusion

The main disadvantage of applying feature selection algorithms like SFFS or DSLVQ to the band
selection problem is that these algorithms do not have knowledge about the nature of the features.
When applied to band selection, a subset of pre-defined frequency bands is selected. To allow
these methods enough flexibility and accuracy in band selection, a su�ciently large number of
bands has to be provided, which can dramatically increase computational requirements.

The band selection method we present in this paper does not su↵er from these disadvantages.
Instead of selecting bands from a pre-defined set, band limits are fitted to statistically significant
class di↵erences in the time-frequency domain. This approach closely resembles the way a human
expert selects frequency bands and yields comparable results. Segmentation of significant regions
is very e�cient. The computationally limiting factor is the calculation of ERDS maps.

Although automatic band selection performed slightly worse than manual selection, the null
hypothesis that both methods perform equal could not be rejected. Thus, we conclude that the
di↵erence between the two methods (if there is any) is too small to expose a significant e↵ect in
the available data.

Depending on the application, a small loss of classification accuracy may be preferrable over
the need of a human expert to interact with the BCI setup process. This may be the case especially
with BCIs for home use, where the whole BCI process should run as automated as possible.
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