Leveraging Logical Circuits in Probabilistic Programming Languages

Joint project with TU Eindhoven

Probabilistic Programming Languages (PPLs) allow users to specify probabilistic models in a declarative fashion while the PPL framework performs probabilistic inference under the hood. For example, the open source Julia-package RxInfer converts a given probabilistic program to a (loopy) factor graph and uses message passing algorithms to perform (approximate) Bayesian inference. Sometimes, the user wants to include logical knowledge (i.e., boolean functions) in their program. While these logical constraints can also be converted to a (possibly loopy) factor graph, we wish to leverage structure in the boolean formula to construct so-called tractable circuits which allow us to answer inference queries exactly and efficiently. This conversion process is called Knowledge Compilation. In this project, we wish to implement this idea on the system level of RxInfer, giving rise to a framework that combines message passing with exact inference using tractable logical circuits.

Goals & Tasks

- Review of the state-of-the-art on Knowledge Compilation.
- Extending RxInfer to handle logical knowledge in probabilistic programs by compiling it to tractable circuits.
- Exploring fallback strategies in case of intractable compilation.

Qualifications

- Interested in probabilistic inference and tractable circuits.
- Experience with a scripting language (e.g., Python). Experience in software engineering is beneficial.
- Note: Prior knowledge of Julia or Probabilistic Programming Languages is not required.
- Registered to one of the following:
 - Seminar Project
 - Master Thesis

Contact

Robert Peharz & Thomas Wedenig
robert.peharz@tugraz.at
thomas.wedenig@tugraz.at