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Abstract Selecting suitable feature types is crucial to

obtain good overall brain–computer interface performance.

Popular feature types include logarithmic band power

(logBP), autoregressive (AR) parameters, time-domain

parameters, and wavelet-based methods. In this study, we

focused on different variants of AR models and compare

performance with logBP features. In particular, we ana-

lyzed univariate, vector, and bilinear AR models. We used

four-class motor imagery data from nine healthy users over

two sessions. We used the first session to optimize

parameters such as model order and frequency bands. We

then evaluated optimized feature extraction methods on the

unseen second session. We found that band power yields

significantly higher classification accuracies than AR

methods. However, we did not update the bias of the

classifiers for the second session in our analysis procedure.

When updating the bias at the beginning of a new session,

we found no significant differences between all methods

anymore. Furthermore, our results indicate that subject-

specific optimization is not better than globally optimized

parameters. The comparison within the AR methods

showed that the vector model is significantly better than

both univariate and bilinear variants. Finally, adding the

prediction error variance to the feature space significantly

improved classification results.

Keywords Brain–computer interface � Autoregressive

model � Logarithmic band power � Feature extraction �
Motor imagery

1 Introduction

A brain–computer interface (BCI) is a device that measures

signals from the brain and translates them into control

commands for an application such as a wheelchair, an

orthosis, or a spelling device [43]. By definition, a BCI

does not use signals from muscles or peripheral nerves.

Furthermore, a BCI operates in real-time, presents feed-

back, and requires goal-directed behavior from the user

[27].

Most non-invasive BCIs record the electroencephalo-

gram (EEG) from the surface of the scalp [19]. In general,

there are several components which process the raw EEG

signals before an actual output of the system is available.

Typically, signals are first preprocessed with temporal or

spatial filters. Examples of preprocessing techniques

include bandpass filters, bipolar filters, or more advanced

approaches such as common spatial patterns (CSP) [4]. The

next stage extracts suitable features from the preprocessed

signals, that is, relevant (discriminative) signal character-

istics are isolated. Popular features for BCIs include loga-

rithmic band power (logBP) [25, 26], autoregressive (AR)

parameters [35], time-domain parameters [42], and wave-

let-based methods [11]. Finally, a classification or regres-

sion algorithm translates the features into an output signal
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for a specific application. Examples of widely used classi-

fiers in BCI research are linear discriminant analysis (LDA),

support vector machines, neural networks, and nearest

neighbor classifiers [18, 19, 40]. Optionally, and depending

on the application, the output of the classification stage can

be post-processed, for example by averaging over time or

by introducing additional constraints such as a dwell time

and refractory period [37].

Selecting suitable features is crucial to obtain good

overall BCI performance [7, 8]. In this study, we focus on

BCIs based on event-related desynchronization [28] and

explore extensions of the simple AR model and compare

the resulting features with logBP features. More specifi-

cally, we compare the performance of a standard univariate

AR (UAR) model, a vector AR (VAR) model, and a

bilinear AR (BAR) model on BCI data. We also study the

influence of adding the error variance as a feature for all

three AR model types. Similar to logBP, AR parameters

can be used to estimate the power spectral density [20], but

they can also serve directly as features for BCIs [35]. Many

groups have used AR parameters as features for BCIs in

either way; some groups used short segments of time and

fitted an AR model to this data segment [9, 30], whereas

others adapted the model coefficients continuously [35, 39]

(for example with a Kalman filter approach).

Most studies used UAR models, which means that each

EEG channel is described with a separate AR model. This

means that information about the relationships between

signals is completely neglected. In contrast, a VAR model

describes all channels at once and therefore includes

information about the correlation between individual sig-

nals. Only a few studies have described VAR parameters

applied to BCI data, but they reported promising results [2,

24]. Furthermore, the additional information inherent in

VAR models can be used to compute explicit coupling

measures such as the partial directed coherence and the

directed transfer function [34].

Another extension of the AR model is the BAR model.

In contrast to the classical linear AR model, a BAR model

can describe certain non-linear signal properties [29] such

as non-Gaussian signals. Many real-world time series

exhibit such behavior, for example the arc-shaped senso-

rimotor mu rhythm [10] in the case of EEG signals. Con-

sequently, a bilinear model (which is a special case of

general non-linear models) should be better suited to model

such data.

The objective of this study is to assess the influence of

different feature types based on AR models on the per-

formance of a BCI (for example as measured by the clas-

sification accuracy). More specifically, we compared

standard UAR models with VAR and BAR models, and

variants including the prediction error variance as an

additional feature. We also used logBP features as state-of-

the-art features for comparison. We hypothesized that both

VAR and BAR models could yield higher BCI perfor-

mance than UAR parameters, because they contain more

information on the underlying signals and/or describe the

signals more accurately. Moreover, adding the error vari-

ance as a feature could add discriminative information and

thus increase BCI performance.

2 Methods

2.1 Data

We used data set 2a from the BCI Competition IV1, which

comprises data from nine users over two sessions each

(recorded on separate days). The data was recorded with

prior consent of all participants, and the study conformed

to guidelines established by the local ethics commission. In

each trial, participants performed one out of four different

motor imagery tasks: movement imagination of left hand,

right hand, both feet, and tongue. In total, each of the two

sessions consists of 288 trials (72 trials per class) in ran-

dom order.

Subjects were sitting in front of a computer monitor. At

the beginning of a trial, a cross appeared on the black

screen. In addition, subjects heard a tone indicating trial

onset. After 2 s, subjects viewed an arrow that pointed

either to the left, right, top or bottom of the screen. They

performed the corresponding motor imagery task until the

cross disappeared after 6 s. A short break between 1.5 and

2.5 s followed before the next trial.

The data set consists of 22 EEG signals recorded mo-

nopolarly (referenced to the left mastoid and grounded to

the right mastoid). Signals were sampled at 250 Hz and

bandpass-filtered between 0.5 and 100 Hz. An additional

50 Hz notch filter removed line noise. In this study, we

used only three bipolar channels, calculated by subtracting

channels anterior to C3, Cz, and C4 from sites posterior to

these locations (the inter-electrode distance was 3.5 cm).

2.2 Features

We compared three different AR variants, namely (1) a

UAR model, (2) a VAR model, and (3) a BAR model. In

all three cases, we used the corresponding AR coefficients

as features. In addition, we enhanced each AR method by

adding the prediction error variance to the feature space. In

summary, we analyzed six different AR-based feature

types, described in more detail in the following paragraphs.

1 http://www.bbci.de/competition/iv/.
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2.2.1 UAR model

A UARðpÞ model is defined as

xk ¼
Xp

i¼1

aixk�i þ ek; ð1Þ

where xk is the value of the time series x at time point k. The

current value of xk can be predicted by the weighted sum of

p past values xk-i plus an additional error term ek. The weights

ai are called the AR parameters. In a typical BCI, xk corre-

sponds to the amplitude of an EEG channel at time k.

2.2.2 VAR model

A VARðpÞ model is an extension of the UAR case

described above, because it simultaneously describes sev-

eral time series. Thus, it is defined as

xk ¼
Xp

i¼1

Aixk�i þ ek; ð2Þ

where xk is a vector of time series at time k. The p AR

parameters from the UAR model generalize to p matrices

Ai; and the error term ek becomes a vector. In contrast to a

UAR model, a VAR model explicitly models the correla-

tion between the different time series. Applied to EEG

data, VAR models can describe the relationships between

different EEG channels, which might contain discriminable

information for BCIs [5].

2.2.3 BAR model

In contrast to UAR and VAR models (which are linear time

series models), non-linear models can describe non-linear

characteristics such as large bursts or extremely rapid and

large fluctuations [29]. A BARðp; q1; q2Þ model is an exten-

sion of a linear UARðpÞ model and a special case of general

non-linear models with finite parameters. It is defined as

xk ¼
Xp

i¼1

aixk�i þ ek þ
Xq1

i¼1

Xq2

j¼1

bijxk�iek�j; ð3Þ

where the first part is a UARðpÞ model and the last part

describes the bilinear contribution with the q1 � q2 bilinear

coefficients bij.

BAR models might be more suitable to describe EEG

signals, because EEG signals may contain non-linear fea-

tures such as the arc-shaped mu rhythm [10]. Such charac-

teristics cannot be captured by linear time series models [29].

2.2.4 Parameter estimation

We estimated AR parameters adaptively for all AR-based

methods (UAR, VAR, and BAR) using a Kalman filter

[14]. A Kalman filter operates in the state space, which is

defined by the following two equations:

zk ¼ G � zk�1 þ wk�1 ð4Þ
yk ¼ H � zk þ vk ð5Þ

Here, zk is the state at time k;G is the state transition

matrix, and wk�1 is the process noise with

wk�1�Nð0;WÞ: Furthermore, yk is the measurement

vector, H is the measurement sensitivity matrix, and vk is

the measurement noise with vk�Nð0;VÞ: For univariate

models UAR and BAR, yk and vk reduce to scalars yk and

vk (with vk �Nð0;VÞ), respectively.

We used these equations to estimate AR parameters by

assigning zk ¼ ak (where ak ¼ a1; a2; . . .; ap

� �T
is a vector

containing all AR coefficients), yk ¼ xk;G ¼ I (the identity

matrix), and H ¼ xk�1; xk�2; . . .; xk�p

� �
: These assignments

hold for the UAR model only, but they can be easily

generalized for the VAR case by using matrix equivalents

of the corresponding variables, and for the BAR model by

extending zk and H:

We adopted an estimation approach based on results

presented in [36] and as recommended and implemented in

the BioSig2 toolbox [33] function tvaar.m. We imple-

mented this function in C and added a MATLAB3 inter-

face, which speeded up computation time significantly.

In the first step, we tried to find suitable initial values for

parameters such as the AR coefficients, the process noise

covariance, and the measurement noise covariance. We

updated all parameters in this first run over the complete

first data session. Once we found initial values with this

procedure, we estimated AR parameters in a second run

over the session using another update mode, which essen-

tially keeps the process noise and measurement noise

covariances constant at the previously found values. In the

final evaluation step on the unseen second session, we only

used mode the latter mode, but initialized parameters with

values found in the optimization step using the first session

(see Sects. 2.3, 2.4 for more details).

2.2.5 Features based on AR models

The prediction error ek at time k can be estimated by

subtracting the prediction H � zkð Þ from the measurement

yk :

ek ¼ yk �H � zk ð6Þ

We used the logarithm of the estimated covariance of

the prediction error log E\ekeT
k [

� �
to augment the feature

2 http://biosig.sourceforge.net/.
3 http://www.mathworks.com/.
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space of UAR, VAR, and BAR models, thus yielding three

additional AR feature types termed xUAR, xVAR, and

xBAR. Note that we adapted the covariance estimation in

each step directly with UC.

In summary, we compared the following six AR-based

feature extraction methods: (1) UAR, (2) xUAR, (3) VAR,

(4) xVAR, (5) BAR, and (6) xBAR.

2.2.6 LogBP

We compared our AR features with results obtained from

logBP, which is commonly used in many BCI systems [19].

The calculation procedure is as follows:

– Bandpass-filter raw EEG signal in a specific frequency

band (we used a fifth order Butterworth filter)

– Square samples

– Smooth over a one second time window (we used a

moving average filter)

– Compute the logarithm

2.3 Parameter optimization

We conducted two independent parameter optimization

procedures. In the first analysis (individual optimization),

we optimized parameters for each subject individually. In

the second analysis (global optimization), we searched for

parameters that were optimal for all subjects in the data set.

Importantly, we used only data from the first session in

both procedures; we never used data from the second

session during parameter optimization.

2.3.1 Individual optimization

For each AR method, we optimized model order(s) and

update coefficient UC (a parameter which determines the

update speed in each iteration of the Kalman filter algo-

rithm) for each subject individually. We used a grid search

to find the optimal parameter combination. Table 1 lists the

search spaces for the different methods. In summary, we

searched in 41 � 20 ¼ 820 (UAR, xUAR), 41 � 15 ¼ 615

(VAR, xVAR), and 41 � 15 � 3 � 3 ¼ 5535 (BAR, xBAR)

parameter combinations, respectively.

For each parameter combination and method, we per-

formed the following steps:

– Extract features (see Sects. 2.2.4, 2.2.5)

– Find best segment for classifier setup using a running

classifier [22] (we divided a trial into 1 s segments with

0.5 s overlap and used all samples within a segment for

the running classifier procedure; see Sect. 2.4 for more

details on the classifier)

– Leave-8-trials-out cross-validation (train a classifier on

best segment found in the previous step, test on whole

trial)

– Use 0.9 quantile of classification accuracy p0 as

performance measure

Finally, we selected the parameter combination associ-

ated with the highest performance measure.

In contrast to the grid search optimization for AR

methods, we used a method based on neurophysiological

principles instead of classification results to optimize log-

BP features; we refer to this method as band power dif-

ference maps [3], which is similar to the approach

described in [4]. The procedure is as follows (applied to

each EEG channel separately):

– Compute time-frequency maps of signal power for each

motor imagery task and the three remaining tasks

combined (using only data from within trials)

– Calculate difference maps by subtracting the map of

one task from the map of the three remaining tasks

combined

– Iteratively find and remove connected patches in maps

(corresponding to largest differences)

– Combine adjacent or overlapping bands.

We calculated time–frequency maps with high time and

frequency resolution (we varied time from 0–8 s in steps of

0.04 s and frequency from 5 to 40 Hz with 1 Hz bands in

steps of 0.1 Hz). We also calculated confidence intervals

for each time–frequency point by first applying a Box-Cox

transformation and then computing confidence intervals

from the normal distribution.

In summary, we calculated eight time–frequency maps

for the following motor imagery tasks and combination of

tasks: 1, 2, 3, 4, 234, 134, 124, and 123 (the numbers 1, 2,

3, and 4 correspond to left hand, right hand, feet, and

Table 1 Search spaces for the AR-based feature extraction methods

Methods log(UC) p q1 q2

UAR, xUAR �8. . .0 1. . .20 – –

VAR, xVAR �8. . .0 1. . .15 – –

BAR, xBAR �8. . .0 1. . .15 1. . .3 1. . .3

We varied linear and bilinear model orders p, q1, and q2 in steps of 1, and the logarithmic update coefficient log UC in steps of 0.2
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tongue motor imagery, respectively; the numbers 234, 134,

124, and 123 are combinations of these tasks). Next, we

calculated four difference maps, namely 1–234, 2–134,

3–124, and 4–123. Within each difference map, we itera-

tively searched for connected significant patches (inspired

by a four-way flood fill algorithm), starting with the pixel

with the largest difference. If the area of such a patch was

over a predefined threshold of 1 s Hz, we used its upper

and lower frequency borders to define a band for the logBP

feature extraction method. We then removed this patch

from the map and repeated the search procedure, searching

again for the pixel with the largest difference. We contin-

ued this procedure until the algorithm had removed all

patches from the map. Finally, we combined all frequency

bands found in the four difference maps and combined

adjacent or overlapping frequency bands.

2.3.2 Global optimization

In addition to the individual optimization, we also tried to

find parameters that are optimal for all subjects. For each

AR method, we averaged the performance measures

(calculated for all parameter combinations) over all nine

subjects. From these averaged results, we selected the

combination of linear model order(s) and update coefficient

with the highest performance measure.

For logBP, we simply selected standard frequency bands

8–12 and 16–24 Hz (containing alpha and beta bands) for

all channels.

2.4 Evaluation

We evaluated all feature extraction methods in two dif-

ferent ways. First, we calculated the cross-validated (XV)

classification accuracy p0 on the second session. Second,

we estimated the session transfer (ST) by calculating

classifier weights on the first session and computing the

classification accuracy p0 on the second session. We car-

ried out this evaluation for both individually and globally

optimized features (see Sect. 2.2.4).

2.4.1 Cross-validation (XV)

With the optimized parameter values found in the optimi-

zation step (using data from the first session only), we cal-

culated the cross-validated classification accuracy p0 on the

second session. Therefore, we used a similar classification

procedure as described in Sect. 2.2.4. First, we extracted

features from the second session. Next, we determined the

best segment for classifier setup using a running classifier

[22]. As before, we divided each trial into 1 s segments with

0.5 s overlap. We used a combination of LDA classifiers in a

one-versus-rest scheme; this classifier assigned one out of

four classes to the class with the highest discriminant value.

We performed a leave-8-trials-out cross-validation, which

means that we used segments of 280 trials to train and eight

trials to test a classifier. We repeated this procedure until all

segments had been used as a test set once. Finally, we

averaged over all folds, and we calculated the 0.9 quantile of

the cross-validated classification accuracy. That is, instead of

reporting the maximum of the classification accuracy within

a trial, we chose the 0.9 quantile as a more robust measure of

performance, because it effectively removes outliers.

2.4.2 Session transfer

The ST estimates the performance of a real-world BCI

system more realistically, but it requires a sufficiently high

number of unseen test data trials. In this analysis, we

determined optimal parameters and classifier weights from

the first session. After that we extracted features from the

second session and applied the classifier from the previous

step. We used the same one-versus-rest classifier scheme as

in the cross-validation analysis.

2.4.3 Statistical analysis

We used repeated measures analysis of variance (ANOVA)

to statistically analyze the classification results. First, we

checked the sphericity assumption with Mauchly’s speric-

ity test. Then, we performed the ANOVA and corrected

degrees of freedom if necessary. If we found significant

effects, we used Newman–Keuls post-hoc tests to deter-

mine significant differences.

Basically, we performed ANOVAs for XV and ST

results separately. First, we wanted to assess differences

over all seven feature extraction methods (factor ‘‘method’’;

7 levels; UAR, xUAR, VAR, xVAR, BAR, xBAR, and

logBP) and optimization strategies (factor ‘‘optimization’’;

2 levels; individual and global). Second, we were also

interested in differences between the three AR-based

methods only (factor ‘‘method’’; 3 levels; U, V, and B), the

influence of the prediction error variance feature (factor

‘‘x’’; 2 levels; yes or no), and the optimization strategies

(factor ‘‘optimization’’; 2 levels; individual or global).

We repeated these analyses with both XV and ST results

combined into a factor ‘‘ST/XV’’ (2 levels; ST and XV). In

summary, we performed six repeated measures ANOVAs.

3 Results

3.1 Parameter optimization

Tables 2 and 3 show the results of the optimization pro-

cedure for both the individual and global optimization,

Med Biol Eng Comput (2011) 49:1337–1346 1341
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respectively. On average, univariate methods (UAR, BAR,

xUAR, and xBAR) require a higher model order p as

opposed to vector models (VAR and xVAR). The opti-

mized values of the update coefficient UC are similar for

all methods, except in the case of BAR for subjects A01

and A02, where the UC is significantly lower (see Fig. 1).

This might be due to our optimization procedure, where we

selected the parameter combination with the highest fitness

function. However, only a slightly lower classification

accuracy is associated with a log(UC) around -2.5, a value

found for all other subjects.

Finally, note that we used the achieved classification

accuracies only within our optimization procedure. We

report it here only for the sake of completeness, and stress

that we did not use these accuracies for evaluation of the

methods. The evaluation results are described in the next

section.

3.2 Evaluation

Using the optimal parameter combinations found in the

optimization step, we evaluated the methods on the second

session. Table 4 shows the results for the ST analysis,

whereas Table 5 shows the cross-validated (XV) results.

As expected, classification accuracies are generally higher

in the cross-validated case than in the ST analysis. In both

cases, there is no obvious difference in the means for the

individual and global optimization. The following para-

graphs describe the outcomes of the statistical analyses.

3.2.1 Overall comparison

A two-way repeated measures ANOVA for the ST case

(factors ‘‘method’’ and ‘‘optimization’’) found a significant

main effect of ‘‘method’’ (F6,48 = 8.104, Greenhouse-

Table 2 Results of parameter optimization for AR-based methods UAR, VAR, and BAR without the prediction error variance feature

UAR VAR BAR

p0 p log(UC) p0 p log(UC) p0 p q log(UC)

A01 0.582 13 -2.8 0.612 4 -2.6 0.601 8 2, 2 -0.8

A02 0.446 6 -3.0 0.461 6 -2.8 0.461 14 1, 1 -0.6

A03 0.573 12 -2.6 0.625 2 -2.8 0.578 12 1, 3 -2.6

A04 0.418 10 -2.2 0.395 4 -2.2 0.421 12 2, 2 -2.6

A05 0.406 4 -2.6 0.410 2 -2.4 0.418 5 1, 2 -2.2

A06 0.429 15 -2.2 0.434 12 -2.2 0.457 15 1, 1 -2.6

A07 0.544 14 -2.6 0.533 13 -2.4 0.559 14 1, 3 -2.6

A08 0.635 15 -2.4 0.673 4 -2.4 0.639 5 1, 2 -2.4

A09 0.614 3 -2.2 0.640 3 -2.0 0.623 7 1, 2 -2.2

Global 0.494 13 -2.6 0.507 4 -2.6 0.499 13 1, 1 -2.4

All nine subjects (A01, A02, . . .) are shown. Columns show the 0.9 quantile of the classification accuracy p0, linear model order p, bilinear model

order q, and update coefficient logUC. The last row shows the results of the global optimization

Table 3 Results of parameter optimization for AR-based methods xUAR, xVAR, and xBAR (including the prediction error variance feature)

xUAR xVAR xBAR

p0 p log(UC) p0 p log(UC) p0 p q log(UC)

A01 0.619 12 -2.6 0.626 4 -2.6 0.619 13 1, 1 -2.6

A02 0.509 8 -2.8 0.506 4 -3.0 0.509 8 1, 1 -2.8

A03 0.654 5 -2.6 0.651 2 -2.8 0.651 5 1, 1 -2.6

A04 0.410 18 -2.0 0.400 3 -2.0 0.425 15 2, 2 -2.2

A05 0.418 2 -2.8 0.410 6 -2.4 0.414 5 1, 2 -2.2

A06 0.436 2 -2.2 0.434 13 -2.2 0.457 15 1, 2 -2.6

A07 0.556 14 -2.6 0.541 13 -2.4 0.563 15 2, 3 -2.0

A08 0.654 16 -2.4 0.677 4 -2.6 0.639 4 1, 1 -2.6

A09 0.629 3 -2.2 0.653 3 -2.0 0.640 7 1, 2 -2.2

Global 0.511 13 -2.6 0.518 4 -2.4 0.513 12 1, 1 -2.4

The notation is the same as in Table 2
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Geisser-adjusted P \ 0.01). A Newman–Keuls post-hoc

test found that logBP is significantly better than all six

AR-based methods (mean classification accuracies of

0.355, 0.389, 0.392, 0.430, 0.346, 0.406, and 0.485 for

UAR, xUAR, VAR, xVAR, BAR, xBAR, and logBP,

respectively). Furthermore, xVAR is significantly better

than both UAR and BAR. The factor ‘‘optimization’’ was

not significant (F1,8 = 0.030, P = 0.87).

In the XV case, an ANOVA with the same factors as in

the ST analysis also found a significant main effect of

‘‘method’’ (F6,48 = 3.247, P \ 0.01). A Newman–Keuls

post-hoc test revealed that BAR (mean accuracy of 0.460)

is significantly worse than xUAR, VAR, xVAR, and logBP

(mean accuracies of 0.507, 0.509, 0.525, and 0.510,

respectively). Again, the factor ‘‘optimization’’ was not

significant (F1,8 = 2.901, P = 0.13).

We also conducted a repeated measures ANOVAs as

described above for the combined evaluation results (that is,

we combined ST and XV results and introduced a new factor

‘‘ST/XV’’). This analysis yielded significant main effects

‘‘ST/XV’’ (F1,8 = 22.797, P \ 0.01) and ‘‘method’’ (F6,48 =

6.700, P \ 0.01), as well as a significant interaction between

‘‘ST/XV’’ and ‘‘method’’ (F6,48 = 5.746, Greenhouse-

Geisser-adjusted P \ 0.01). Post-hoc tests showed that XV

results (mean accuracy 0.499) are significantly higher than

ST results (0.400). Furthermore, logBP yielded significantly

higher results than UAR, VAR, BAR, and xBAR. BAR was

significantly worse than xUAR, VAR, xVAR, and logBP.

Finally, xVAR was significantly better than UAR. The mean

accuracies for UAR, xUAR, VAR, xVAR, BAR, xBAR, and

logBP were 0.420, 0.448, 0.451, 0.477, 0.403, 0.452, and

0.497, respectively.

Fig. 1 Optimization results for subjects A01 (left) and A02 (right)
for BAR with the best bilinear model order q. Maps show the 0.9

quantile of the classification accuracy for all parameter combinations

of log(UC) (x-axis) and model order p (y-axis). The white cross marks

the location of the maximum

Table 4 ST evaluation results (0.9 quantile of the classification accuracy) for each feature extraction method and optimization strategy on the

second session

Individual Global

UAR xUAR VAR xVAR BAR xBAR LogBP UAR xUAR VAR xVAR BAR xBAR LogBP

A01 0.471 0.571 0.521 0.550 0.275 0.600 0.650 0.554 0.611 0.521 0.575 0.511 0.593 0.596

A02 0.340 0.376 0.351 0.372 0.294 0.351 0.340 0.312 0.379 0.390 0.411 0.326 0.390 0.351

A03 0.357 0.555 0.452 0.529 0.379 0.548 0.645 0.360 0.467 0.563 0.599 0.419 0.511 0.601

A04 0.273 0.282 0.291 0.379 0.282 0.273 0.410 0.260 0.282 0.317 0.292 0.269 0.300 0.441

A05 0.258 0.298 0.273 0.258 0.273 0.265 0.287 0.291 0.291 0.258 0.276 0.273 0.284 0.305

A06 0.374 0.308 0.350 0.336 0.369 0.369 0.369 0.360 0.355 0.294 0.318 0.369 0.355 0.369

A07 0.239 0.239 0.239 0.326 0.239 0.239 0.395 0.239 0.290 0.239 0.250 0.239 0.264 0.471

A08 0.467 0.407 0.581 0.567 0.563 0.533 0.641 0.481 0.481 0.548 0.585 0.552 0.504 0.641

A09 0.498 0.498 0.487 0.597 0.327 0.498 0.608 0.259 0.304 0.380 0.517 0.270 0.430 0.601

Mean 0.364 0.393 0.394 0.435 0.333 0.408 0.483 0.346 0.384 0.390 0.425 0.359 0.403 0.486

SD 0.10 0.12 0.12 0.13 0.10 0.14 0.15 0.11 0.11 0.13 0.15 0.11 0.11 0.13

The last two rows show the mean and standard deviation (SD)
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3.2.2 Comparison of AR-based methods

We also analyzed the six AR-based methods in more detail

and performed three-way repeated measures ANOVAs

(factors ‘‘method’’, ‘‘x’’, and ‘‘optimization’’). In the ST

case, we found significant main effects of ‘‘method’’

(F2,16 = 3.939, P \ 0.05) and ‘‘x’’ (F1,8 = 6.324,

P \ 0.05). Post-hoc tests revealed that vector methods

(mean accuracy of 0.411) are significantly better than

bilinear methods (mean accuracy of 0.376). Furthermore,

methods including the prediction error variance are signif-

icantly better (mean accuracy 0.408) than their counterparts

without this additional feature (mean accuracy 0.364). In

the XV case, we found a significant main effect of

‘‘method’’ (F2,16 = 6.753, P \ 0.01). Post-hoc tests

showed that vector models (mean accuracy of 0.517) are

significantly better than bilinear models (mean accuracy of

0.479).

Finally, we analyzed the six AR methods for the combined

ST and XV results (by introducing the factor ‘‘ST/XV’’). We

found significant main effects of ‘‘ST/XV’’ (F1,8 =

20.604, P \ 0.01), ‘‘method’’ (F2,16 = 5.597, P \ 0.05),

and ‘‘x’’ (F1,8 = 6.778, P \ 0.05). Post-hoc tests showed

that cross-validated results (mean accuracy 0.497) were

significantly higher than ST results (mean accuracy 0.386).

Furthermore, vector models (mean accuracy of 0.464) were

significantly better than both univariate and bilinear models

(mean accuracies of 0.434 and 0.427, respectively). Finally,

results were significantly higher for methods using the pre-

diction error variance feature (mean accuracy of 0.459)

compared to methods that did not use this feature (mean

accuracy of 0.425).

4 Discussion

In summary, logBP features yielded the highest classifi-

cation results in this study. In the ST analysis, where fea-

tures and classifiers are determined on the first session and

then applied to the second (completely unseen) session,

logBP was significantly better than all AR-based methods.

When assessing this result in more detail, we found out that

it might be due to our optimization and evaluation proce-

dure, which resembles a practical BCI setup. In such a

setup, users control the BCI in different sessions on dif-

ferent days, and only data from previous sessions can be

used to tune parameters. However, this only works if the

features are stable over sessions, that is, the bias of the

classifiers does not change significantly. In fact, it turned

out that all AR methods led to a much higher bias in the

second session compared to logBP features, where the bias

was about as small as in the first session. A statistical

analysis comparing all feature extraction methods after

adapting the bias in the second session resulted in no sig-

nificant differences in the ST analysis. Therefore, adapting

the bias of the classifier [15] or using adaptive classifiers

[12, 38, 41] to improve ST is necessary for AR features.

Due to the high dimensionality of the feature space in

our globally optimized features (see Tables 2, 3), and

because similarly high classification accuracies could be

obtained for lower model orders in the optimization step,

we assessed the performance of univariate models with a

lower model order of p = 5 for all subjects. It turned out

that classification accuracies improved slightly, but statis-

tical analyses showed that the overall results did not

change. That is, all results described above are also valid

Table 5 Cross-validated evaluation results (0.9 quantile of the classification accuracy) for each feature extraction method and optimization

strategy on the second session

Individual Global

UAR xUAR VAR xVAR BAR xBAR LogBP UAR xUAR VAR xVAR BAR xBAR LogBP

A01 0.621 0.664 0.611 0.629 0.318 0.657 0.650 0.639 0.664 0.611 0.646 0.618 0.664 0.614

A02 0.382 0.420 0.427 0.444 0.299 0.392 0.375 0.406 0.410 0.417 0.392 0.385 0.406 0.377

A03 0.502 0.603 0.610 0.658 0.518 0.603 0.680 0.496 0.599 0.627 0.647 0.518 0.610 0.603

A04 0.425 0.463 0.408 0.421 0.379 0.454 0.458 0.430 0.451 0.391 0.405 0.421 0.434 0.524

A05 0.411 0.377 0.406 0.400 0.364 0.363 0.293 0.375 0.367 0.404 0.407 0.393 0.389 0.329

A06 0.332 0.355 0.309 0.356 0.326 0.333 0.424 0.343 0.350 0.358 0.378 0.356 0.343 0.424

A07 0.489 0.504 0.482 0.518 0.496 0.411 0.418 0.486 0.507 0.532 0.543 0.493 0.500 0.489

A08 0.620 0.612 0.642 0.645 0.599 0.609 0.647 0.600 0.598 0.645 0.632 0.602 0.602 0.643

A09 0.599 0.613 0.619 0.646 0.608 0.615 0.615 0.581 0.577 0.672 0.683 0.581 0.570 0.624

Mean 0.487 0.512 0.502 0.524 0.434 0.493 0.507 0.484 0.503 0.517 0.526 0.485 0.502 0.514

SD 0.11 0.11 0.12 0.12 0.12 0.13 0.14 0.10 0.11 0.13 0.13 0.10 0.11 0.12

The last two rows show the mean and standard deviation (SD)
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for univariate models with lower model orders. Therefore,

we can safely rule out overfitting effects that might have

explained the inferior performance of (univariate) AR

models, especially in the ST analysis. Other studies such as

[20] have also found similarly high or higher model orders

(although they did not use AR coefficients directly for

classification, but calculated the power spectrum).

Furthermore, we have shown that optimizing parameters

for individual subjects does not result in better classification

rates. Indeed, there was no significant difference between

globally and individually optimized parameters. This

implies that using logBP with default bands (8–12 and

16–24 Hz) works as well as with subject-specific bands.

Note that we used bipolar channels in this study, which is

very common in BCI research [1, 6, 16, 17, 23, 32, 31, 40].

Had we used subject-specific spatial filters such as CSP,

subject-specific bands might have yielded better results than

default bands [4].

The comparison of all analyzed AR methods showed

that vector models yielded higher classification results than

both univariate and bilinear models. On the one hand, this

is not surprising, because vector models consider more

information, namely the relationships between individual

signals. On the other hand, the potentially more accurate

signal description with bilinear models could not be

translated into improved classification results. This could

be due to two reasons: first, the EEG might not contain

signal characteristics that cannot be described by linear

models; or second, although bilinear signal properties

might improve the model fit, they do not contribute dis-

criminative information for BCIs.

Clearly, all AR methods benefited from the inclusion of

the prediction error variance as an additional feature. This

feature makes initialization of parameters even more

important, because the prediction error variance is updated

directly with the update coefficient UC. Without initialization

to suitable values, it would take a long time until this feature

was in its operating range. This underscores the importance of

estimating good initial values, for example with a first run

over the optimization data set as implemented in our study.

In conclusion, logBP is superior to AR-based methods, at

least with the procedure and implementation used in this

study. However, as described above, the performance of AR

features can be improved when adapting the bias of the

classifiers in new sessions [21, 41]. We also found that low

model orders generalized better, and the high model orders

determined in our optimization step on the first session

resulted in significantly lower classification accuracies on

the unseen second session. Moreover, for the settings used in

this study (which is very common in BCI experiments), it is

not necessary to optimize features for each user individually

globally optimized parameters for all users yield equally

high classification rates. In particular, we recommend using

low model orders (such as a model order of 5) for univariate

models to ensure generalization of the features. Finally,

vector models should be preferred over univariate models,

and the prediction error variance improved classification

performance of all AR models. Future study should apply

these findings to online BCIs, where users receive feedback

based on their brain patterns, for example to control a

prosthesis [13]. Although we are confident that our results

will generalize to online sessions with feedback, we are

currently working on an online study to verify our findings.

Another follow-up study could explore the combination of

AR and logBP features to assess whether they contain

complimentary information on the data.
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33. Schlögl A, Brunner C (2008) BioSig: a free and open source

software library for BCI research. IEEE Comput Mag 41:44–50.

doi:10.1109/MC.2008.407
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