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Project 

Model learning for Reinforcement Learning 
 

In reinforcement learning (RL), an agent acts in an environment and receives rewards. At each 

discrete time step 𝑡 = 1, … , 𝑇, the agent receives from the environment a state 𝒔𝑡 and chooses an 

action 𝒂𝑡 according to his policy 𝜋. Typically, the policy is a probability distribution over actions for 

the given state  𝜋(𝒂|𝒔), so actions are chosen stochastically. 

After choosing an action, the environment transitions into a new state 𝒔𝑡+1 and the agent receives a 

reward 𝑟𝑡(𝒔𝑡, 𝒂𝑡) which indicates how good the action 𝒂𝑡 was in state 𝒔𝑡. The goal of the agent is to 

maximize the return 𝑅 which is in the simplest case just the sum of received rewards 

𝑅 = ∑  𝑟𝑡

𝑇

𝑡=1

 . 

He does this by adapting his policy 𝜋 in order to choose actions that lead to high reward. 

There are two main classes of RL algorithms: model-based and model-free algorithms. In model-free 

algorithms, the agent is agnostic to the environmental dynamics and tries to maximize rewards 

directly. In model-based algorithm, the agent learns a model of the environment which he tries to 

utilize e.g. by planning in this model. 

In this project, we will investigate model learning for reinforcement learning in particular for simple 

robot-like tasks. The model consists of two approximators which will be implemented by neural 

networks. The state model 𝑓𝑠 approximates the state-dynamics of the environment, and the reward-

model 𝑓𝑟 approximates the reward function. 

Reward model 
The reward model predicts the reward for the given state and action. The predicted reward is thus  

𝑟̂𝑡 = 𝑓𝑟(𝒔𝑡, 𝒂𝑡). 

We will train a simple feed forward neural network for this. 

State model 
The state model gets actions and states and predicts the next state. We will use a recurrent neural 

networks (RNN) for this, but a feed forward network might be tried as well for simple cases. 

There are several options for how to choose the input to the state model. In option 1, the network 

receives just the initial state 𝒔1, then all actions 𝒂1, … , 𝒂𝑡 as input, and outputs state 𝒔𝑡+1. Here, we 

need an RNN as the network has to keep track of the state. Note that here, the network receives in 

computation step 0 the initial state 𝒔1. Then in computation step 𝑡 = 1 … 𝑇 it receives as input 

action 𝒂𝑡 and outputs state 𝒔𝑡+1. 

In option 2, the network receives at each computation step  𝑡 = 1 … 𝑇 state 𝒔𝑡 and action 𝒂𝑡 and 

outputs state 𝒔𝑡+1. This might be the simpler option and here one can also try a feed forward 

network. 



Generation of training data 
To generate training data, we define the environmental dynamics and a reward function and 

generate trajectories from them. Note that in practice these dynamics are of course not known. 

Anyways, we use well-defined dynamics here to test the principle. We then generate sample 

trajectories using an exploration policy 𝜋explore. Since we have not yet learned a policy during model 

learning, we have to choose 𝜋explore, i.e., how to explore the state space. A simple first choice is a 

random policy, but there might be better options. 

We then generate M trajectories with 𝜋explore and train the models in a supervised manner. 

First toy environment 
As a first toy environment, we choose a simple 2D target reaching problem. The agent is a point in 

2D space which can accelerate. The goal is to reach a target position 𝒙∗ ∈ ℝ2. The state at each time 

is given by the position vector 𝒙𝑡 and the velocity vector 𝒗𝑡 of the agent. The action is the 

acceleration vector 𝒂𝑡 ∈ ℝ2. 

The linear dynamics are  

𝒗𝑡+1 = 𝒗𝑡 + 𝛼𝑣𝒂𝑡 

𝒙𝑡+1 = 𝒙𝑡 + 𝛼𝑥𝒗𝑡 

With constants 𝛼𝑣 and 𝛼𝑥. Note that the system can easily be generalized to higher dimensions. 

Friction could be included. For the reward function, one has again some options. The simplest one 

measures at each time step the distance to the goal position: 

𝑟𝑡 = −(𝒙𝑡 − 𝒙∗)𝑇(𝒙𝑡 − 𝒙∗). 

A more challenging (for the RL algorithm) reward function would only give reward close to the target 

position. 

Task 

We work in Python 3 with Tensorflow or PyTorch.  

• Implement the environmental dynamics 

• Draw sample trajectories 

• Train neural networks for the state and reward models. 

• Show training progress and evaluate model performances. 

 

Model-Gradient Reinforcement Learning 
After we have learned a model of the environment, we add a policy and optimize the policy in the 

loop with the environment.  

The policy network has parameters 𝑊𝜋, it gets as input a state vector and outputs an action vector. 

We denote the function it computes as 𝑓𝜋. The system that we consider now thus consists of the 

policy network, which feeds its action to the state model and the reward model. The output of the 

state model also feeds to the reward model and in addition back to the policy network.  

Let’s say we start in initial state 𝒔1. We set 𝒔̂1 = 𝒔1. Note: We use a hat for predicted states to 

distinguish them from observed states. The system will however evolve according to such predicted 

or “imagined” states. The system evolves according to (for 𝑡 = 1, … , 𝑇) 



𝒂𝑡 = 𝑓𝜋(𝒔̂𝑡), 

𝒔̂𝑡+1 = 𝑓𝑠(𝒔̂𝑡 , 𝒂𝑡) 

𝑟̂𝑡 = 𝑓𝑟(𝒔̂𝑡 , 𝒂𝑡) 

𝑅 = ∑  𝑟̂𝑡.

𝑇

𝑡=1

 

In other words, we produce an imagined trajectory using actions from the policy network. We can 

now compute the gradient of the reward w.r.t. the policy parameters 
𝜕𝑅

𝜕𝑊𝜋
 and update the policy 

network weights 

∆𝑊𝜋 = 𝜀
𝜕𝑅

𝜕𝑊𝜋
, 

where 𝜀 > 0 is some small learning rate. Note that, since we want to maximize the reward, we have 

to go in the direction of the gradient (not in the negative direction as usually in gradient descent). 

Also note that during this optimization the parameters of the state- and reward-model are fixed. 

After training has converged, we test the policy in the “real” environment. 


