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SYNOPSIS 

A microsecond-resolution technique was used to measure the heat of fusion, specific heat 

capacity, and electrical resistivity of niobium and titanium in the temperature ranges 1600 to 

3200 K and 1500 to 2200 K, respectively. The method was based on rapid resistive self-

heating of a wire-shaped specimen by a large current pulse from a capacitor-discharge system. 

Measured quantities were the current through the specimen, the voltage across the specimen, 

the radiance temperature of the specimen at 656.3 nm, and its normal spectral emittance at 

677 nm, as functions of time. Radiance temperature was obtained by means of single-

wavelength radiation thermometry. Normal spectral emittance was measured using high-

speed laser polarimetry. Combined, radiance temperature and normal spectral emittance 

yielded the thermodynamic temperature of the specimen at each instance. 

KURZFASSUNG 

In einem Entladungskreis mit kapazitiver Energiespeicherung werden drahtförmige, elektrisch 

leitende Proben durch ohmsche Pulsheizung schnell erhitzt. Der Strom durch die Probe, der 

Spannungsabfall an der Probe, ihre Strahlungstemperatur bei 656.3 nm und ihr normaler 

spektraler Emissionskoeffizient bei 677 nm werden zeitaufgelöst gemessen. Daraus bestimmt 

man die Schmelzwärme, die spezifische Wärmekapazität bei konstantem Druck und den 

spezifischen elektrischen Widerstand der Proben. In der vorliegenden Dissertation werden 

Untersuchungen zur Bestimmung thermophysikalischer Daten von Niob und Titan im 

Temperaturbereich 1600 bis 3200 K, bzw. 1500 bis 2200 K beschrieben. Die Strahlungs-

temperatur der Proben wurde mit einem Einwellenlängen-Pyrometer bestimmt. Der normale 

spektrale Emissionskoeffizient wurde mittels Photopolarimetrie gemessen. Diese beiden 

Größen zusammen ergeben die wahre Temperatur der Proben. 
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1 INTRODUCTION 

Pulse-heating techniques for the determination of thermophysical properties of metals and 

alloys have been in use for many years. Compared to steady-state or quasi-steady-state 

techniques, they have a number of advantages to offer, particularly at higher temperatures and 

in the liquid state. This is where problems such as increased heat transfer, chemical reactions, 

evaporation, loss of mechanical strength, etc. may have a significant impact on the quality of 

the acquired data. These limitations can be overcome when the measurement duration is short 

enough. 

The quality of the measured thermophysical properties strongly depends on the accuracy of 

the temperature measurement. Radiation thermometry, also known as pyrometry, has been the 

temperature measurement technique of choice when high temperatures and high heating rates 

are involved, because of its contactless character and fast response time. Radiation ther-

mometry relates the radiance (§2.1.1) emitted by a specimen to the temperature of a 

blackbody that would emit the same amount of radiance. This is called the radiance 

temperature of the specimen and will be different than the true (thermodynamic) temperature 

if the specimen is not a blackbody. The two temperatures are related through the emittance of 

the specimen. If this quantity is unknown an error is introduced in the temperature 

measurement, which generally increases with increasing temperature. 

The most direct way to solve this problem is to have the specimen itself incorporate a 

blackbody cavity. A radiation thermometer looking at this cavity will measure the true 

specimen temperature, as follows from the definition of radiance temperature. This has been 

done in the past [1, 2]1, and is widely considered the most accurate method. Limitations of 

this approach are its inapplicability to specimens that are too small or inaccessible for the 

inclusion of a blackbody cavity and also to liquid materials. 

Another approach is to combine the radiance temperature measurement with emittance data 

from literature. Nevertheless, such data for many materials at high temperatures show 

considerable disagreement, perhaps because of differences in specimen preparation since the 

emittance depends on surface roughness and contamination. This disagreement adversely 

                                                 
1 Figures in square brackets indicate the literature references at the end of this dissertation. 
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affects the accuracy of the temperature determination. 

Emittance is generally a function of wavelength. If the shape of the emittance vs. wavelength 

curve is known and measurements of radiance are performed at more than one wavelengths, 

the true temperature can be computed without explicit knowledge of the emittance values at 

those wavelengths. This is the principle upon which multi-wavelength radiation thermometry 

is based. However, the wavelength dependence of emittance is in most cases unknown and 

some assumption has to be made. Consequently, the accuracy of the temperature 

measurement will depend on the validity of this assumption. 

The above discussion suggests that it is preferable to measure emittance in-situ, 

simultaneously with radiance temperature. In recent years, two methods for the measurement 

of emittance have successfully been applied to pulse-heating experiments for the 

determination of thermophysical properties of electrically conducting materials. The 

reflectometry method utilizes an integrating sphere to measure the spectral normal-

hemispherical reflectance of the specimen, from which the normal spectral emittance is 

deduced [3]. The laser-polarimetry method is based on the measurement of the change in the 

polarization state of a laser beam upon reflection off the specimen surface (§3.8). 

Both techniques have been used in conjunction with pulse-calorimeters designed for the 

determination of properties in the solid phase and up to the melting range of the investigated 

materials. These systems are commonly referred to as “millisecond-resolution” pulse-heating 

systems, a term stemming from the sampling rate of the data acquisition originally used with 

these systems. 

The Subsecond Thermophysics Laboratory of the Metallurgy Division at the National 

Institute of Standards and Technology (NIST) in Maryland, USA, has been one of the major 

centers, worldwide, for the development of dynamic measurement techniques at high 

temperatures. Particular importance has always been given to highly accurate temperature 

measurements. The laboratory operates two pulse-heating systems: a millisecond-resolution 

system, and a faster microsecond-resolution system for measurements on liquid metals and 

alloys. Some years ago the group acquired, and helped further develop, a laser polarimeter for 

use with the millisecond system. The applicability of this instrument to thermophysical 

property measurements, in conjunction with a pulse-heating technique, has since been 
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established [4]. More recently, in 1998, a prototype high-speed laser polarimeter was added to 

the laboratory’s microsecond-resolution system, allowing for the first time true temperature 

measurements to be performed with sub-microsecond resolution. The goal of the present work 

was to apply this new laser polarimeter to the measurement of thermophysical properties of 

electrically conducting materials in their liquid phase. As a validation of the technique 

thermophysical properties of two metals, niobium and titanium, were determined in the 

temperature ranges 1600 to 3200 K and 1500 to 2200 K, respectively. These particular 

materials were chosen, because thermophysical property data that had been measured in the 

past by the same laboratory at NIST, were available for direct comparison. 

Niobium was chosen for an additional reason. In 1999, an enhanced version of the 

microsecond-resolution laser polarimeter was acquired by the Subsecond Thermophysics 

Group of the Department of Experimental Physics at the Technical University of Graz, 

Austria. Both groups worked independently towards validating this instrument and 

determining its accuracy. Niobium was investigated by the group in Austria, as well, and 

served as a basis for comparison between the two laboratories. 
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2 BACKGROUND 

2.1 Basic Concepts 

2.1.1 Radiance 

θ θ1 2

1
∆Α2

∆Α

D

S

P

 
Fig. 2.1: Experiment to develop the concept of radiance (adapted from [5]). S  light source, 
P  photodetector. 

One of the most basic radiometric quantities is radiance. It allows us to explicitly characterize 

the distribution of radiant power from point to point and direction to direction throughout a 

beam of optical radiation. A simple way to introduce this quantity is to consider an 

experiment with a large-area source that emits light uniformly and isotropically in all 

directions, two black screens each having a small aperture, and a photodetector next to the 

second screen (fig. 2.1). The photodetector responds to all radiant power reaching it from the 

source through both apertures. It is assumed that the medium between the source and the 

detector is perfectly transparent, so that the loss of radiant power by scattering or absorption is 

negligible. By varying the aperture areas ∆A1 and ∆A2, the distance D between the centers of 

the two apertures, and the angles of tilt θ1 and θ2, it is found that the measured power ∆Φ is 

approximately proportional to the quantity: 

 2
2211

D
cosAcosA θ⋅∆⋅θ⋅∆  (2.1) 

The proportionality constant has to be a quantity that corresponds to the brightness of the 
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source. We call it radiance and denote it by the letter L. The expression for ∆Φ becomes: 

 2
2211

D
cosAcosAL θ⋅∆⋅θ⋅∆⋅≈∆Φ  (2.2) 

The proportionality becomes more exact as the aperture areas ∆Α1 and ∆Α2 decrease relative 

to the distance D. In the limit of vanishingly small apertures, there remains only a single ray 

through both of them. The radiance L, so defined, is associated with an elementary beam 

collapsed to just a single ray: 

 ( ) ( ) 2
2211

2

2
22110A

0A DcosdAcosdA
d

DcosAcosA
limL

2
1 θ⋅⋅θ⋅

Φ=
θ⋅∆⋅θ⋅∆

∆Φ=
→∆
→∆

 (2.3) 

Recognizing that (dΑ2.cosθ2)/D2 = dω12 is the solid angle subtended at dΑ1 by dΑ2, eq. (2.3) 

becomes: 

 
ω⋅θ⋅

Φ=
dcosdA

dL
2

 (2.4) 

In this more general form, L is defined at a single point in the direction of a ray through that 

point, rather than between two points, and the assumption of a perfectly transparent medium 

between the two points is not necessary anymore. Expressed in words, eq. (2.4) defines the 

radiance at a point on a surface in the direction of a ray through that point as the radiant power 

per unit projected-area-perpendicular-to-the-ray-at-the-point and unit-solid-angle-in-the-

direction-of-the-ray-at-the-point. 

In practice, it is impossible to reduce the aperture sizes and/or increase the distance D beyond 

the point where there is not enough power in the beam reaching the photocell to make a 

measurement. Even before that point is reached, the geometrical-optics model of propagation 

along rays may not be adequate to describe the situation because of diffraction effects. Thus, 

only average values of radiance over finite intervals of area and solid angle can ever be 

measured. Nevertheless, keeping this limitation in mind, the concept of radiance, introduced 

here under the assumption of an underlying continuous distribution of flux among the rays of 

a beam, is still very useful. 

2.1.2 Spectral Radiance 

Optical radiation emitted by most sources, the propagation over many paths, and the 
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responsivity of many detectors, all can vary greatly with wavelength. It is necessary to extend 

the concept of radiance so that it not only covers the distribution of radiant power with respect 

to position and direction, but also with respect to wavelength. Spectral radiance is the spectral 

distribution of radiance, defined as: 

 
λ⋅ω⋅θ⋅

Φ=
λ

=λ ddcosdA
d

d
dLL

3

 (2.5) 

Spectral radiance, like radiance, is defined at a point on a surface in the direction of a ray 

trough that point. 

2.1.3 Self-exitance 

The spectral self-exitance1 Mλ of a surface element dA at a wavelength λ is defined as the 

radiant power per unit area associated with emission into the hemispheric space above dA, i.e. 

in all possible directions, within an infinitesimal wavelength interval dλ around λ. It may be 

determined by integration of eq. (2.5), if the directional distribution of the spectral radiance Lλ 

is known: 

 ∫ ∫
π

=ϕ

π

=θ
λλ φ⋅θ⋅θ⋅θ⋅φθλ=

λ⋅
Φ=λ

2

0

2

0

2

ddsincos),,(L
ddA

d)(M  (2.6) 

The total self-exitance M of a surface element dA is defined as the radiant power per unit area 

emitted by dA in all possible directions and over all wavelengths. It may be determined by 

integration of eq. (2.6), if the directional and spectral distributions of the spectral radiance Lλ 

are known: 

 ∫ ∫ ∫∫
∞

=λ

π

=ϕ

π

=θ
λ

∞

=λ
λ λ⋅φ⋅θ⋅θ⋅θ⋅φθλ=λ⋅λ=Φ=

0

2

0

2

00

dddsincos),,(Ld)(M
dA
dM  (2.7) 

In the case of an isotropically diffuse emitter (also referred to as a lambertian emitter) the 

radiance of the emitted radiation is independent of direction. In this special case Lλ can be 

removed from the integrals in eqs. (2.6) and (2.7). Performing the integration over all 

directions results in 

                                                 
1 Exitance refers to radiation leaving a surface element both due to emission and reflection from the surface. The 
term self-exitance refers to emitted radiation only. 
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 )(L)(M λ⋅π=λ λλ  (2.8) 

and 

 ,LM ⋅π=  (2.9) 

respectively1. 

2.1.4 Irradiance 

If the radiation is incident on a surface (instead of exitent from the surface) the foregoing 

concepts can be adapted to the definition of spectral irradiance Eλ and total irradiance E. 

Equations (2.6) - (2.9) then become: 

 ∫ ∫
π

=ϕ

π

=θ
λλ φ⋅θ⋅θ⋅θ⋅φθλ=

λ⋅
Φ=λ

2

0

2

0

2

ddsincos),,(L
ddA

d)(E  (2.10) 

 ∫ ∫ ∫∫
∞

=λ

π

=ϕ

π

=θ
λ

∞

=λ
λ λ⋅φ⋅θ⋅θ⋅θ⋅φθλ=λ⋅λ=Φ=

0

2

0

2

00

dddsincos),,(Ld)(E
dA
dE  (2.11) 

 )(L)(E λ⋅π=λ λλ  (2.12) 

 LE ⋅π=  (2.13) 

The last two expressions reflect the special case when the surface element dA is irradiated 

isotropically (Lλ is independent of direction). 

2.1.5 Blackbodies 

A blackbody is a surface (material or geometrical) that absorbs all radiant flux of all 

wavelengths and polarizations incident upon it from all possible directions. For a prescribed 

temperature and wavelength, no surface can emit more thermal radiation than a blackbody. 

Furthermore, a blackbody is an isotropically diffuse (lambertian) emitter, i.e. the radiation 

emitted by it is independent of direction. 

Although there is no real surface that precisely has these properties, the concept of a 

blackbody is useful in describing the radiative characteristics of real surfaces. The closest 

                                                 
1 The constant π appearing in the above expressions has the unit steradian (sr) of a solid angle. 



 8

approximation to a blackbody surface is given by the aperture of a cavity (an opaque 

enclosure) whose inner surface is at a uniform temperature. 

2.1.6 The Planck law 

Planck's radiation law relates the spectral distribution of the radiance Lλ,b emitted by a 

blackbody to its temperature T. In terms of the ‘local’ wavelength λ in a medium with 

refractive index n it takes the form: 

 
1

2
52

L1
b, 1

Tn
cexp

n
c)T,(L

−

λ 






 −







⋅λ⋅
⋅

λ⋅
=λ  (2.14) 

where 2
0L1 ch2c ⋅⋅=  is the first radiation constant1 (for radiance L) and 1

B02 kchc −⋅⋅=  is the 

second radiation constant. c0 is the speed of light in vacuum, h is Planck's constant of action, 

and kB is the Boltzmann constant. 

2.1.7 The Wien displacement law 

The wavelength λmax, in a medium with refractive index n, at which the spectral distribution 

of the radiance emitted by a blackbody at temperature T has its maximum is given by Wien's 

displacement law: 

 Km8.2897Tn max ⋅µ=⋅λ⋅  (2.15) 

Accordingly, as the temperature increases the maximum of the emitted blackbody radiance 

shifts to shorter wavelengths. 

2.1.8 The Wien approximation to the Planck law 

If 2cTn <<⋅λ⋅  the unit in the denominator of Planck's law can be neglected compared to the 

exponential, resulting in Wien's approximation for short wavelengths and low temperatures: 

 
1

2
52

L1
b, )

Tn
cexp(

n
c)T,(L

−

λ 





⋅λ⋅
⋅

λ⋅
=λ  (2.16) 

This expression is accurate to better than 1% if n.λ.T ≤ 3100 µm.K. Wien's approximation is 

very useful whenever derivatives of Lλ,b are involved, e.g. in propagation-of-error equations. 

                                                 
1 The first radiation constant c1 (for exitance) usually encountered in literature, is related to c1L by c1 = π.c1L. 
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2.1.9 Emittance 

As already mentioned, a blackbody is an ideal surface that can only be approximated. The 

emittance of a real surface is a measure of its ability to emit thermal radiation, as compared to 

that of a blackbody at the same temperature. In general it will depend on direction and 

wavelength. The spectral-directional emittance of a surface at the temperature T, the 

wavelength λ, and in the direction (θ, φ) is given by 

 
)T,(L

)T,,,(L)T,,,(
b, λ

φθλ=φθλε
λ

λ  (2.17) 

The spectral-hemispherical emittance of a surface at the temperature T and wavelength λ is 

defined as the ratio of its spectral self-exitance to that of a blackbody at the same temperature 

and wavelength: 

 
)T,(M
)T,(M)T,2,(

b, λ
λ=πλε

λ

λ  (2.18) 

Similarly, the total-hemispherical emittance of a surface at the temperature T is given by the 

ratio of its total self-exitance to that of a blackbody at the same temperature: 

 

∫

∫

∫

∫
∞

λ

∞

λ

∞

λ

∞

λ

λ⋅λ

λ⋅λ⋅πλε
=

λ⋅λ

λ⋅λ
==πε

0
b,

0
b,

0
b,

0

b d)T,(M

d)T,(M)T,2,(

d)T,(M

d)T,(M

)T(M
)T(M)T,2,t(  (2.19) 

For an isotropically diffuse emitter it follows from eqs. (2.8), (2.17), and (2.18), that 

ε(λ,θ,φ,T) = ε(λ,2π,T). If, in addition, the surface is gray, that is, if its spectral-directional 

emittance is independent of wavelength, then ε(λ,θ,φ,T) = ε(λ,2π,T) = ε(t,2π,T). 

For a blackbody, of course, ε(λ,θ,φ,T) = ε(λ,2π,T) = ε(t,2π,T) = 1. 

2.1.10 Absorptance 

As in the case of emittance, we define a spectral-directional, a spectral-hemispherical, and a 

total-hemispherical quantity. The spectral-directional absorptance of a surface element is 

given by: 

 
),,(L

)T,,,(L
)T,,,(

i,

a,

φθλ
φθλ

=φθλα
λ

λ  (2.20) 
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where Lλ,i is the spectral radiance at the wavelength λ incident on the surface element from 

the direction (θ, φ) and Lλ,a is the part thereof that is absorbed by the surface element. The 

modifier T in the brackets indicates that this property is, in general, temperature-dependent. 

The spectral-hemispherical absorptance of a surface element is defined as the fraction of the 

spectral irradiance at the surface element that is absorbed by it: 

 
)(E

)T,(E
)T,2,( a,

λ
λ

=πλα
λ

λ  (2.21) 

This property represents a weighted average of α(λ,θ,φ,T) over all directions above the 

surface element and depends on the directional distribution of the incident radiance, which 

has to be specified when reporting this property. 

Similarly, the total-hemispherical absorptance of a surface element is defined as the fraction 

of the total irradiance at the surface element that is absorbed by it: 

 

∫

∫

∫

∫
∞

λ

∞

λ

∞

λ

∞

λ

λ⋅λ

λ⋅λ⋅πλα
=

λ⋅λ

λ⋅λ
==πα

0

0

0

0
a,

a

d)(E

d)(E)T,2,(

d)(E

d)T,(E

E
)T(E)T,2,t(  (2.22) 

This property depends both on the directional and spectral distributions of the incident 

radiance. 

2.1.11 Reflectance 

Reflection is the process by which radiant flux incident on a stationery surface leaves that 

surface from the incident side without change in frequency. Reflectance is the fraction of 

incident flux that is reflected. However, its specific definition may take several different 

forms, because this property is inherently bidirectional. That is, it depends on the direction of 

the incident and the reflected radiation. 

The spectral directional-hemispherical reflectance is the fraction of the incident flux at a 

wavelength λ and from a specific direction (θ,φ) that is reflected into the hemisphere above 

the surface. It can be written as: 

 
),,(E
)T,(M

)T,2,,,( r,

φθλ
λ

=πφθλρ
λ

λ  (2.23) 
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where Mλ,r is the spectral exitance (due to reflected spectral irradiance) and Eλ is the spectral 

irradiance in the incident direction. The modifier T in the brackets indicates the temperature 

dependence of this property. 

2.1.12 Transmittance 

Transmission through a semitransparent medium is, like the reflectance, a bidirectional 

property. For this reason transmittance (which, due to interreflections, may depend on the 

thickness of the material as well as on its optical properties) may take various forms. The 

spectral directional-hemispherical transmittance is defined as the fraction of the incident flux 

at a wavelength λ and from a specific direction (θ,φ) that is transmitted through the medium 

into the hemisphere surrounding the exitent surface: 

 
),,(E
)T,(M

)T,2,,,( t,

φθλ
λ

=πφθλτ
λ

λ  (2.24) 

where Eλ is the spectral irradiance in the incident direction at the front surface and Mλ,t is the 

spectral exitance (due to transmitted spectral irradiance) at the back surface. The modifier T in 

the brackets indicates the temperature dependence of this property. 

2.1.13 The Kirchhoff law 

In its most general form, Kirchhoff's law states that the spectral-directional emittance and the 

spectral-directional absorptance of a surface are equal. This equality can be written as 

 )T,,,()T,,,( φθλα=φθλε  (2.25) 

and is valid for any surface without restrictions. There are other forms of this law that are 

valid under certain conditions. 

If the surface is an isotropically diffuse emitter or the surface irradiation is isotropically 

diffuse, it follows from eq. (2.25) that 

 )T,2,()T,2,( πλα=πλε  (2.26) 

In this case and if, in addition, the surface is gray or the spectral irradiance at the surface is 

proportional to the spectral exitance of a blackbody at the surface temperature T, Kirchhoff's 

law is valid for the total-hemispherical emittance and absorptance: 
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 )T,2,t()T,2,t( πα=πε  (2.27) 

2.1.14 Energy balance 

From energy balance considerations it follows readily that 

 1)T,2,,,()T,,,()T,2,,,( =πφθλτ+φθλα+πφθλρ  (2.28) 

For opaque materials, τ = 0 and eq. (2.28) becomes: 

 1)T,,,()T,2,,,( =φθλα+πφθλρ  (2.29) 

The reflection and absorption processes may then be treated as surface phenomena. 

Combining this expression with Kirchhoff's law we obtain 

 1)T,,,()T,2,,,( =φθλε+πφθλρ  (2.30) 

and for normal incidence - emission 

 1)T,()T,( nh,n =λε+λρ  (2.31) 

where ρn,h(λ,T) and εn(λ,T) are the spectral normal-hemispherical reflectance and normal 

spectral emittance, respectively. 

2.2 Radiation Thermometry 

Temperature determination by radiation thermometry is based on the fact that the radiance 

emitted by an object is a function of its temperature. If the object is a blackbody its 

temperature can be inferred from the emitted radiance using Planck's law (eq. 2.14). In the 

case of a non-blackbody, knowledge of the object's emittance is required to obtain its 

temperature. 

2.2.1 The International Temperature Scale of 1990 (ITS-90) 

According to the ITS-90 [6], above the freezing point of silver the temperature T is defined by 

the equation: 

 
1)Tcexp(
1)Tcexp(

)T,(L
)T,(L

02

002

00b,

0b,

−λ
−λ=

λ
λ

λ

λ  (2.32) 

where T0 refers to any one of the silver (TAg = 1234.93 K), the gold (TAu = 1337.33 K) or the 
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copper (TCu = 1357.77 K) freezing points. Lλ,b(λ0,T) and Lλ,b(λ0,T0) denote the blackbody 

spectral radiance at the wavelength (in vacuum) λ0 and at the temperatures T and at T0, 

respectively. c2 = 0.014388 m.K is the second radiation constant. 

2.2.2 Radiance temperature 

The (spectral) radiance temperature at a wavelength λ of a surface at a temperature T is the 

temperature Tλ at which a blackbody emits the same amount of spectral radiance at λ as does 

the surface1. Since no surface can emit more thermal radiation than a blackbody it follows that 

Tλ is always lower than T. For a blackbody of course, Tλ = T. According to the definition of 

radiance temperature and eq. (2.17), 

 )T,(L)T,,,()T,,,(L)T,(L b,b, λ⋅φθλε=φθλ=λ λλλλ  , (2.33) 

which, combined with Planck's law, leads to the following expression relating the two 

temperatures: 

 
1

22 1)
Tn

cexp()T,,,(1ln
n
cT

−

λ 



























−

⋅λ⋅
⋅φθλε+⋅

λ⋅
=  (2.34) 

Since the spectral-directional emittance depends, in the most general case, on the wavelength, 

the direction of emission, and the true temperature of the emitting surface, it follows that the 

radiance temperature depends on these parameters, as well. 

A simpler and in many cases very useful expression can be derived using the Wien 

approximation (for n.λ.T ≤ 3100 µm.K): 

 )T,,,(ln
c

n
T
1

T
1

2

φθλε⋅λ⋅+=
λ

 (2.35) 

Keeping in mind that ελ ≤ 1, it can be seen that T ≥ Tλ, as was mentioned above. The lower 

the emittance is, the lower the radiance temperature will be. In addition, Tλ decreases with 

increasing wavelength, if the emittance ε is kept constant. 

                                                 
1 In order to clearly distinguish T from Tλ and avoid ambiguity, the former will usually be called the true or 
thermodynamic temperature of the surface. 
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2.2.3 The measurement equation of a radiation thermometer 

From equation (2.5), the element of radiant flux dΦ(λ,x,y,θ,φ) associated with a ray of 

spectral radiance Lλ(λ,x,y,θ,φ) through a surface element dA = dx.dy at its point of 

intersection (x,y) with the ray, within an element of solid angle dω about the ray in the 

direction (θ,φ), and within an elemental wavelength interval dλ about λ, is: 

 λ⋅⋅ω⋅θ⋅φθλ=φθλΦ λ ddAdcos),,y,x,(L),,y,x,(d  (2.5) 

Most radiation detectors respond to radiant flux (power). The quantity relating the output 

signal S of a detector to the incident radiant flux Φ is called the flux responsivity RΦ of the 

detector. In general, it will vary with the position and direction of the incoming rays at the 

receiving aperture and be a function of wavelength1: 

 
),,y,x,(d
),,y,x,(dS),,y,x,(R

φθλΦ
φθλ=φθλΦ  (2.36) 

When the detector is part of a radiation thermometer the overall instrument responsivity is 

also determined by (1) the transmittance τ of the optical components (e.g. lenses, filters) and 

paths internal to the instrument and (2) the electronic processing (e.g. conversion of a 

photodiode current into a voltage and amplification) that the detector signal undergoes to 

produce the final instrument output signal. 

Combining all the above, an expression for the elemental instrument output signal dS 

stemming from the element of flux dΦ along one ray in the beam of radiation incident on the 

radiation thermometer can be written as: 

 ),,y,x,(d),,y,x,(R),,y,x,(b),,y,x,(dS φθλΦ⋅φθλ⋅φθλτ⋅=φθλ Φ  (2.37) 

with dΦ(λ,x,y,θ,φ) from eq. (2.5). The constant b is determined by the electronics that process 

the detector output signal. The total output signal S of the radiometer is the sum (integral) of 

all the elemental signals dS for all the rays included in the beam of radiation accepted by the 

instrument: 

 ∫ ∫ ∫
λ∆ ω

λΦ λ⋅⋅ω⋅θ⋅φθλ⋅φθλ⋅φθλτ⋅=ωλ∆
A

ddAdcos),,y,x,(L),,y,x,(R),,y,x,(b),A,(S  (2.38) 

                                                 
1 The detector is assumed to be linear over the measurement range of interest. In other words, the responsivity of 
the detector is assumed to be independent of the magnitude of the flux incident on it. 
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where ∆λ is the wavelength interval over which the instrument responsivity is significantly 

non-zero, A is the area of the receiving aperture, and ω is the solid angle enclosed by the 

extreme rays from the target that converge at a point x,y on the receiving aperture1. This is the 

so called measurement equation [7]. It relates the output signal of the measuring instrument to 

the incident spectral radiance distribution. In addition, it shows that the output signal S may 

be regarded as the overall-responsivity-weighted flux in the beam that is received by the 

instrument. 

The range of variation of τ, RΦ, and Lλ relative to position and direction can be minimized by 

making A and ω sufficiently small. These quantities can then be taken out of the integrals 

over A and ω: 

 ∫
λ∆

λ λ⋅λ⋅ωλ=ωλ∆ d)(L),A,(R),A,(S L  , (2.39) 

where 

 ∫ ∫
ω

Φ ⋅ω⋅θ⋅λ⋅λτ⋅=ωλ
A

L dAdcos)(R)(b),A,(R  (2.40) 

is the spectral-radiance responsivity of the instrument. 

2.2.4 Determination of the temperature of a blackbody 

In the case of a strictly monochromatic radiation thermometer the integral in eq. (2.39) is 

reduced to a simple product. The output signal S is then directly proportional to the spectral 

radiance emitted by the blackbody and the defining equation of the ITS-90 can be applied 

without difficulty. However, any observable radiant flux is always associated with a spectral 

band of finite width and the question arises as to which wavelength within this spectral band 

to use in eq. (2.32). 

The instrument is calibrated in terms of the spectral radiance of a blackbody at the 

temperature T0 of a fixed point in the temperature scale, such as the freezing point of gold. 

The radiometer signal in this case will be: 

                                                 
1 If there is vignetting, ω is a function of the position x,y on the receiving aperture and should be written ω(x,y). 
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 ∫
λ∆

λ λ⋅λ⋅λ= d)T,(L)(R)T(S 0b,L0  (2.41) 1 

When the radiometer is sighted upon a blackbody at an unknown higher temperature T a 

signal S(T) is generated and the temperature T is then determined by solving the integral 

equation: 

 λ⋅λ⋅λ=λ⋅λ⋅λ⋅τ ∫∫
λ∆

λ
λ∆

λ d)T,(L)(Rd)T,(L)(R 0b,Lb,Lnd  , (2.42) 

where τnd is the ratio of S(T0) to S(T). It can also be interpreted as the transmittance of a 

neutral density filter2 that has to be placed in the optical path when viewing the higher 

temperature blackbody so that the generated signal τnd.S(T) is equal to the signal S(T0) 

generated by the fixed-point blackbody. 

2.2.4.1 The concept of the mean effective wavelength and the limiting effective 

wavelength 

Although solving an integral equation numerically presents no problem to a digital computer, 

there are situations where it is desirable to have some simpler algorithm available. The 

equality of the integrals in eq. (2.42) means that the areas under the curves represented by the 

integrands are equal. The wavelength at which the two curves intersect, in other words the 

wavelength at which the integrands themselves are equal, is called the mean effective 
wavelength between the temperatures T0 and T and is denoted by λT0-T. It follows that at this 

wavelength: 

 
1)Tncexp(
1)Tncexp(

)T,(L
)T,(L

)T(S
)T(S

0TT2

TT2

TTb,

0TTb,0
nd

0

0

0

0

−⋅λ⋅
−⋅λ⋅

=
λ
λ

==τ
−

−

−λ

−λ  (2.43) 

This is the working version of the defining equation of the ITS-90 (compare to eq. 2.32) for a 

radiation thermometer with a finite spectral bandwidth. 

The limiting effective wavelength λT at the temperature T is defined as: 

 
TT

TT
T 0

0

1lim1

−
→ λ

=
λ

 (2.44) 

                                                 
1 For brevity, the parameters ∆λ, A, and ω have been omitted from S(∆λ, A, ω, T0) and RL(λ,  A, ω) under the 
assumption that all measurements, including the calibration, are made under identical conditions. That is to say, 
the spectral band ∆λ and the focusing adjustment and position of the radiation thermometer remain unchanged. 
2 A filter with uniform transmittance (at least) across the spectral band ∆λ of the radiometer. 
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Assuming the applicability of Wien's approximation to Planck's law it can be shown [8, 9] 

that1: 

 ∫ ⋅
λ

⋅
−

=
λ −

T1

T1
T

0

TT 0
0

)
T
1(d1

T
1

T
1

11  (2.45) 

and 

 
∫

∫

λ∆
λ

λ∆
λ

λ⋅λ⋅λ

λ⋅λ⋅λ⋅
λ

=
λ d)T,(L)(R

d)T,(L)(R1
1

b,L

b,L

T

 (2.46) 

According to the last expression, it can be said that the inverse limiting effective wavelength 

is a weighted average of inverse wavelength over the spectral bandwidth of the radiometer, 

with the instrument's spectral-radiance responsivity and blackbody spectral-radiance 

distribution as the weighing factors. In addition, it turns out that the inverse limiting effective 

wavelength is very nearly a linear function of inverse temperature so that 
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λ − TTTT

11
2
11

00

 , (2.47) 

which makes it obvious why the name “mean effective wavelength” is used. From eq. (2.46) 

the limiting effective wavelength of the radiation thermometer when viewing a blackbody can 

be computed for any temperature. Then, using eq. (2.45) or (2.47), the mean effective 

wavelength between any two temperatures can be obtained. When one of the temperatures is 

not known initially (the known temperature usually being the calibration temperature) the 

mean effective wavelength is approximated by the center wavelength or the wavelength of 

peak transmission of the wavelength-selecting component (e.g. an interference filter or a 

monochromator) of the instrument. The unknown temperature is computed with eq. (2.43) 

and used to obtain a better approximation of the mean effective wavelength, which in turn is 

used to obtain a better value for the unknown temperature. One such iteration is usually 

sufficient. 

                                                 
1 An expression for the limiting effective wavelength derived using Planck's law can be found in [10]. The 
authors show that the error introduced by the use of Wien's approximation is negligible for most purposes. 
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2.2.5 Determination of the temperature of a non-blackbody 

In the case of a non-blackbody at a temperature T, eq. (2.42) becomes 

 λ⋅λ⋅λ=λ⋅λ⋅λε⋅λ⋅τ ∫∫
λ∆

λ
λ∆

λ d)T,(L)(Rd)T,(L)()(R 0b,Lb,Lnd  (2.48) 

This integral equation can be solved numerically if the spectral emittance of the non-

blackbody is known throughout the passband ∆λ . In writing this expression, the implicit 

assumption has been made that the variation of the emittance with position and direction of 

the incoming rays at the receiving aperture of the instrument is negligible, so that ε (like τ and 

RΦ) can be taken out of the respective integrals in eq. (2.38). This can be achieved by keeping 

the area A of the receiving aperture and the solid angle ω subtended by the target area at any 

point on the receiving aperture sufficiently small. 

Radiation thermometers are calibrated in terms of blackbody radiation. Thus, in the absence 

of any knowledge about the emittance, they indicate the target's radiance temperature Tλ, 

which satisfies the following equation: 

 λ⋅λ⋅λ=λ⋅λ⋅λ⋅τ ∫∫
λ∆

λ
λ∆

λλ d)T,(L)(Rd)T,(L)(R 0b,Lb,Lnd  (2.49) 

This expression is identical to eq. (2.42) (with T replaced by Tλ). Thus, it can be solved for Tλ 

numerically or by applying the concept of the mean effective wavelength: 

 
1)Tncexp(
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−λ  (2.50) 

with λT0-Tλ from eqs. (2.45) and (2.46). Although the same concept may, in principle, be 

applied to the determination of the true temperature, equations (2.45) and (2.46) may not, 

since they were derived for blackbodies. However, if it can be assumed that the emittance ε is 

nearly constant throughout the passband ∆λ, then, combining eqs. (2.48) and (2.49), we can 

write1: 

 λ⋅λ⋅λ=λ⋅λ⋅λ⋅ε ∫∫
λ∆

λλ
λ∆

λ d)T,(L)(Rd)T,(L)(R b,Lb,L  (2.51) 

                                                 
1 A less restrictive condition [8] is that an equivalent graybody temperature Tg and a corresponding graybody 
emittance εg can be found, such that εg

.Lλ,b(λ,Tg) = ε(λ).Lλ,b(λ,T). 
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This equation just expresses the fact that the radiance temperature Tλ is the temperature of a 

blackbody that, when viewed through the radiation thermometer, gives rise to the same output 

signal as the non-blackbody. It is identical to eq. (2.42) if τnd and T0 are replaced by ε and Tλ, 

respectively. Thus, the true temperature T can be determined from Tλ and ε by solving 

 
1)Tncexp(
1)Tncexp(
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−⋅λ⋅
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λ

λ

λ

λ  (2.52) 

According to its defining equation (2.33), the radiance temperature depends on the 

wavelength. Equation (2.52) shows that, when viewing a graybody, the wavelength to be 

associated with the radiance temperature Tλ measured by a finite-bandwidth radiation 

thermometer is the mean effective wavelength λTλ-T between Tλ and the target's true 

temperature T. Looking at the equation used to compute the limiting effective wavelength, it 

is clear that λTλ-T will depend on the central wavelength, as well as the shape and width of the 

spectral passband of the measuring instrument. Thus, two instruments with spectral passbands 

centered at the same wavelength will measure different radiance temperatures if the shape 

and/or the width of their passbands are different. In other words, they correspond to 

monochromatic radiation thermometers operating at different wavelengths. 

2.3 Polarimetry 

2.3.1 The concept of polarization 

Polarization is a property that is common to all types of vector waves. It refers to the behavior 

with time of one of the field vectors appropriate to that type of wave, observed at a fixed point 

in space. 

In the case of electromagnetic waves the electric-field strength E is chosen to define the state 

of polarization. This choice is based on the fact that when the wave interacts with matter, the 

force exerted on the electrons by the magnetic component of the field is generally negligible 

compared to the force exerted by the electric component. 

2.3.2 The polarization of monochromatic waves 

The word “monochromatic” originates in the greek language and means “consisting of one 

color”. In the language of physics it, more generally, stands for “consisting of one frequency”. 
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For a monochromatic wave the variation with time of the electric vector E is exactly 

sinusoidal, in other words it is time-harmonic. Such an idealized wave is of infinite extent. 

2.3.2.1 Elliptical polarization 

At a fixed point in space the vibration of the electric vector E may, in the most general case, 

be resolved into three independent, linear, harmonic vibrations Ex, Ey, and Ez along three 

mutually orthogonal directions x, y, and z, respectively: 

 z
z

y
yx EEE eeeE x ++=  (2.53)1 

 ( ) z,y,xi      , tcosEE ii0i =δ+ω⋅=  (2.54) 

ex, ey, and ez are unit vectors along the coordinate axes; ω is the angular frequency of the 

vibration of E; E0i and δi denote the real amplitude and initial phase angle, respectively, of the 

linear vibration along the ith coordinate axis. 

It can be shown that the endpoint of the instantaneous electric vector E, drawn from the fixed 

observation point as an origin, will trace an ellipse in space. An electromagnetic wave whose 

electric vector at a fixed point in space traces the same ellipse in a regular repetitive fashion is 

described as elliptically polarized at that point. 

b

θ
δ

ε x

y

Et=0

A

 
Fig. 2.2: The ellipse of polarization and the four parameters that are required to completely 
describe it in its plane (adapted from [11]). 

                                                 
1 Bold characters denote vectors or matrices. 
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Elliptical polarization is the most general state of polarization of a strictly monochromatic 

electromagnetic field. Six real parameters are required for its complete description. Two of 

them are necessary to determine the orientation of the plane of the ellipse by means of a unit 

vector n normal to that plane1. The other four parameters describe the ellipse of polarization 

in its plane. In the very important special case of a transverse wave, the plane of vibration of 

the electric vector is normal to the direction of propagation and n is parallel to the wave-

vector k. In this case only the four parameters describing the ellipse of polarization in its 

plane are required for a complete specification of the state of polarization (fig. 2.2). 

(1) The azimuth θ defines the orientation of the ellipse in its plane. It is the angle between 

the major axis of the ellipse and the positive direction of the x axis. The range of θ is limited 

to: 

 
22
π<θ≤π−  (2.55) 

(2) The ellipticity e describes the shape of the polarization ellipse. It is defined as the ratio 

of the length b of the semi-minor axis of the ellipse to the length a of its semi-major axis. 

 
a
be =  (2.56) 

It is convenient to incorporate the handedness of the ellipse, i.e. the sense in which it is 

described, in the definition of e, by allowing it to assume positive and negative values to 

correspond to right-handed and left-handed polarizations, respectively. We speak of right-

handed polarization if the ellipse is traversed in a clockwise sense when looking toward the 

source of the wave, that is against the direction of propagation. We speak of left-handed 

polarization if the ellipse is traversed in a counter-clockwise sense when looking against the 

direction of propagation. The range of e is limited to: 

 1e1 ≤≤−  (2.57) 

An ellipticity angle ε is introduced such that: 

 etan =ε  (2.58) 

                                                 
1 The direction of this vector is chosen to be that of the average energy flow along the normal to the plane of the 
ellipse. Because n is a unit vector its third coordinate can be determined from the other two. 
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From eq. (2.57) it follows that: 

 
44
π≤ε≤π−  (2.59) 

(3) The amplitude A of the of the polarization ellipse is a measure of its size. The square of 

A is proportional to the energy density of the electromagnetic wave at the point of 

observation. It is defined in terms of the lengths a and b of the semi-major and semi-minor 

axes of the ellipse as: 

 ( ) 2122 baA +=  (2.60) 

(4) The fourth real quantity needed to fully specify the ellipse of polarization in its plane is 

the absolute phase angle δ at t = 0 (fig. 2.2). 

2.3.2.2 Linear and circular polarizations 

The linear and circular polarizations are limiting special cases of the more general elliptical 

polarization state. Linear polarization occurs when the length of the semi-minor axis is 

negligibly small compared to that of the semi-major axis, that is to say when e = 0. Circular 

polarization occurs in the limit when the length of the semi-minor axis approaches that of the 

semi-major axis so that e = ±1. The positive value corresponds to right-handed circular 

polarization and the negative value to left-handed circular polarization. It is important to note 

that circular polarizations have indeterminate azimuth. 

Any arbitrarily polarized wave can be expressed as the superposition of two linearly polarized 

waves. In the case of a transverse plane wave we may write: 

 ( ) ( )[ ] ( )[ ] 22021101 tcosEtcosEt, urkurkrE ⋅δ+⋅−ω⋅+⋅δ+⋅−ω⋅=  (2.61) 

 0      , 1 21212211 =⋅=⋅=⋅=⋅=⋅ kukuuuuuuu  (2.62) 

u1 and u2 are two orthogonal unit vectors in the wave-front along which the electric vector is 

resolved into components of amplitudes E01 and E02 and initial phases δ1 and δ2. k is the 

constant wave-vector and r is the position vector. 

2.3.3 The polarization of quasi-monochromatic waves 

A perfectly monochromatic electromagnetic wave must, by its very nature, be totally 
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polarized. By “totally” polarized it is meant that the electric vector E at a fixed point in space 

will trace an ellipse (linear and circular polarization being limiting special cases) in a regular 

repetitive fashion. In actuality, light is emitted in wavetrains that are limited both in time and 

space; they have a beginning and an end. Thus, existing light sources never exactly satisfy the 

condition of monochromacy. Instead they are “polychromatic”, meaning that they emit 

electromagnetic waves whose Fourier-analyzed spectrum consists of a range of frequencies. A 

wave whose frequency bandwidth ∆ω is very small in comparison with its mean frequency ω  

is called a quasi-monochromatic wave. At a fixed point in space the vibration of the electric 

vector for such a wave may be written as: 

 z
z

y
yx EEE eeeE x ++=  (2.63) 

 ( ) ( )[ ] z,y,xi      , ttcostEE ii0i =δ+ω⋅=  (2.64) 

The previously introduced equations (2.53) - (2.54) represented a special case. Here, the 

amplitudes and initial phase angles of the three component-vibrations are functions of time. 

Their noise-like properties are determined by the source of the quasi-monochromatic 

radiation. Their frequency bandwidth is of the order of ∆ω/21. 

According to eqs. (2.63) and (2.64), the state of polarization of the quasi-monochromatic 

wave at our fixed point in space will vary with time. The end point of the electric vector will 

describe a complicated trajectory. Still, during a time interval that is much shorter than 4π/∆ω 

the amplitudes E0i and phases δi of the component vibrations will remain essentially constant 

and the end point of the electric vector will describe an ellipse in space. In other words, the 

short-term polarization is elliptical. Over longer time intervals the direction in space of the 

unit normal n to the plane of the ellipse may change, as may the handedness, size, shape and 

orientation of the ellipse in its plane. 

In the special case of transverse waves the plane of the ellipse remains normal to the direction 

of propagation. If we choose the z-axis of our Cartesian coordinate system to be parallel to the 

wave-vector k then Ez = 0 at all times and we only need consider the two field components Ex 

and Ey in eq. (2.63). The handedness, size, shape and orientation of the ellipse may still 

                                                 
1 Compare this to the case of the superposition of two waves of slightly different angular frequencies ω1, ω2 and 
the modulation frequency ωm = (ω1-ω2)/2 of the resulting beats. 
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change over long (≥4π/∆ω) time intervals. Depending on the degree of correlation between 

the time variation of Ex and Ey the wave might show no preference at all to any specific short-

term polarization, in which case it is described as natural or unpolarized1, or it may show 

some preference to a specific state of polarization, in which case it is described as partially 

polarized. Evidently the concepts of polarization and coherence are related in a fundamental 

way. If the ratio E0y(t) / E0x(t) were constant even though both terms varied, and if δy(t) − δx(t) 

were constant as well, the wave would be totally polarized2. These are exactly the conditions 

that can be imposed on the wave by letting it pass through a polarizer. In other words, it can 

be said that a polarizer appropriately correlates the wave’s components so that the time 

interval over which the state of polarization remains constant becomes independent of the 

bandwidth. For that matter, the light could be white (containing all frequencies) and still 

totally polarized. 

2.3.4 The Stokes vector 

Up to this point the description of the state of polarization of an electromagnetic wave was 

based on the trajectory described by the endpoint of the vector of the electric field strength E 

at some fixed point in space. Another way to represent the state of polarization of a transverse 

plane wave is through the use of four real quantities S0, S1, S2, and S3, which are called the 

Stokes parameters. In terms of the Cartesian components of the transverse electric field the 

Stokes parameters are defined as follows 

 ( ) ( )tEtES 2
y0

2
x00 +=  (2.65a) 

 ( ) ( )tEtES 2
y0

2
x01 −=  (2.65b) 

 ( ) ( ) ( ) ( )[ ]ttcostEtE2S xyy0x02 δ−δ⋅⋅=  (2.65c) 

 ( ) ( ) ( ) ( )[ ]ttsintEtE2S xyy0x03 δ−δ⋅⋅=  (2.65d) 

The angled brackets indicate quantities that have been averaged over a time interval ∆t that is 

                                                 
1 An unpolarized wave can also be described as randomly polarized, since it is actually composed of a rapidly 
varying succession of the different polarization states. 
2 The size of the ellipse of polarization, which is proportional to the energy density of the field at the point of 
observation, would possibly still vary with time, but the shape and orientation of the ellipse in its plane would 
not. 
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long enough to make the averages independent of ∆t itself. The Cartesian coordinate system is 

chosen such that the positive z-direction is parallel to the propagation direction of the wave 

and Ez = 0 at all times because of transversality of the wave. 

Remembering that the magnitude of the time-averaged Poynting-vector of a transverse 

electromagnetic wave is proportional to the square of the amplitude of the electric field, it 

should be fairly obvious that S0 is proportional to I0, the total radiant flux per unit area normal 

to the propagation direction of the wave. Accordingly, it is always positive. Furthermore, S1 is 

proportional to the difference between the radiant flux densities1 Ix and Iy of the x and y 

linearly-polarized components of the wave. It is a measure of the preference of the wave to 

the x linear polarization, to the y linear polarization, or to neither one of these two states and 

can be positive, negative, or zero, respectively. 

Through a coordinate rotation the wave can be resolved into two components that are linearly 

polarized parallel to the +45° and the −45° bisectors of the x-y coordinate system. It can be 

shown that S2 is proportional to the difference between the radiant flux densities I+45° and I-45° 

corresponding to these wave components. A positive S2 indicates a stronger preference of the 

wave to the +45° linear polarization, negative values indicate stronger preference to the −45° 

linear polarization, and a value of zero states that the wave shows no preference to either one 

of these two polarization states. In a similar fashion, through an appropriate coordinate 

transformation, it can be shown that S3 is proportional to the difference between the radiant 

flux densities Ircp and Ilcp of the right-handed and the left-handed circularly-polarized 

components of the wave. S3 will be positive, negative, or zero depending on the preference of 

the wave to a right-handed circular polarization, a left-handed circular polarization, or to 

neither one of these two polarization states, respectively. 

In summary, we can write for the Stokes parameters of a transverse plane wave (apart from a 

proportionality constant): 

 lcprcp4545yx00 IIIIIIIS +=+=+== °−°+  (2.66a) 

                                                 
1 The term “radiant flux density” is used in this context for brevity instead of the more exact “radiant flux per 
unit area normal to the propagation direction of the wave”. Normally, radiant flux (surface) density would be 
equivalent to the radiometric quantities exitance and irradiance as they were defined in §(2.1.3)-(2.1.4). It is 
important to remember that these quantities are referenced to a unit area of some arbitrary fixed orientation that, 
in general, is not normal to the propagation direction of the wave. 



 26

 yx1 IIS −=  (2.66b) 

 °−°+ −= 45452 IIS  (2.66c) 

 lcprcp3 IIS −=  (2.66d) 

Ix, Iy, I+45°, I -45°, Ircp, and Ilcp can be measured by means of a detector and an ideal variable 

polarizer that can be adjusted to transmit the x, y, +45°, –45° linear polarizations and the right 

(rcp)- and left (lcp)-circular polarizations. I0 can be directly measured with the detector. In 

other words, the Stokes parameters are observables. This description of polarization is clearly 

advantageous, since direct observation of the vibration of E is impossible at optical 

frequencies. Instead, measurements made in practice always yield averages over 

comparatively long time intervals. 

From the above discussion on the meaning of the Stokes parameters it follows that the values 

of S1, S2, and S3 depend on the azimuthal orientation of the (x, y) coordinate axes about the z-

axis. S0, of course, is independent of that orientation, since it corresponds to the total radiant 

flux density of the wave. The four Stokes parameters are usually grouped together in a 4×1 

column vector S, called the Stokes vector of the wave: 
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The effect of a coordinate rotation may then be conveniently expressed as a pre-multiplication 

of the Stokes vector S with a 4×4 rotation matrix R. Specifically, if the (x, y) coordinate axes 

are rotated about the z-axis (whose positive direction is parallel to the wave vector k) through 

an angle α in a counter-clockwise sense when looking against the propagation direction, the 

rotation matrix is given by 
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R  (2.68) 

and the Stokes vector S´ of the wave in the new coordinate system is: 
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 ( ) SRS ⋅α=′  (2.69) 

This operation can also be interpreted as the effect of an optical rotator on the wave, e.g. a 

medium exhibiting optical activity that rotates the major axis of the polarization ellipse 

through an angle α in a clockwise sense when looking against the direction of propagation, 

while leaving the ellipticity (including its sign) unaffected. 

It can easily be verified that the rotation matrix has the following properties: 

 ( ) ( ) ( )α−=α=α− RRR †1  (2.70a) 

 ( ) ( ) ( )2121 α⋅α=α+α RRR  (2.70b) 

where R† is the Hermitian adjoint of R, defined as the complex conjugate of the transpose of 

the matrix. 

As stated in §(2.3.3), an unpolarized wave shows no preference to any particular polarization 

state. It follows from the above discussion that for such a wave S1 = S2 = S3 = 0 and the 

Stokes vector of an unpolarized wave is: 
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The Stokes parameters of a totally polarized wave may be expressed in terms of the azimuth θ 

and the ellipticity angle ε of the polarization ellipse as: 
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It should be noted here that in the Stokes representation of the state of polarization all 

information about the absolute phase δ(t) of the wave is lost. 

From eq. (2.72) it can be seen that in the case of a totally polarized wave: 
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2
2

2
1 SSSS =++  (2.73) 

Furthermore, eqs. (2.71) and (2.73) suggest that for a partially polarized wave 
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It can be shown [12] that if several independent (incoherent) quasi-monochromatic waves 

which propagate in the same direction are superimposed, the Stokes vector of the resulting 

wave will be equal to the sum of the Stokes vectors of the individual waves. As a special case, 

a partially polarized quasi-monochromatic wave may be treated as the sum of an unpolarized 

and a totally polarized component, which are independent of each other: 
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The ratio of the radiant flux density of the totally polarized component to the total radiant flux 

density of the wave is defined as the degree of polarization P of the wave: 
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Using this definition we can recast eq. (2.75) to read: 
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Combining eqs. (2.72) and (2.77) the Stokes vector of a partially polarized quasi-

monochromatic wave can now be expressed in terms of the degree of polarization P and the 

azimuth θ and ellipticity angle ε of the polarization ellipse of the totally polarized component 

of the wave: 
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Often the Stokes vector is normalized with respect to S0, thus disregarding the information 

about the total radiant flux density of the wave. The state of polarization is then represented 

by the three Stokes parameters S1, S2, and S3. They can be interpreted as the coordinates of a 
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point in the (S1, S2, S3) vector subspace with the spherical coordinates (P, 2θ, 90°-2ε). In this 

Stokes polarization subspace: 

• The origin P = 0 represents the unpolarized state. 

• All points on the unit-sphere (P = 1) represent totally polarized states. In fact, this unit-

sphere is identical to the Poincaré sphere [11, 13]. 

• All points inside the unit-sphere (0 < P < 1) represent partially polarized states. Points 

outside the unit sphere (P > 1) do not represent any physical state of polarization. 

2θ

π
2− 2ε

P

S1

S3

S2

 
Fig. 2.3: Representation of partially polarized light by a point in the Stokes subspace 
(S1, S2, S3). P denotes the degree of polarization. θ and ε denote the azimuth and ellipticity 
angles of the polarization ellipse of the totally polarized component (adapted from [11]). 

2.3.5 Propagation of polarized light through an optical system 

In this section we consider the interaction of a monochromatic or quasi-monochromatic 

transverse plane electromagnetic wave with an optical system. Of particular interest is the 

change in the state of polarization impressed upon the wave by the system. The exact physical 

mechanism causing this change is of no concern. However, it is presumed that the whole 

process is linear and frequency-conserving and that the transversality of the wave is preserved 

throughout. 

In the most general case, the wave may be anything from unpolarized to totally polarized. 

Furthermore, the system may be non-depolarizing or depolarizing. In the case of a non-

depolarizing optical system, the degrees of polarization of the incident and outgoing waves, Pi 
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and Po respectively, satisfy: 

 io PP ≥  (2.79) 

for all incident states. Consequently, an optical system is depolarizing if the condition 

 io PP <  (2.80) 

is met for at least one incident state of polarization. 

The states of polarization of the incident and outgoing waves are represented by two Stokes 

vectors Si and So, which are referenced to two space-fixed, right-handed Cartesian coordinate 

systems (x, y, z) and (x´, y´, z´), respectively. The directions z and z´ are taken parallel to the 

wave vectors k and k´ of the incident and outgoing waves. The locations z = 0 and z´ = 0 of 

the reference coordinate planes are arbitrary, as are the azimuthal orientations of the 

transverse coordinate axes (x, y) and (x´, y´), along which the incident and outgoing waves 

are resolved. It is common practice, however, to choose the directions of x and x´ in the plane 

formed by k and k´ and the directions of y and y´ parallel to each other. For example, in the 

case of reflection from a planar boundary between two media the plane formed by the wave 

vectors of the incident and reflected waves is the plane of incidence (§2.3.6). Accordingly, x 

and x´ are chosen parallel to the plane of incidence. When there is no angular deviation 

between the incident and the outgoing wave (k and k´ are parallel), the two coordinate 

systems are usually chosen parallel. 

Then, in a linear-systems approach the optical system is represented by a real 4×4 matrix M, 

called the Mueller matrix of the optical system. The interaction between the incident wave 

and the optical system is simply expressed as a pre-multiplication of the input Stokes vector 

by the system’s Mueller matrix: 

 io SMS ⋅=  (2.81) 

In the case of non-depolarizing systems only seven of the sixteen elements of M are 

independent. In the case of depolarizing systems all sixteen elements of the Mueller matrix 

can be independent [14]. 
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M is, of course, a function of the optical system under consideration. In addition, it depends 

on: 

• the frequency of the incident wave, 

• the orientation of the optical system with respect to the direction of the incident wave, 

• the locations z = 0 and z´ = 0 of the input and output reference coordinate systems, 

• and the azimuthal orientation of the transverse axes (x, y) and (x´, y´) around z and z´. 

If the incident wave is split by the optical system into more than one plane waves, each of the 

emerging waves is associated with its own Mueller matrix. 

The effect of a rotation of the input and output coordinate systems on the Mueller matrix M 

can be found by applying eq. (2.69). Let the input coordinate axes (x, y) be rotated through an 

angle α about the z axis in a counter-clockwise sense when looking against the direction of 

propagation of the incident wave. At the same time let the output coordinate axes (x´, y´) be 

rotated through an angle β about the z´ axis in a counter-clockwise sense when looking 

against the propagation direction of the outgoing wave. If we pre-multiply eq. (2.81) with 

R(β) and use eq. (2.70a) we can write 

 [ ] [ ]io )()()()( SRRMRSR ⋅α⋅α−⋅⋅β=⋅β  (2.82) 

Recognizing that R(α).Si is the Stokes vector of the incident wave referenced to the rotated 

input coordinate system and R(β).So is the Stokes vector of the outgoing wave referenced to 

the rotated output coordinate system, it is evident that the new Mueller matrix of the system is 

given by: 

 )()(new α−⋅⋅β= RMRM  (2.83) 

An attractive feature of this approach in describing the interaction of the wave with an optical 

system is the simplicity with which it can be adapted to multiple-component systems. If the 

wave passes through a sequence of n optical devices whose Mueller matrices are M1, M2,…, 

Mn, then the combined Mueller matrix Mcomb describing the entire process is simply the 

product of the individual matrices: 

 11nncomb ... MMMM ⋅⋅⋅= −  (2.84) 

where 1, 2, …,n is the order in which the optical devices are encountered by the wave. 
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2.3.6 Reflection and refraction of a plane wave at a planar interface between two 

homogeneous isotropic media 

An optical plane wave incident on the planar boundary between two semi-infinite 

homogeneous optically isotropic media of different optical properties gives rise to a reflected 

and a refracted (transmitted) wave. It can be shown that the wave-vectors of all three waves 

lie in the plane of incidence, as specified by the wave-vector of the incident wave and the 

normal to the boundary. Furthermore, the angle of reflection equals the angle of incidence and 

the angle of refraction is related to the angle of incidence by: 

 t2i1 sinNsinN θ⋅=θ⋅  (2.85) 

where θi and θt denote the angles of incidence and refraction, respectively, measured from the 

normal to the interface (fig. 2.4). N1 is the complex index of refraction of the medium in 

which the incident and reflected waves propagate, whereas N2 is the complex index of 

refraction of the medium in which the refracted wave propagates. 

The complex index of refraction N of a medium can be expressed as: 

 kjnN ⋅−=  (2.86) 

where n is the (real) index of refraction and k is the extinction coefficient of the medium. For 

a transparent (dielectric) medium k = 0, whereas for an absorbing medium (conductor) k ≠ 0. 

Let A, R, and T be the complex amplitudes of the electric vectors of the incident, reflected, 

and transmitted waves, respectively. Each vector is resolved into components parallel 

(denoted by the subscript p) and perpendicular (denoted by the subscript s) to the plane of 

incidence. The directions of p and s are chosen such as to form right-handed Cartesian 

coordinate systems with the direction of propagation, in this order. The Fresnel equations 

relate the p and s components of the amplitudes of the reflected and transmitted waves to the 

p and s components of the amplitude of the incident wave: 
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In the special case when the incident wave is p-polarized, that is linearly polarized with the 

plane of vibration parallel to the plane of incidence, the s-component of the electric vector of 

the incident wave As is zero and it follows from eqs. (2.87b) and (2.87d) that the reflected and 

transmitted waves are also p-polarized. Similarly, when the incident wave is s-polarized the 

same is true for the reflected and transmitted waves. Thus, the p- and s-polarizations are the 

eigenpolarizations1 of reflection and refraction at the planar interface between two optically 

isotropic media. 

θi θr

θt

Ap Rp

Tp

As Rs

T

N1

N2

s

 
Fig. 2.4: Reflection and refraction of a plane wave at a planar interface. The plane of 
incidence coincides with the plane of the drawing. The circles with the dot at the center 
represent vectors pointing out of the plane of the drawing (towards the reader). 

When both media are transparent the angles of incidence and of refraction are real (excluding 

the case of total reflection). It follows then from eqs. (2.87a) - (2.87d) that the phase shifts 

experienced by the components of the electric vectors of the reflected and transmitted waves 

are either zero or π. Consequently, if the incident wave is linearly polarized the reflected and 

                                                 
1 The eigenpolarizations of an optical system are the polarizations that pass through the system unchanged. Each 
linear and non-depolarizing optical system has two eigenpolarizations [14]. 
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transmitted waves are linearly polarized, as well. In general, though, the plane of vibration 

(azimuth) of the reflected wave will be turned away from the plane of incidence, whereas the 

plane of vibration of the transmitted wave will be turned toward the plane of incidence, as 

compared with the incident wave. 

When a wave is incident from a dielectric onto an absorbing medium (conductor) it follows 

from eq. (2.85) that the angle of refraction becomes complex1. The phase shifts experienced 

by the components of the electric vectors of the reflected and transmitted waves will, in 

general, be different than zero or π. A linearly polarized incident plane wave will then become 

elliptically polarized upon reflection and refraction at the insulator-conductor interface. 

The complex Fresnel reflection coefficients rp and rs for the p and s components are defined 

as: 
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with 

 iprpp
p

p
p ,

A

R
r φ−φ=δ=  (2.90) 

 isrss
s

s
s ,

A
R

r φ−φ=δ=  (2.91) 

|Ap|, |As|, |Rp|, |Rs| are the real amplitudes and φip, φis, φrp, φrs are the initial phase angles of the 

harmonic vibrations of the electric vectors of the p and s components of the incident and 

reflected waves. 

The ellipsometric angles ψ and ∆ are defined in terms of the ratio q of the complex reflection 

coefficients: 

 ∆⋅⋅ψ== j
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1 The transmitted wave is then an inhomogeneous wave, because the surfaces of constant amplitude and the 
surfaces of constant phase will, in general, not coincide [15]. 
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so that 
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and 
 ( ) ( )isiprsrpsp φ−φ−φ−φ=δ−δ=∆  (2.94) 

Accordingly, tanψ determines the change in the ratio of the real amplitudes of the orthogonal 

components (parallel and perpendicular to the plane of incidence) of the electric vector upon 

reflection. ∆ determines the change in the phase difference between the orthogonal 

components of the electric vector occurring upon reflection of the incident wave at the 

boundary. 

A measurement of ψ and ∆ by a suitable technique allows the determination of the complex 

index of refraction N2 of the reflecting medium from the complex index of refraction N1 of 

the “incident” medium, provided that the angle of incidence θi is known [16]. If the medium 

in which the incident and reflected waves propagate is transparent (k1 = 0), N2 is related to n1 

by: 

 ( )
2
1

i
2

2i122 sin
q1
q41tannkjn 








θ

+
−⋅θ⋅=⋅−  (2.95) 

The complex reflection coefficients rp and rs that were defined by eqs. (2.88) and (2.89) are 

related to the reflectances ρp and ρs for the p and s polarizations by: 
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where θr denotes the angle of reflection. ρp and ρs give the fraction of the energy of the 

primary wave that is incident upon and reflected off a unit area of the boundary per unit time 

for the p and s polarizations. Accordingly, the fraction ρ of the total energy of the primary 
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wave that is incident upon and reflected off a unit area of the boundary per unit time is given 

by: 
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For normal incidence the distinction between the p and s components disappears and it 

follows from eqs. (2.87a), (2.87b) and (2.98) that 
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For randomly polarized (unpolarized) light it can be shown [17] that 

 ( )spun 2
1 ρ+ρ=ρ  (2.100) 

For normal incidence, it follows from eqs. (2.99) and (2.100) that 
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When the medium in which the incident and the reflected wave propagate is transparent 

(k1 = 0) eqs. (2.99) and (2.101) become: 
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It should be kept in mind that everything that has been mentioned in this section applies 

exactly only to boundaries that reflect perfectly specularly. Perfectly specular reflection is 

said to occur when all the reflected flux is concentrated along a single direction that lies in the 

plane of incidence and satisfies θi = θr. In addition, all quantities introduced in this section are 

frequency-dependent. Consequently, the quantity ρun that was introduced in eq. (2.100) 

corresponds to the spectral directional-hemispherical reflectance that was defined in 

eq. (2.23). The spectral normal-hemispherical reflectance that appears in the energy balance 

equation for opaque materials (eq. 2.31) corresponds to ρun for normal incidence in 

eqs. (2.101) and (2.102). 



 37

3 THE MEASUREMENT SYSTEM 

3.1 General 

The method used in this work was based on rapid resistive self-heating of the wire-shaped 

specimens by a large current pulse from a capacitor-discharge circuit. Due to the high heating 

rates achieved in this configuration (>107 K.s-1) the specimens reached temperatures hundreds 

of degrees above their melting points before collapsing under the gravitational force, thus 

allowing the measurement of their liquid properties. Furthermore, because of the short 

duration of each experiment (less than 100 µs) problems caused by specimen evaporation and 

by chemical reactions between the specimen and its container were avoided. Heat losses due 

to heat conduction and radiation could be neglected even at the highest achieved 

temperatures, making the data analysis much simpler. 

A total of seven quantities were measured during each experiment. These were the current 

through the specimen and the voltage across a defined portion of the specimen, the radiance 

emitted by the specimen surface, and the four Stokes parameters describing the polarization 

state of a laser beam that was reflected off the specimen surface. All quantities were measured 

simultaneously as functions of time. The thermophysical properties finally derived from these 

measured quantities were the melting point, heat of fusion, electrical resistivity, specific 

enthalpy, and specific heat capacity of the specimen; the last three properties as functions of 

temperature. 

3.2 The experiment chamber 

A new experiment chamber (fig. 3.1), made of 304 stainless steel and capable of holding high 

vacuum, was designed and built for this work. It was cylindrical in its cross section with an 

outer diameter of 152.4 mm (6 in), a wall thickness of approximately 3 mm (0.12 in), and an 

inner height of approximately 347 mm (13.675 in). 

It incorporated four viewports, formed by short weld stub flanges that were welded onto the 

chamber at the appropriate positions. Two of them were used for polarimetry and one for 

radiation thermometry. The fourth viewport was not used in this work. The two polarimetry-

viewports, one for the incident and one for the reflected laser beam, had an inner diameter of 

approximately 16 mm (0.62 in) and included an angle of 140° (fig. 3.2), as dictated by the 
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requirements for the polarimetric measurement (§3.8). The third and the fourth viewport had a 

larger diameter of approximately 47.5 mm (1.87 in). 

The windows used for polarimetry were made of BK7 optical glass and were 25.4 mm (1 in) 

in diameter and 3.18 mm (0.125 in) in thickness. The other two windows were cut out of 

ordinary glass and were approximately 71 mm (2.8 in) in diameter and 3.18 mm (0.125 in) in 

thickness. Each window was secured between an outer flange and the viewport flange using a 

hinged clamp with a single wingnut for closure. In order to reduce the mechanical stress 

introduced into the window material by the tightening of the clamps, elastomer O-rings on 

both sides of the windows were used for cushioning. This was particularly important for the 

polarimetry-windows, in order to avoid stress birefringence. At the same time, the inner O-

ring (towards the chamber) made the vacuum seal upon compression. The three windows used 

in the measurements had to be replaced after each experiment, because they were damaged by 

specimen-debris. The single-wingnut closure of the window clamps facilitated this frequent 

assembly and disassembly. 

A short weld stub flange, similar to the ones that served as viewports, was welded to the 

chamber near its lower end and was used as the vacuum port. A fine mesh screen installed in 

this port prevented metal particles produced by the disintegrating pulse-heated specimens 

from reaching the vacuum line. 

Two threaded Swagelok™ tube-fittings were welded onto the top of the chamber. One served 

as the inlet for the inert gas with which the chamber was filled prior to pulse-heating a 

specimen (§3.1). A pressure gauge was attached to the other fitting, in order to control the 

amount of inert gas that was filled in. 

The experiment chamber was fastened onto its base using a large banded clamp, which, like 

the window flanges, was also tightened by means of a single wingnut. The vacuum seal was 

made by a compressed O-ring. A central high-current feedthrough and two floating-shield, 

double-ended BNC feedthroughs were welded onto the base, which was permanently attached 

to the experiment table. The copper conductor of the current feedthrough was separated from 

the mounting flange (i.e. from the base) by ceramic material that provided electrical 

insulation. The same applied to the central and the coaxial outside conductors of the BNC 

feedthroughs. One of the BNC feedthroughs was used for the voltage measurement, whereas 
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the other one was not used in this work. 

Access to the specimen holder (fig. 3.3) was gained by removing the chamber from its base. 

The specimen holder and the specimen itself were at the center of a conducting structure of 

coaxial geometry (fig. 3.4). The inner conductor of this structure was formed by the current 

feedthrough, the specimen holder, the specimen, and some additional spacers that completed 

the connection to a twelve-sided plate at the top. The coaxial outer conductor of the structure 

was formed by two cylindrical rods and ten bars of rectangular cross section that surrounded 

the specimen holder. The rods were used to increase the rigidity of the structure. The rods and 

the bars were attached to the twelve-sided plate at the top and a twelve-sided ring at the 

bottom. The ring at the bottom was attached to the base of the experiment chamber, which 

was part of the current path. In a crowbar-mode discharge (§3.4) the current flowed in an 

upward direction through the base of the chamber and along the bars and rods to the top of 

this coaxial structure, and returned to the circuit in a downward direction through the 

specimen and the central current feedthrough. 

This geometry was chosen because it offered the advantage of increased symmetry in the 

electric forces exerted upon the specimen. Since antiparallel currents repel, any small 

movement of the specimen in a radial direction resulted in a net force back towards the center, 

where the forces canceled because of the symmetry of the setup. During the experiments, 

however, three of the surrounding bars were removed because they would otherwise have 

obstructed the radiometric and polarimetric measurements. A fourth had to be removed to 

retain the symmetry of the geometry (fig. 3.2). Except, of course, for the specimen, and two 

supporting rods in the specimen holder that were made of Bakelite, all other components of 

this coaxial structure were made of brass. 

The inner surface of the chamber, as well as the inner surfaces (towards the specimen) of the 

brass bars surrounding the specimen holder inside the chamber, were sprayed with flat black 

paint to reduce the impact of internal reflections on the radiometric measurement. 
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Fig. 3.1: The experiment chamber.  1  port for pressure gauge,  2  gas inlet,  3  polarimetry 
viewport (incident laser beam),  4  vacuum port,  5  polarimetry viewport (reflected beam),  
6  radiometry viewport,  7  hinged clamp,  8  window,  9  outer flange,  10  O-rings,  
11  baseplate,  12,13  BNC feedthroughs,  14  current feedthrough. 
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Fig. 3.2: Top view of a cross section through the experiment chamber at the height of the 
specimen midpoint showing the arrangement of the viewports.  1  polarimetry viewport for 
the incident laser beam,  2  vacuum port,  3  specimen,  4  chamber,  5  lower twelve-sided 
ring,  6  polarimetry viewport for the reflected laser beam,  7  elastomer O-ring,  8  viewport 
clamp,  9  window,  10  outer viewport flange,  11  conducting rod,  12  conducting bar,  
13  mounting screw,  14  radiometry viewport.  Items 5, 11, and 12 are part of the conducting 
coaxial structure inside the chamber (§3.2). 
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Fig. 3.3: Two views of the specimen holder.  B  bakelite support rod,  V  voltage probe,  
C  clamp,  S  specimen. 
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Fig. 3.4: The coaxial geometry inside the experiment chamber.  1  twelve-sided plate,  
2  conducting rod,  3  clamp,  4  twelve-sided ring,  5  BNC feedthrough,  6  current feed-
through,  7  retainer ring,  8  O-ring,  9  centering ring,  10  conducting bar. 
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3.3 The vacuum and inert gas systems 

A schematic diagram of the vacuum system is shown in fig. (3.5). A belt-driven, oil-sealed, 

two-stage, rotary vane high-vacuum pump was used to evacuate the chamber. An exhaust 

filter was installed to filter oil mist from the pump outlet. On the inlet side of the pump, a 

coaxial foreline trap with a replaceable steel-wool filter element was used to limit oil-

backstreaming into the chamber. From there, a length of thick-walled rubber hose led to a 

bellows-sealed block valve (V1 in fig. 3.5), and a short piece of rigid PVC tubing connected 

this valve to the vacuum port of the experiment chamber. A thermocouple vacuum gauge and 

an up-to-air valve (V4) were mounted on the PVC tubing. 
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Fig. 3.5: Schematic of the vacuum and inert gas system.  1  pressure gauge,  2  experiment 
chamber,  3  vacuum gauge readout,  4  thermocouple vacuum gauge,  5  bucket filled with 
water,  6  foreline trap,  7  two-stage rotary vane pump,  8  exhaust filter,  9  gas cylinder,  
V1  right-angle valve,  V2, V3  inline valves,  V4  up-to-air valve. 

Once the chamber was evacuated below approximately 0.1 mbar, it was isolated from the 

pump by closing V1. The chamber was then filled with argon from a pressurized gas cylinder 

by opening valves V2 at the cylinder and V3 at the top of the chamber. Valve V3 was closed 

when the pressure gauge at the top of the chamber indicated 1-2 bar above atmospheric 

pressure. After the specimen was pulse-heated the pressure was released, by opening the up-

to-air-valve V4, through a flexible hose whose open end was immersed in water. This way, 

the finer particles from the disintegrated specimen, which managed to pass through the mesh 

screen in the vacuum port of the chamber, were filtered from the exiting gas. 
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3.4 The discharge circuit 

A functional diagram of the pulse-heating system is shown in fig. (3.6). The capacitor-

discharge circuit consisted of a 24 kJ capacitor bank (120 µF, 20 kV), two switches and the 

specimen. Both switches were high-voltage, mercury-vapor ignitron tubes. The circuit 

represented an underdamped RLC-circuit with a nominal oscillation frequency of 10 kHz 

(upper trace of fig. 3.7). To prevent the reversal of the current through the specimen, the 

circuit was operated in the crowbar-mode. In this mode of operation the switch in parallel 

with the specimen (Crowbar-ignitron) was closed just after the current reached its first peak, 

thus creating an electrical short across the specimen. This allowed the energy that had been 

stored magnetically during the initial rise of the current to be returned to the circuit as 

unidirectional current through the specimen (lower trace of fig. 3.7). 
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Fig. 3.6: Schematic diagram of the capacitor-discharge circuit including the current and 
voltage measuring circuits. 

High rates of current change (dI/dt) are always associated with electromagnetic noise. To 

minimize the effects of electromagnetic interference (EMI) on the measurements, the 

capacitor discharge circuit was located inside a shielded room. Tri-axial cables or coaxial 

cables inside copper tubes, combined with appropriate feedthroughs, were used to transmit all 

electrical signals to the data acquisition instrumentation outside the shielded room. 
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Fig. 3.7: Electrical current vs. time for oscillatory (upper) trace and crowbar (lower trace) 
capacitor-discharge conditions. 

3.5 Current measurement 

The current through the specimen was measured using a wide-band current monitor. Such a 

current monitor comes in form of a loop. The current-carrying conductor passes through the 

hole of the loop and the output of the monitor is sustained by the changing level of the 

magnetic flux in its ferromagnetic core. A current monitor is electrically isolated from the 

circuit being monitored. This isolation provides increased protection to both equipment and 

personnel, eliminates to a large extent problems associated with ground loops, and minimizes 

the impact on the current being measured by adding virtually no load to the discharge circuit. 

In addition, toroidal construction and appropriate shielding makes the current monitor 

sufficiently immune to stray electromagnetic fields for use near a capacitor-discharge circuit. 

Two current-monitor models were used in this work, depending on the peak current to be 

measured. One was rated to 50 kA, with a nominal sensitivity of 10 mV.A-1, and the other to 

100 kA, with a nominal sensitivity of 5 mV.A-1. In both cases, they were terminated at the 

data acquisition instrumentation with a 50 Ω non-inductive voltage divider of nominal ratio 
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50:1. Since the equivalent circuit of the current monitors was that of a voltage source in series 

with a 50 Ω resistor, terminating them with a 50 Ω voltage divider effectively halved their 

output voltage. Accurate values of their sensitivity and of the divider ratio were obtained by 

calibration. 

3.6 Voltage measurement 

The voltage us across the specimen consisted of a resistive and several inductive components: 

 
dt
diM

dt
dLi

dt
diLiRu ss

s
s

ssss ⋅+⋅+⋅+⋅=  (3.1) 

is denotes the current through the specimen, Rs the specimen resistance, Ls the specimen self-

inductance, and M the mutual inductance between the discharge circuit and the voltage-

measuring circuit. 

According to [18], the self-inductance L (in Henrys) of a solid, round, straight, and 

nonmagnetic conductor of radius r and length l can be approximated by: 
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For l = const., it follows that: 

 
r
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Differentiation of eq. (3.3) with respect to time yields for the third term on the right side of 

eq. (3.1): 
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i
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dr102
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dLi s

s

s7s
s ⋅⋅⋅×=⋅ − l  (3.4) 

where rs is the specimen radius. 

In a typical pulse-heating experiment with niobium in which a specimen was heated to 

3200 K in 90 µs, the average current through the specimen was approximately 27 kA and the 

average voltage across a specimen length of 23 mm was 210 V. According to [19], the 

volume expansion V/V0 of niobium at 3200 K is 1.18, with V0 denoting the volume at room 

temperature. Converting this to a purely radial expansion (see footnote 3 on page 86) we 

obtain a value of 0.086 for ∆rs/rs,0 at 3200 K, with rs,0 denoting the specimen radius at room 
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temperature. Substitution of these values into eq. (3.4) yields is.|∆Ls|/∆t = 0.12 V, which is 

less than 0.06% of 210 V. Therefore, this voltage component could be neglected without 

introducing a considerable error. 

In actuality, the voltage was not measured across the entire specimen. The above mentioned 

23 mm corresponded to the ‘effective’ specimen length, which was defined by two shallow 

knife marks (grooves) that were made on the middle portion of each specimen. The exact 

distance of the marks was measured using a traveling microscope. Tantalum strips (6.4 mm 

wide and 0.25 mm thick), that had been sharpened to a knife-edge on one end, were placed on 

the knife marks to serve as voltage probes, with the sharp end touching the specimen (fig. 

3.3). Some tension was applied to the voltage probes to ensure good electrical contact.  

The voltage-measuring circuit was connected in parallel across the specimen (fig. 3.6). It 

consisted of a resistor in series with a rotatable tuning-coil that was placed below the 

experiment chamber, near the central current feedthrough. The voltage across this parallel 

path was equal to the voltage across the specimen. Applying Kirchhoff’s voltage law to the 

loop formed by the parallel path and the specimen, and using eq. (3.1) for the voltage across 

the specimen, we can write 

 ( ) ( )
dt
di

LiR
dt
diM

dt
iid

LiiR p
ppp

cpc
spcs ⋅+⋅=⋅+

−
⋅+−⋅  (3.5) 

where the loop currents ic and ip on the discharge-circuit-side and on the parallel-path-side, 

respectively, have been introduced (fig. 3.6). Rp and Lp are the total resistance and the total 

self-inductance of the parallel path. 

It can be seen from eq. (3.5) that the inductive voltage components cancel if M satisfies 

 ( ) ( )
dt
di

LL
dt
diML p

ps
c

s ⋅+=⋅+  (3.6) 

In this case we obtain the simple expression 

 ( ) pppcs iRiiR ⋅=−⋅  (3.7) 

In other words, the resistive component of the voltage across the specimen Rs.(ic – ip) can be 

determined from ip and Rp. 
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If we rearrange terms in eq. (3.7), 

 ( ) ppscs iRRiR ⋅+=⋅  (3.8) 

it becomes apparent that when eq. (3.6) is satisfied, the current ip in the parallel path “follows” 

the current ic in the main discharge circuit; in other words the two currents are in phase. 

The mutual inductance M between the voltage-measuring circuit and the discharge circuit was 

varied by rotating the tuning coil with respect to the direction of the magnetic field produced 

by the main circuit. This, in effect, changed the magnitude of the voltage that was induced in 

the coil by changes in the magnetic field, resulting from dic/dt. The induced voltage was a 

maximum when the axis of the coil was parallel to the direction of the magnetic field. In order 

to find the position for which eq. (3.6) was satisfied, each experiment was preceded by a few 

trial discharges in the oscillatory mode, in which ic and ip were recorded. To avoid excessive 

heating of the specimen the capacitor bank was charged to the lowest possible voltage that 

still ignited the ignitron-switch. The tuning coil was readjusted after each trial until ip was in 

phase with ic. Usually, one or two trials were sufficient. 

Combining eqs. (3.6) and (3.8) we arrive at the following expression for M, when ic and ip are 

in phase: 
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The last step is justified, considering the fact that Rp was approximately 20 Ω, whereas the 

resistance Rs of the Nb and Ti specimens at the highest temperatures did not exceed 12 mΩ 

and 20 mΩ, respectively. 

Equation (3.9) was used to roughly estimate the effect of Rs on the value of M that was 

required for ic and ip to be in phase. The self-inductance Ls of the specimen was computed 

using eq. (3.2). The self-inductance L of the tuning coil was obtained from 

 2NdF001.0L ⋅⋅⋅=  (3.10) 

where L is in µHenry, d is the coil-diameter in cm, N is the number of turns, and F is a shape-

factor [18]. Assuming that the total self-inductance Lp of the voltage-measuring circuit was 

determined by the self-inductance of the tuning coil, it was estimated that a six-fold increase 
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in Rs during a typical pulse-heating experiment with niobium caused a change of 4% in M. 

Similarly, a more than three-fold increase in Rs during a typical pulse-heating experiment 

with titanium caused a change of 6% in M. Thus, it can be said that M is a relatively weak 

function of specimen resistance. 

The current ip through the voltage-measuring circuit was measured with a current monitor, 

similar to the one that was used to measure the current ic through the main discharge circuit 

(§3.5). By passing ip twice through the current monitor the output signal was doubled yielding 

a nominal sensitivity of 0.2 V.A-1. Accurate values for the sensitivity of the current monitor 

and the resistance of the parallel path were obtained by calibration. 

3.7 Radiation thermometry 

3.7.1 The radiation thermometer 

The radiance temperature of the pulse-heated specimens was measured using a single-

wavelength radiation thermometer built by E. Kaschnitz in 1993. Its main components were a 

pair of identical plano-convex achromatic lenses with a combined effective focal length of 

160 mm as the objective, an interference filter as the wavelength-selecting element, and a 

rectangular field stop of 9.8 mm height and 0.5 mm width. This corresponded exactly to the 

target size, i.e. the size of the area viewed on the specimen, since the magnification of the 

instrument was unity. The light from the specimen was coupled into an optical fiber light 

guide and transmitted to a silicon PIN photodiode. The photodiode and the signal amplifying 

electronics were contained in a separate box that shielded them against EMI. The amplifying 

electronics had a low-gain and a high-gain output. The nominal radiance temperature ranges 

for the two outputs were 1600 to 2800 K and 1400 to 2200 K, respectively. Two coaxial 

cables inside copper tubes of adequate wall thickness, again for the purpose of shielding 

against EMI, transferred the output signals to the data acquisition instrumentation outside the 

shielded room. 

3.7.2 Radiance temperature calibration 

The radiation thermometer was calibrated in-situ against a gas-filled tungsten-filament 

reference lamp. The lamp had been previously calibrated against the NIST Photoelectric 

Pyrometer [20] by the NIST Optical Technology Division and was issued a calibration 
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certificate reporting filament currents for thirteen radiance temperatures at 655.3 nm in the 

range of 1000 to 2200°C in steps of 100°C1. A quadratic function of radiance temperature vs. 

filament current was fitted to these values in the range of 1800 to 2200°C (fig. 3.8a). The 

deviation of the fit from the actual values was less than 0.4°C (fig. 3.8b). All temperatures 

reported in this work are based on the International Temperature Scale of 1990 (§2.2.1). 
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Fig. 3.8: (a)  Lamp radiance temperature at 655.3 nm vs. lamp filament current. 
 (b)  Deviation of the quadratic fit from the values reported on the lamp 
   calibration certificate. 

The radiation thermometer was calibrated at 2073.15 K and at 2373.15 K in radiance 

temperature. When the lamp current was not identical to the values corresponding to these 

two temperatures as specified on the calibration certificate, the actual radiance temperature of 

the filament was computed using the quadratic fit. It can be seen from fig. (3.8b) that at 

1800°C and 2100°C the deviation of the fit from the values on the calibration certificate was 

less than 0.2°C. The lower-temperature calibration was used for the titanium measurements 

and the higher-temperature calibration for the niobium measurements. The lamp was aligned 

according to the procedure outlined in [21]. Since the measurement of specimen temperature 

                                                 
1 Because lamp calibration certificates issued at NIST report temperatures in degrees Celsius, this unit will be 
used in a limited manner in this section. 
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involved focussing the radiometer on the specimen through an experiment chamber window, 

an identical window was interposed between the reference lamp and the radiometer during 

calibration. 

Having calibrated the radiometer at T0, an unknown specimen radiance temperature Tλ was 

computed using eq. (2.50), which when solved for Tλ yields1: 

 
( )
( ) 






















−











⋅λ⋅
⋅+

⋅
λ⋅

=

λ

λ

−λ

−
λ

1
Tn

cexp
TS
TS1ln

1
n

cT

0TT

20
TT

2

0

0

 (3.11) 

where λT0-Tλ is the mean effective wavelength between T0 and Tλ .  S(T0) and S(Tλ) denote the 

radiometer output signal when viewing a target at T0 and Tλ, respectively. 

3.7.3 Effective wavelength calibration 

In order to be able to compute λT0-Tλ, the limiting effective wavelength λT of the radiation 

thermometer as a function of temperature had to be determined. For this, the instrument had to 

be calibrated in terms of its spectral-radiance responsivity RL(λ), as follows from eq. (2.46). 

This quantity was defined in eq. (2.40), which is repeated here for convenience: 

 ( ) ( ) ( )λ⋅λτ⋅⋅=λ ΦRGbR L  (3.12) 

For brevity, the double integral over the spatial parameters A and ω has been replaced by the 

constant G and these parameters have been omitted, since attention is now focused on the 

dependence of RL on the spectral parameter λ. The spectral behavior of RL is determined by 

the spectral transmittance τ(λ) of the optical components in the radiometer (primarily the 

interference filter) and the detector spectral-flux responsivity RΦ(λ). 

An existing, specially designed automated monochromator system [22] was used to measure 

τ(λ), up to a constant multiplicative factor. The main component of the system was a 

computer-controlled, wide-aperture, grating monochromator combined with a filter wheel for 

stray light reduction and unwanted order elimination. Immediately prior to the τ(λ)-

measurement the monochromator was calibrated using the 730 nm line of a low pressure 

mercury lamp. As a check of this calibration, several more of the mercury-lines were scanned 

                                                 
1 Keeping in mind the simplifying assumptions that led to eq. (2.39). 
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in the range 400 to 1100 nm. The mercury lamp was then replaced by a gas-filled tungsten-

filament lamp. 

An essential requirement in the measurement of τ(λ) is that the illumination of the 

interference filter and the other optical components in the radiometer be identical to that 

during temperature measurements, since the spectral transmittance of interference filters is 

strongly dependent upon the particular direction of the incident radiance. In the 

monochromator system described here, the radiance from the tungsten-filament lamp was 

focused on the entrance slit of the monochromator by a pair of achromats similar to those 

used in the radiometer objective. The radiometer, in turn, was focused on the exit slit of the 

monochromator. The radiometer output signal was recorded as a function of wavelength as 

the monochromator scanned the range from 570 nm to 740 nm in steps of 1 nm. 
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Fig. 3.9: Relative, peak-normalized spectral transmittance τ(λ) of the optical components in 
the radiation thermometer. 

In a second step, a stand-alone silicon photodiode was mounted on the monochromator exit 

slit and the photodiode current was recorded as the monochromator scanned the same spectral 

range. The peak-normalized ratio of the radiometer output signal to the stand-alone 
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photodiode signal represented the (relative) peak-normalized spectral transmittance curve 

τrel(λ) of the optical components in the radiometer (fig. 3.9). Each scan was preceded by a 

measurement of the ‘dark’ signal (with a shutter between the lamp and the monochromator in 

the ‘closed’ position) that was then subtracted from the ‘bright’ signal to account for the zero-

offset of the radiometer and the dark current of the stand-alone photodiode. 

By substituting eq. (3.12) into eq. (2.39) the radiometer signal recorded in the first 

monochromator scan may be expressed as: 

 ( ) ( ) ( ) ( ) mLRGbS λ∆⋅λ⋅λ⋅λτ⋅⋅=λ λΦ  (3.13) 

λ denotes the monochromator setting and ∆λm the wavelength interval around λ of significant 

transmission through the monochromator. Lλ(λ) is the lamp spectral radiance at λ. The 

integral of eq. (2.39) was replaced in eq. (3.13) by a simple product, assuming that τ(λ), 

RΦ(λ), and Lλ(λ) were constant throughout the narrow1 interval ∆λm. 

Similarly, the signal of the stand-alone photodiode recorded in the second scan may be 

expressed as: 

 ( ) ( ) ( ) mphph LRGS λ∆⋅λ⋅λ⋅=λ λΦ  (3.14) 

Gph is a factor taking into account the geometry of illumination of the photodiode, similar to 

the factor G in eq. (3.12). 

The ratio of S(λ) to Sph(λ) is proportional to τ(λ): 

 ( )
( ) ( )λτ⋅⋅=
λ

λ

phph G
Gb

S
S  (3.15) 

Normalization of this ratio with respect to its peak value yields the relative, peak normalized 

spectral transmittance of the optical components in the radiometer: 

 ( ) ( )
( )max

rel λτ
λτ=λτ  (3.16) 

λmax denotes the wavelength of peak transmittance. 

                                                 
1 A measure for ∆λm when the entrance and exit slits are equal in width, is the double spectral slit width, 2.∆λw, 
of the monochromator. ∆λw is defined in [23] as ∆x.(dx/dλ)-1, with ∆x denoting the width of the exit slit and 
dx/dλ denoting the linear dispersion of the instrument. The actual values for ∆x and (dx/dλ)-1  were 0.25 mm and 
3.0 nm.mm-1, respectively, yielding 1.5 nm for 2.∆λw [24]. 
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Substitution of τ(λ) from eq. (3.16) into eq. (2.46) yields for the limiting effective wavelength 

of the radiometer as a function of temperature: 
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The detector flux-responsivity RΦ(λ) was approximated within the integration limits by a 

linear function of wavelength tangent to the responsivity curve at λmax 

 ( ) ( ) ( )maxmax aRR λ−λ⋅+λ=λ ΦΦ  (3.18) 

with RΦ(λmax) = 0.45 A.W-1 and a = 1 A.W-1.µm-1. These values were obtained from the 

photodiode manufacturer’s data sheet. 
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Fig. 3.10: The inverse limiting effective wavelength of the radiation thermometer as a 
function of inverse temperature. 

Figure (3.10) shows the inverse limiting effective wavelength of the radiometer, computed at 

six temperatures in the range 1500 to 3500 K. A linear function of inverse temperature was 

fitted to the computed values of inverse limiting effective wavelength: 

                                                 
1 ∆λ is the wavelength interval of significant instrument responsivity and should not be confused with ∆λm, 
which denotes the wavelength interval of significant monochromator transmittance. 
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The largest deviation of the fit from the computed values of 1/λT was less than 4×10-6 µm-1, 

corresponding to a deviation of less than 0.002 nm in λT. 

Using eqs. (2.47) and (3.19), λT0-Tλ was computed as a function of target radiance temperature 

Tλ in the range 1500 to 3000 K, for both calibration temperatures T0 = 2073.15 K and 

T0 = 2373.15 K (fig. 3.11). 

The variation of λT0-Tλ over the entire temperature measurement range was considered small. 

Therefore, specimen radiance temperature was computed from the measured radiance using a 

constant value of 656.3 nm for λT0-Tλ in eq. (3.11). The error in radiance temperature 

stemming from this simplification was less than 0.35 K over the entire range and less than 

0.2 K in the range of 1700 to 2800 K. 
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Fig. 3.11: The mean effective wavelength λT0-Tλ of the radiation thermometer as a function of 
target radiance temperature Tλ, for the two calibration temperatures T0. 

3.8 Reflection Polarimetry 

3.8.1 Determination of normal spectral emittance from polarimetric measurements 

In reflection polarimetry a light wave of known state of polarization is reflected off the 
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specimen surface at a specified oblique angle of incidence θi and the state of polarization of 

the reflected wave is measured. This leads to the determination of the ratio q of the complex 

Fresnel reflection coefficients (§2.3.6) for the p and s polarizations, from which the complex 

index of refraction N2 of the specimen material is derived by use of eq. (2.95): 

 ( )
2
1

i
2

2i122 sin
q1
q41tannkjn 




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


θ

+
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where it has been assumed that the medium in which the incident and reflected waves 

propagate is transparent (k1 = 0). 

Assuming that the specimen surface reflects specularly, the spectral normal-hemispherical 

reflectance ρn,h(λ,T) (§2.1.14) can be computed from N2 by use of eq. (2.102): 

 ( ) ( )
( ) 2

2
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2
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knnT,

++
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In this work, the quantity of interest was the normal spectral emittance εn(λ,T) of the 

specimen surface, which was needed in order to convert the measured radiance temperature to 

true (thermodynamic) temperature. εn(λ,T) was determined indirectly from the spectral 

normal-hemispherical reflectance via the energy balance equation for opaque materials: 

 1)T,()T,( nh,n =λε+λρ  (2.31) 

3.8.2 The Division-of-Amplitude Photopolarimeter 

In order to measure the change in the state of polarization of a laser beam upon its reflection 

at the specimen surface, a microsecond-resolution Division-of-Amplitude Photopolarimeter 

(DOAP) was used. The DOAP was first conceived by R. M. A. Azzam [25]. Compared to 

static ellipsometers the DOAP offers the advantage of having no moving parts, which makes 

it predestined for fast measurements. 

The DOAP used in this work was a prototype developed by Containerless Research, Inc 

(CRI) in Evanston, IL, USA. This instrument was similar in design to an earlier, slower 

                                                 
1 For brevity, the modifiers λ and T have been omitted from the right side of the equation. However, it should be 
kept in mind that n1, n2 and k2 are all wavelength-dependent and, in addition, n2 and k2 depend on the 
temperature T of the specimen.  
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DOAP device, designed by CRI for use with a millisecond-resolution pulse-heating system 

[4, 26]. However, a number of modifications had to be made to accommodate the 

requirements of microsecond-resolution pulse-heating experimentation. These modifications, 

which will be explained below, were dictated by the need for high-speed operation and for 

shielding against EMI in a capacitor-discharge environment. 

The DOAP consisted of three modules. The polarization state generator (PSG), the 

polarization state detector (PSD), and the electronics module. The PSG and the PSD 

contained the polarizing and analyzing components, respectively, and were situated close to 

the experiment chamber, each in front of one of the polarimetry viewports. The electronics 

module, including the modulated laser source and the photodetectors, was located outside the 

shielded room in order to minimize the effect of EMI on the measured signals. This was one 

of the major modifications, as compared to the millisecond-resolution DOAP that was 

mentioned above. 

3.8.2.1 The Polarization state generator (PSG) 

The light from the laser source was delivered to the PSG inside the shielded room using a 

fiber optic light guide. The PSG was used to polarize the laser beam that was incident on the 

specimen. It contained a Glan-Thompson crystal-prism linear polarizer, a mica quarter-wave 

retarder (QWR), and a converging lens. The linear polarizer and the QWR were each mounted 

on a computer-controlled motorized rotator. The lens reduced the divergence of the laser 

beam so that the spot size on the specimen was approximately 1 mm in diameter. The PSG sat 

on a micrometer-driven horizontal translation stage for alignment in a direction normal to the 

axis of the beam. This translation stage was, in turn, mounted on top of a laboratory jack for 

vertical alignment. The entire unit (PSG, horizontal translator, jack) was attached to a carrier 

that could slide on an optical table rail in a direction parallel to the laser beam. In addition, the 

PSG could be finely rotated about its optical axis (roll) and about the horizontal axis 

perpendicular to the optical axis (pitch). The roll was particularly important, since it directly 

affected the azimuth of the polarization ellipse of the polarized laser beam. Pitch and roll were 

monitored using two spirit levels attached to the PSG in the appropriate directions. 

By independently rotating the linear polarizer and the QWR any desired state of polarization 

could be generated. The Stokes vector SPSG of the light at the output of the PSG can be 
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derived from the Stokes vector S = [S0 S1 S2 S3]t of the beam delivered to the PSG through the 

optical fiber, where the superscript t indicates the transpose, if the Mueller matrices of the 

polarizing components are known. Assuming that the linear polarizer and the quarter wave 

retarder are perfect1, their Mueller matrices can be expressed as 
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where MLP is the Mueller matrix of the linear polarizer and MQWR is the Mueller matrix of the 

quarter-wave retarder. P and Q are the angles of rotation (in a counter-clockwise sense when 

looking against the direction of propagation) of the transmission axis of the linear polarizer 

and the fast axis of the QWR, respectively, with respect to the zero reference direction, i.e. the 

x-axis of the coordinate system to which S and SPSG are referenced2 and from which the 

azimuth of the polarization ellipse is measured. In practice, P and Q were measured from the 

zero reading on the graduated circles on the polarizer and QWR rotators. When the bubbles in 

the spirit levels on the PSG were centered, the laser beam was horizontal and the zero reading 

(x-axis) of both rotators corresponded to the laboratory horizontal direction, whereas the 90° 

reading (y-axis) corresponded to the laboratory vertical direction. Since the specimens in the 

experiment chamber were installed vertically, the laboratory horizontal direction was parallel 

to the plane of incidence during measurements. 

                                                 
1 A linear polarizer is considered perfect if the transmittance for light that is linearly polarized parallel to the 
extinction axis is zero (extinction ratio = 0) and the transmittance for light that is linearly polarized parallel to the 
transmission axis is one. 
  A QWR is considered perfect if its transmittance is one, regardless of incident polarization, and the relative 
phase retardation for linear polarizations parallel to its fast and slow axes is exactly 90°. 
2 This right-handed Cartesian coordinate system is chosen such that the positive z-direction is parallel to the 
propagation direction of the beam (§2.3.4). 
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By carrying out the matrix multiplication1 

 SMMS ⋅⋅= LPQWRPSG  (3.22) 

the Stokes vector SPSG of the outgoing light is found to be 
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It follows from eq. (3.23) (by forming the sum of the squares of the elements of SPSG) that the 

outgoing laser beam is totally polarized. This is expected, since we assumed the polarizer of 

the PSG to be perfect. Furthermore, by inspecting the multiplicative factor in eq. (3.23), it is 

evident that the stronger the linear preferences in the light that is incident on the PSG are, as 

expressed by nonzero values of S1 and S2, the more the outgoing beam will be modulated by a 

rotation of the linear polarizer. 

A comparison of eqs. (3.23) and (2.72) yields the following system of equations relating P 

and Q to the azimuth θ and the ellipticity andgle ε of the polarization ellipse of the outgoing 

laser beam: 

 ( ) ε⋅θ=−⋅ 2cos2cosP2Q2cosQ2cos  (3.24a) 

 ( ) ε⋅θ=−⋅ 2cos2sinP2Q2cosQ2sin  (3.24b) 

 ( ) ε=− 2sinP2Q2sin  (3.24c) 

For a given pair of θ and ε, these equations can easily be solved to yield the values of P and Q 

required to generate that particular state of polarization. Specifically, it follows from eq. 

(3.24c) that P and Q can be chosen such that either 

 ε=− PQ  (3.25a) or ε−π±=−
2

PQ  (3.25b) 

                                                 
1 The converging lens alters only the total radiant flux of the beam, not its polarization state. Its effect is 
neglected here for simplicity, since we’re not interested in the absolute radiant flux. 
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Equations (3.24a) and (3.24b) then yield: 

 θ=Q  (3.26a) or 
2

Q π±θ=  (3.26b) 

respectively, provided that cos2ε ≠ 0. The signs in eqs. (3.25b) and (3.26b) can be chosen 

independently of each other. The difference in choosing either sign is only formal, since 

azimuthal orientations of the QWR or the linear polarizer that are 180°-apart are physically 

indistinguishable. 

If cos2ε = 0, then ε = ±π/4, which means that the outgoing light is circularly polarized. In that 

case, the azimuth θ is, of course, indeterminate. The angular position of the QWR relative to 

that of the linear polarizer that is required to generate circularly polarized light follows from 

eqs. (3.25a) or (3.25b): 

 For RCP light: 
4

PQ π=−  (3.27) 

 For LCP light: 
4

PQ π−=−  (3.28) 

To generate linearly polarized light (ε = 0) the QWR has to be oriented with its fast axis either 

parallel or perpendicular to the transmission axis of the linear polarizer: 

 0PQ =−  (3.29a) or 
2

PQ π±=−  (3.29b) 

In both cases, the azimuth of the linearly polarized light is determines the required azimuth of 

the linear polarizer: 

 θ=P  (3.30) 

For linearly polarized output light, eq. (3.23) takes on the simpler form 
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This is equivalent to removing the QWR from the optical train. Equation (3.31) can, therefore, 

be directly obtained from eq. (3.22) if MQWR is omitted. 
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3.8.2.2 The polarization state detector (PSD) 

A functional diagram of the PSD is shown in fig. (3.12). Light reflected off the cylindrical 

specimen was collected by the objective lens1 and was focused on the plane of a 2 mm 

pinhole. An iris diaphragm in front of the objective acted as an aperture stop. Since cylindrical 

surfaces produce a diverging ribbon of reflected light in the plane of incidence, the iris 

opening controlled the angular range over which light was collected, as well as its amount. 

The polarimeter signals increased with increasing opening, but at the same time so did the 

angular uncertainty (θi in eq. 2.95). An opening of 10 mm in diameter was a reasonable 

compromise between increased accuracy and better signal to noise ratio. An interference filter 

was used to block most of the background light that was thermally emitted by the specimen. 

The filter was centered at 677 nm and had a nominal bandwidth (FWHM) of 3 nm. Having 

passed through the aperture, the beam was collimated by a lens before it struck a beamsplitter 

made of ZnS and coated with a thin layer of MgF2. The beam splitter, which was the key 

element of the DOAP, was oriented at an angle of 70° to the optical axis of the PSD. It 

divided the incident beam into a reflected and a transmitted beam. Each of these beams was, 

in turn, analyzed into two orthogonally polarized beams, i.e. the ordinary and the 

extraordinary beam, by a beamsplitting Glan-Thompson prism. The angular separation of the 

two beams exiting each prism was 45°. The orthogonal transmission axes of the Glan-

Thompson prisms were oriented at 45° and 135° with respect to the plane of incidence at the 

coated beam splitter. The four light beams that were produced by the three beamsplitters 

constituted the output of the PSD. They were focused into optical fibers that transmitted the 

light to four photodetectors in the electronics module outside the shielded room, thus ensuring 

immunity to EMI. 

Like the PSG, the PSD sat on a micrometer-driven horizontal translation stage for left-right 

alignment, a laboratory jack for height adjustment, and a carrier that could be moved along an 

optical table rail in a direction parallel to the optical axis of the PSD in order to focus the PSD 

on the specimen. The PSD could be rotated about its optical axis, the vertical axis, and the 

horizontal axis perpendicular to the optical axis, to finely adjust its roll, yaw, and pitch, 

respectively. Pitch and roll were monitored with a circular spirit level. The design was such, 

                                                 
1 In actuality, a pair of plano-convex lenses with the interference filter placed in-between. 
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that the base point of rotation when changing the pitch or yaw of the PSD lay near the center 

of the iris diaphragm in the front, largely decoupling such a rotation from a translational 

alignment of the PSD’s front end. This facilitated the alignment of the instrument, which had 

to be carried out with great care because the measurement was rather sensitive to 

misalignment. 
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Fig. 3.12: Functional diagram of the PSD. 

As in the case of the PSG, the roll was very important, since a rotation of the PSD about its 

optical axis in one direction would have been perceived by the instrument as a rotation in the 

opposite direction of the ellipse of polarization of the light entering the PSD. Just as important 

was the angle between the optical axis of the PSD and that of the PSG. This angle determined 

the angle of incidence θi on the cylindrical specimen that had to be accurately known in order 

to compute the complex index of refraction of the specimen (eq. 2.95). Although the rails, on 

which the PSG and the PSD could be moved, were installed such as to include an angle of 

140°, an exact value for θi was established using a custom-made glass prism placed at the 

specimen location (fig. 3.13). The laser was first directed at the front prism face (toward the 

PSG) and the prism was rotated until the beam was reflected back into itself, which meant that 

the front face was perpendicular to the incident laser beam. The PSG was then horizontally 

translated until the laser beam struck the inclined prism face, which exactly included an angle 
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of 70° with the back prism face, thus ensuring that the angle of incidence was also 70°. The 

PSD was translated until the reflected laser beam entered centrally through the iris diaphragm, 

which for this purpose had been closed to a small diameter. Finally, the PSD was rotated 

about the vertical axis (yaw) to have the laser beam pass centrally through the pinhole, as 

well. An enlarged image of the pinhole could be viewed on a TV monitor via a small CCD-

chip and a pellicle beamsplitter that were installed inside the PSD (fig. 3.12) to facilitate 

alignment. 
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Fig. 3.13: Schematic drawing explaining the alignment of the PSD using a prism to establish 
an angle of incidence of 70°. The drawing is not to scale. 

3.8.2.3 The electronics 

A temperature-stabilized laser diode system was used as the laser source for the DOAP 

measurements. As mentioned above, it was contained in the electronics module outside the 

shielded room. It featured active thermoelectric temperature control via a bipolar Peltier 

element. This was important because the emitted wavelength in laser diode systems is known 

to depend on temperature (typical temperature coefficients range from 0.1 to 0.3°nm.K-1). The 

temperature control allowed the laser wavelength to be finely adjusted until it closely matched 

the wavelength of peak transmission of the interference filter (677 nm), yielding maximum 

signal. In addition, the constant temperature prevented a drift in wavelength as the diode 
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heated up during operation. To improve the signal-to-noise ratio and reject light that was 

thermally emitted by the specimen within the passband of the PSD’s interference filter the 

laser was amplitude-modulated. A 4 MHz square TTL-level waveform was used as the carrier 

signal. 

The laser beam was then coupled into the optical fiber that was clamped in a custom-made 

fixture. This fixture permitted translational and angular alignment of the clamped fiber end 

along and about two orthogonal axes perpendicular to the beam to achieve the best possible 

coupling of the laser light into the fiber core. The modulated laser beam was delivered to the 

PSG, reflected off the target, and analyzed by the PSD. 

The four output light signals of the PSD were collected by four optical fibers and delivered to 

an equal number of silicon PIN photodiodes inside the electronics module. Each of the 

photodiode signals was then individually pre-amplified, demodulated using phase-locked 

loops, and further amplified to be finally recorded by the data acquisition instrumentation. A 

block diagram of one (out of a total of four) of the DOAP channels is shown in fig. (3.14).  
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Fig. 3.14: Block diagram of the DOAP electronics (courtesy of CRI). Only one channel is 
shown. 

3.8.2.4 Measurement 

In order to derive the equations relating the four electrical output signals of the DOAP to the 

optical properties of the reflecting specimen, it is not necessary to know the exact details 
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describing the propagation of the light through the system. Following the linear-systems 

approach introduced in §(2.3.5), the optical system is simply described in terms of the 

component Mueller matrices. 

The laser light entering the PSD was split into four separate beams that were then coupled 

into the collection fibers and delivered to the photodiodes. Each of these beams can be 

described in terms of a Stokes vector and the path the beam propagated through by a Mueller 

matrix. The following four equations relate the Stokes vectors of the four light beams that are 

coupled into the fibers, via the Mueller matrices of their respective paths through the PSD, to 

the Stokes vector Sr of the light entering the PSD: 

 rtttt SMS ⋅=  (3.32a) 

 rtrtr SMS ⋅=  (3.32b) 

 rrrrr SMS ⋅=  (3.32c) 

 rrtrt SMS ⋅=  (3.32d) 

The subscripts tt, tr, rr, and rt stand for ‘transmitted-transmitted’, ‘transmitted-reflected’, 

‘reflected-reflected’, and ‘reflected-transmitted’, respectively, and describe the path of a 

particular beam in the PSD. Transmitted-reflected, for instance, would mean that the beam 

was first transmitted at the coated beamsplitter and subsequently reflected at the beamsplitting 

Glan-Thompson prism. Mtt, Mtr, Mrr, and Mrt can be derived from the optical properties and 

orientations of the optical components of the PSD, most importantly the coated beam splitter 

and the beam-splitting Glan-Thompson prisms. In most cases though, a calibration procedure 

performed in-situ will be more accurate. 

The four electrical signals making up the output of the DOAP were each proportional to the 

radiant flux of one of the four beams exiting the PSD, hence to the first component of the 

Stokes vector representing that particular beam (eqs. 3.32a - 3.32d). If we cast these four 

signals into a column vector I, then this vector is related to Sr by the following expression: 
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Stt,0, Str,0, Srr,0, and Srt,0 denote the first element of Stt, Str, Srr, and Srt, respectively. The 

transmittance of the fibers, the responsivity of the photodiodes, the current-to-voltage 

conversion and subsequent amplification of the photodiode signal by the DOAP electronics, 

and the gain of the data acquisition instrumentation were all lumped into four proportionality 
constants, rtt, rtr, rrr, and rrt, one for each of the four DOAP channels. ><0

ttM , ><0
trM , ><0

rrM , and 
><0

rtM denote the first row of the respective Mueller matrices. 

The matrix by which Sr is pre-multiplied in eq. (3.33) is a real 4×4 matrix that is characteristic 

of the instrument. It is called the instrument or calibration matrix of the DOAP and will be 

denoted by F: 
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Thus, eq. (3.33) takes on the simple form 

 rSFI ⋅=  (3.35) 

Pre-multiplication of eq. (3.35) with F-1, the inverse instrument matrix, yields 

 IFS ⋅= −1
r  (3.36) 

A condition for F-1 to exist, is, of course, that F be non-singular. 

The light that is analyzed by the PSD during measurement is light that was first reflected off 

the specimen. Therefore, Sr can be expressed in terms of the Stokes vector Si of the laser 

beam that is incident on the specimen and the Mueller matrix Mref of reflection: 

 irefr SMS ⋅=  (3.37) 

As already stressed in §(2.3.5), Mref depends on the azimuthal orientation of the (x, y) and 

(x´, y´) axes of the coordinate systems to which Si and Sr are referenced. When the directions 

of x and x´ are chosen in the plane of incidence, the Mueller matrix Mref of an isotropic, non-

depolarizing reflector as a function of the ellipsometric angles ψ and ∆, is given (see [27]) by: 
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The factor by which the matrix is pre-multiplied can be recognized as the reflectance for 

unpolarized incident light (eq. 2.100). 

With Si known from the angular positions of the linear polarizer and the quarter-wave retarder 

in the PSG (eq. 3.23) and Sr measured by the DOAP, eq. (3.37) could be solved for ψ and ∆. 

Since we were not interested in the absolute radiant flux of the incident and of the reflected 

beams, Si and Sr were normalized with respect to their first element Si,0 and Sr,0, respectively. 

The letter n in the subscript of the Stokes parameters in the following equations stands for 

‘normalized’: 
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Equation (3.42), which was derived from eqs. (3.40) and (3.41), was used to compute ∆. 

Attention was paid to the signs of the numerator and denominator in eq. (3.42) to determine 

the proper quadrant for ∆. Equations (3.40) and (3.41) were used as a consistency check since 

they had to obey 

 1cossin 22 =∆+∆  (3.43) 

Substitution of cos2ψ, sin∆, and cos∆ from eqs. (3.39) - (3.41) into eq. (3.43) yields 
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where Pi and Pr denote the degree of polarization (eq. 2.76) for the incident and the reflected 
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light, respectively. In our case, Pi was very close to 1 because the incident light was polarized 

in the PSG. Thus, Pr had to be very close to 1, as well, since we assumed the process of 

reflection to be non-depolarizing (eq. 2.79). If we substitute Pi = Pr = 1 into eq. (3.44) we 

obtain eq. (3.43). Therefore, any larger deviation of sin2∆ + cos2∆ from unity would have 

indicated that the surface was depolarizing, possibly as a result of excessive roughness. Rough 

surfaces are known to be depolarizing. When surfaces are depolarizing, non-zero values occur 

in the 2×2 off-diagonal blocks of Mref. In addition, terms in the 2×2 diagonal blocks, which in 

the case of the isotropic specular reflector are numerically equal, become unequal [28, 29]. In 

that case, the use of eq. (3.38) is not justified. 

3.8.2.5 Calibration 

The goal of the calibration was to obtain the instrument matrix F. This was done by recording 

the DOAP response to a number of known polarization states generated by the PSG. F was 

then computed from the acquired data by inversion. 

For calibration, the PSG was moved from the measurement position1 to the straight-through 

position, meaning that the polarized laser beam was incident directly onto the PSD (fig. 3.15). 

The distance of the PSG from the PSD during calibration was equal to the combined distances 

of the PSG and the PSD from the specimen during measurements. A neutral density filter was 

inserted in front of the linear polarizer in the PSG to prevent the DOAP output from 

saturating. 

PSD

PSG
Laser

BS

D

LP QWR
I

ir

r

 
Fig. 3.15: Functional diagram showing the PSD and the PSG in the calibration position 
(adapted from [30]). LP…linear polarizer, QWR…quarter-wave retarder, BS…beamsplitter, 
Dr…reference detector. 

                                                 
1 As outlined in §(3.8.2.2), when conducting measurements, the PSG and the PSD were set up such that their 
optical axes included an angle of 140°. 
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The different polarization states required for calibration were generated by rotating the linear 

polarizer and the quarter-wave retarder in the PSG. Because the beam, which was delivered to 

the PSG via an optical fiber, exhibited residual linear preferences, the rotation of the linear 

polarizer caused a variation in the total radiant flux incident on the PSD (eq. 3.23). This 

unwanted effect was cancelled by normalizing the four DOAP signals with respect to the 

varying incident flux. To measure this flux, a pellicle beamsplitter was installed in front of the 

PSD and a reference detector attached to the PSG. Both these components were used only 

during calibration and removed afterwards. The beamsplitter was tilted by a small angle (<5°) 

with respect to the plane perpendicular to the incident laser beam and reflected part of it onto 

the reference detector. Because this reference beam was generated by near-normal incidence 

reflection from the beamsplitter, its flux was a fixed fraction (approximately 5%) of the 

incident flux, irrespective of the incident polarization [31]. Therefore, any changes in the 

reference detector signal ir were a direct measure for the relative variation in the total incident 

flux, caused by the rotation of the polarizer or, perhaps, by instabilities in the laser source. By 

using the normalized DOAP signal vector I/ir to determine the instrument matrix F both 

effects were rendered inconsequential. At the same time, this normalization justified the use 

of a normalized Stokes vector [1 S1 S2 S3]t to describe the input light to the PSD. 

In principle, the instrument matrix can be determined from the response of the DOAP to only 

four linearly independent polarization states1. If we let Sk denote the Stokes vector of one of 

these states and Ik the corresponding column vector formed by the four electrical signals 

constituting the DOAP response, then, according to eq. (3.35): 

 kk SFI ⋅=  )30k( K=  (3.45) 

Let I denote a matrix whose columns are the four signal vectors Ik and S denote a matrix 

whose columns are the corresponding Stokes vectors Sk of the four incident polarization 

states. Then, the above system of four algebraic equations can be reduced into one that only 

involves 4×4 matrices, 

 SI ⋅=F  (3.46) 

                                                 
1 By linearly independent polarization states we mean polarization states whose Stokes vectors are linearly 
independent. 
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from which the instrument matrix is obtained by pre-multiplication with S-1: 

 1-SI ⋅=F  (3.47) 

The inverse matrix S-1 ought to exist, since the columns of S (i.e. the four calibration Stokes 

vectors) are linearly independent. An optimum choice of polarization states for this calibration 

results if the endpoints of the four vectors Sk in the Stokes subspace (§2.3.4) become the 

vertices of a tetrahedron [32]. This is the maximum-volume pyramid inscribed inside the unit-

sphere (Poincaré sphere) and corresponds to the maximum determinant of S. 

The accuracy of this straightforward calibration procedure, called the four-point method, is, of 

course, negatively influenced by imperfections in the polarizing components of the PSG. 

Superior results can be obtained by a different calibration scheme, known as the equator-poles 

method, that has been described in [30]. It involves the measurement of the DOAP response 

to a larger number of incident polarization states and allows the instrument matrix F to be 

determined mostly free of the small imperfections in the PSG. The equator-poles method was 

used in this work to calibrate the DOAP. It was carried out in two steps. 

In the first step, the QWR was removed from the PSG and the four output signals of the 

DOAP were recorded as the linear polarizer was rotated through 360° in steps of 10°. In other 

words, the instrument response to incident linearly polarized light of variable azimuth was 

measured. Ideally, azimuthal positions of the polarizer that are 180°-apart are physically 

indistinguishable and one should only need to let the linear polarizer complete half a 

revolution to obtain all the desired information. In practice, however, this is not exactly the 

case because of a small angular beam deviation introduced by the polarizer. By averaging the 

responses of the DOAP recorded at 180°-apart this effect was largely cancelled. It was found 

that the difference between the responses of any of the four DOAP detectors to two such 

diametrically opposite orientations could be as much as 12%. The average difference, though, 

was much less, approximately 2% to 5%. 

The normalized Stokes vector of the incident linearly polarized light, as a function of the 

polarizer azimuth P, is given by eq. (3.31): 
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The four normalized DOAP signals are linked to SLP by the instrument matrix F. Substitution 

of eq. (3.48) into eq. (3.35) yields 
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Fij denotes the element in the ith row and jth column of F (i,j=0,1,2,3). I0, I1, I2, and I3 

correspond to Itt, Itr, Irr and Irt of eq. (3.33), in exactly this order. 

By fitting I0, I1, I2, and I3 to the simple Fourier series of eqs. (3.49), the first three columns of 

F were obtained. Allowing most of the instrument matrix to be obtained without the QWR in 

the optical train is an important feature of the equator-poles method, considering that the most 

significant imperfections of the PSG reside in the quarter-wave retarder [30]. 

In the second step of the calibration, the instrument response to circularly polarized light was 

measured. The normalized Stokes vectors of right-circularly and left-circularly polarized light 

are given by: 
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Substitution of eqs. (3.50a) and (3.50b) into eq. (3.35) yields for the DOAP response to 

circularly polarized light: 
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Thus, the fourth and last column of the instrument matrix can be obtained from the difference 
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between ILCP and IRCP: 
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In addition, the average of the two signal vectors yields the first column of F: 
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Equation (3.53) was only used as a consistency check, since the first column of the instrument 

matrix was obtained in the first step of the calibration from a multitude of incident linearly 

polarized states. Typically, the largest relative difference in the elements of the column 

obtained in the two steps was below 1%. 

According to eqs. (3.27) and (3.28), the only condition to be satisfied in order to generate 

RCP (or LCP) light, is that the QWR lead (or lag) the linear polarizer by 45°. However, 

imperfections in the QWR make it practically impossible to produce exact circular 

polarization states (CS). Instead, elliptical states that are more or less near-circular (NCS) will 

be generated by the PSG when the fast axis of the QWR is oriented at (or near) ±45° with 

respect to the transmission axis of the linear polarizer. Nevertheless, it is still possible to 

measure the DOAP response to exact circular states, without being able to produce them, if 

the deviation of the near-circular states from the ideal is small [30]. 

The difference β of the ellipticity angle ε of an elliptical state from ±45° can be used as a 

measure of how close to circular this state is: 

 ε−°=β 45  (3.54) 

If β is small enough for the first-order approximations cos2β ≈ 1 and sin2β ≈ 2β to be 

justified, it can be shown that the DOAP response to a circular state equals the average 

instrument response to two near-circular states of orthogonal azimuths, θ and θ+90°: 

 [ ])90()(
2
1

NCSNCSCS °+θ+θ= III  (3.55) 
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To obtain IRCP, any two right-handed near-circular states with the same β and orthogonal 

azimuths can be used. Similarly, to obtain ILCP, any two left-handed near-circular states with 

the same β and orthogonal azimuths can be used for the response to LCP light. No explicit 

knowledge of either θ or β, and hence of the PSG imperfections, is required for this 

measurement. 

The effect of angular beam deviation as it traverses the PSG, needs again to be taken into 

account, as in the first calibration step. Since there are two components in the beam path now, 

four measurements have to be averaged for every combination of P and Q, namely with the 

linear polarizer and QWR oriented at (P,Q), (P,Q+180°), (P+180°,Q), and (P+180°,Q+180°). 

Combining this with eq. (3.55), a total of sixteen measurements have to be taken to obtain the 

DOAP response to right-circular and left-circular light. The values of P and Q (initial 

orientation) can be arbitrarily chosen, as long as they satisfy P–Q = ±45°. A possible choice 

is: 
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where the first angle in the round brackets indicates the polarizer azimuth and the second one 

the retarder azimuth. 

The computer-controlled rotators in the PSG were, by default, programmed to take thirty eight 

measurements, nineteen for RCP and nineteen for LCP light. The polarizer-retarder 

combination was rotated solidly as one piece through a complete circle in steps of 20°, once 

with the retarder leading the polarizer by 45° and once with the retarder lagging by the same 

angle. Although this is a deviation from the recommendations in [30], the large number of 

calibration states should yet warrant results of nearly the same quality. 

The top graph in fig. (3.16)1 shows the raw polarimeter signals (prior to normalization) and 

                                                 
1 Figures (3.16) - (3.19) are at the end of this section. 



 75

the reference detector signal recorded during the latest calibration. A total of seventy five data 

points was acquired in both calibration steps. The effect of the varying incident flux is 

apparent in the instrument response to the (near-) circular states, which should be (nearly) 

constant. 

The normalized signals are shown in the bottom graph of the same figure. As expected, the 

response to the (near-) circular states is now much more constant. The residual variation 

probably stems from the above mentioned angular deviation of the beam and the fact that the 

incident states are not exactly circular. Table (3-1) lists the standard deviations of the 

individual signals from their mean value, before and after normalization. 

Figure (3.17) shows the normalized instrument response to linearly polarized light of variable 

azimuth, in the range 0° to 180°, after averaging signals recorded at azimuths that were 180°-

apart. The signals were least-squares fitted to the Fourier-series of eq. (3.49) to yield the first 

three columns of the instrument matrix. The solid lines in the graph represent the fits. The 

standard deviations of the measured data points from the fits were 3.6 mV for I0, 2.2 mV for 

I1, 5.2 mV for I2, and 5.6 mV for I3. 

Table 3-1: Relative standard deviations of the individual polarimeter signals from their mean 
value, for the different incident (near-) circular states generated during calibration, before and 
after normalization. 

 Relative standard deviations 
 Before normalization After normalization 
 RCP LCP RCP LCP 

I0 3.64% 3.29% 2.39% 1.91% 
I1 3.29% 3.66% 1.22% 1.51% 
I2 2.42% 2.47% 1.57% 1.42% 
I3 2.52% 2.63% 1.11% 1.93% 

ref. det. 3.17% 3.36%   

The instrument matrix obtained by this calibration and its determinant are shown below: 
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Since inversion of a matrix is associated with division by its determinant, the larger the 

determinant of the instrument matrix, the better. A small determinant would indicate a near-

singular matrix. In the real world, where the elements of the instrument matrix are always 

accompanied by a measurement uncertainty, inversion of a near-singular matrix would greatly 

amplify any error, eventually rendering the matrix useless. For ease of reference the inverse 

instrument matrix F-1 is also given here: 
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1F  (3.59) 

The physical meaning of the rows and columns of the instrument matrix is discussed in detail 

in [33]1. Each of the rows of F is associated with one of the polarimeter channels. More 

specifically, it follows from eq. (3.35) that the response of a channel to a particular incident 

polarization state, represented by a Stokes vector S, is determined by the scalar product of the 

corresponding row of F with S. If the incident light is unpolarized (eq. 2.71), the response is 

determined by the first element of that row. In other words, the first column of the instrument 

matrix specifies the DOAP response to unpolarized light, normalized per unit incident radiant 

flux. Because the polarimeter signals can only be non-negative, the elements in the first 

column of F must be positive (zero response to unpolarized light would indicate zero 

transmittance of the corresponding channel). 

If the rows of F are interpreted as vectors in four-dimensional space, the polarimeter signals 

can be thought of as the projections of S along these vectors. Four independent projections are 

needed to fix S in four-dimensional space2. Because of this analogy, the rows of the 

instrument matrix are also called projection vectors. If these vectors and S are each 

normalized with respect to their first element, the four projections can easily be visualized in 

the three-dimensional Stokes subspace (§2.3.4). The normalized projection vectors (NPV’s) 

                                                 
1 Actually, in the cited reference the instrument matrix of a different device, the four-detector photopolarimeter 
(FDP), is discussed. However, the FDP and the DOAP are mathematically equivalent except for some of the 
constraints on the elements of the instrument matrix. 
2 If the number of available independent projections exceeds four, for instance in a polarimeter with more than 
four channels (detectors), then there may exist several distinct possible combinations of four projection vectors 
whose associated instrument matrices are all non-singular. In this case the Stokes vector S is overdetermined, 
and an average of several determinations of S can be taken to improve the accuracy and precision of 
measurement [34]. 
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are defined by: 
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F is non-singular if these vectors do not all lie in the same plane. 

In terms of the four NPV’s, eq. (3.35) can now be written as: 

 ( ) 0,1,2,3i    ,     1SFI i00ii =⋅+⋅⋅= sf  (3.61) 

s denotes the normalized Stokes vector in the Stokes subspace: 
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Equation (3.61) states that a signal is maximum when the incident light is totally polarized 

(|s| = 1) and its Stokes vector parallel to the corresponding projection vector. It is minimum 

when the incident light is totally polarized and its Stokes vector antiparallel to the 

corresponding projection vector. Put differently, the polarization state that yields minimum 

signal is orthogonal to that which yields maximum signal. The average signal is equal to the 

response to unpolarized light1 (s = 0) or light whose Stokes vector is perpendicular to the 

corresponding projection vector (fi.s = 0). 

It also follows from eq. (3.61) that, since Fi0 and S0 are both positive, the length of the NPV’s 

cannot exceed 1. A NPV will be of unit length if the last element in the optical train of that 

particular channel (prior to the photodetector) is an ideal polarizer (analyzer). In that case, the 

minimum signal will be zero, and if s were to scan the entire surface of the unit sphere in the 

Stokes subspace the modulation2 of the signal would be one. 

With F from eq. (3.59), the four normalized projection vectors are: 
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1 Remember that unpolarized light can be thought of as the superposition of two polarized waves of equal 
amplitude and orthogonal polarizations. 
2 Defined as (Imax-Imin)/(Imax+Imin). Also known in optics as the contrast or visibility. 
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Although the last (polarization-altering) element in all channels of the PSD is a prism 

polarizer, a reduction in the length of the NPV’s is expected because of the fibers delivering 

the light to the photodetectors. A slower DOAP described in [35] did not utilize fibers. The 

reported NPV’s for that instrument do, indeed, have lengths that are closer to one. 

The four characteristic Stokes vectors that result in maximum signals can be derived from eq. 

(3.63). They are listed below, together with the ellipticity angles and azimuths of the 

polarization ellipses that they describe: 
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 (3.64) 

3.8.2.5.1 Verification 

Upon completion of the calibration and with the PSG and the PSD still set up in the straight-

through mode, a verification procedure was started to check the validity of the newly obtained 

instrument matrix. With the linear polarizer fixed at P = 0, the QWR was rotated through a 

complete circle in steps of 10°, thus generating a variety of polarization states that were 

measured with the DOAP. The measured Stokes parameters were then compared to the 

predicted Stokes parameters, that are given by: 
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as follows from eq. (3.23) in its normalized version and with P set zero. 

Figure (3.18) shows the results of the verification that was carried out immediately after the 

calibration which led to the instrument matrix of eq. (3.58a). The maximum deviations of the 

measured from the predicted parameters were 0.041 for S1, 0.014 for S2, and 0.066 for S3. The 

average deviations were 0.019 for S1, 0.005 for S2, and 0.028 for S3. The measured degree of 

polarization is also plotted in the same figure. Its mean value was 1.004, with a standard 

deviation of 0.024. 
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3.8.2.5.2 Prism - Check 

After calibration and verification the PSG was returned to the measurement position and the 

PSD was aligned using a prism, as described in §(3.8.2.2). As a final check before the prism 

was removed, a measurement, consisting of 2048 data points, was taken. The index of 

refraction n and the extinction coefficient k of the prism material (BK7 optical glass) were 

computed and compared with the ‘should be’ values. This convenient quick check was also 

done routinely in-between calibrations to realign the PSD and ensure that the instrument 

matrix in use was still valid. To check the linearity of the system, the measurement was 

repeated at different signal levels by changing the neutral density filter in front of the linear 

polarizer in the PSG. A total of three neutral density filters with varying transmittances was 

used. A slight tendency for the measured n to increase with increasing signals was observed. 

Nevertheless, this occurred when the signals by far exceeded (three to four times higher) 

typical signals recorded during measurements on cylindrical specimens. The relative 

difference between the value of n obtained with the highest signals and that obtained with the 

lowest signals was approximately 1%. 

Figure (3.19) shows the results of a prism-check, including the raw signals (lowest of the 

three levels). The average measured n was 1.520 with a standard deviation of 0.032 (≈2%) 

compared to the published value of 1.513701 at 677 nm. The average measured k was 0.007 

with a standard deviation of 0.11. The extinction coefficient should, of course, be exactly zero 

for a dielectric. The value of the spectral normal (-hemispherical)2 reflectance at 677 nm, 

computed from the measured n and k (eq. 2.102), was 0.0426. 

In all the prism checks that were done in the course of this work, the measured values for the 

index of refraction of the prism were always higher than the published value. The average 

deviation, when the signals in the prism check were comparable in magnitude to those during 

measurements, was +1.7%. This points to a systematic error, which, unfortunately, could not 

be traced to its source. 

                                                 
1 Source: Schott Optical Glass catalog 1995. 
2 See the comments at the end of §(2.3.6). 
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Fig. 3.16: The four polarimeter signals recorded during a equator-poles calibration. Shown before (top) 
and after (bottom) normalization with respect to the reference detector signal. 
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Fig. 3.17: The normalized instrument response to incident linearly polarized light as a function of the 
varying azimuth. 
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Fig. 3.18: Results of the verification procedure. In the bottom graph, the symbols represent the 
measured Stokes parameters S1, S2, and S3, whereas the solid curves are plots of the predicted Stokes 
parameters, as a function of the QWR azimuth. The deviation of the measured from the predicted 
values is plotted in the top graph. The middle graph shows the degree of polarization of the measured 
Stokes vectors (values greater than one are, of course, the result of measurement errors). 
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Fig. 3.19: Results of the latest prism-check. Shown from top to bottom are the DOAP raw signals, the 
index of refraction, the extinction coefficient, and the computed spectral normal (hemispherical) 
reflectance of the prism material (BK7 optical glass). 
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3.9 The data acquisition 

The data acquisition system consisted mainly of four data acquisition boards installed in a PC. 

Each board featured two analog input channels, each with its own 12-bit A/D-converter, with 

a full scale input range of 0 to +10 V, a sampling rate of 2 MHz, and a sampling size of up to 

4095 samples/channel. Two of the boards were used to acquire the demodulated polarimeter 

signals, the third board was used for the two radiometer outputs, and the last one for the 

current and voltage measurements. All four boards were triggered simultaneously by a TTL-

signal generated by the DOAP electronics module. 

A fifth, slower (16-bit, 160 kHz A/D-converter), data acquisition and I/O board was used 

primarily to control digital I/O operations of the timing and overload conditions of the DOAP 

electronics module. It was also used during polarimeter calibration to acquire the 

demodulated reference detector signal. 

The radiometer, current, and voltage signals were also simultaneously acquired by a digital 

oscilloscope (four channels, 12-bit, 10 MHz max. sampling rate). Its was used in the trial 

discharges to adjust the tuning coil (§3.6) and for double-checking purposes. 
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4 DATA REDUCTION 

4.1 Temperature 

The thermodynamic temperature T of the specimen at each instant was obtained from its 

measured radiance temperature Tλ (§3.7.2) and normal spectral emittance εn(λ,T) (§3.8.1) 

using eq. (2.52): 

 
( )

















−








⋅λ⋅
⋅λε+

⋅
λ⋅

=

λ−
−

−

λ

λ

λ 1
Tn

cexpT,1ln

1
n

cT

TT

2
TTn

TT

2  (4.1) 

The implicit assumptions regarding the target size, field of view of the radiation thermometer, 

and constancy of the specimen emittance throughout the spectral passband of the radiation 

thermometer, that led to this expression, should of course be kept in mind (§2.2.3, §2.2.5). No 

correction was made to account for the difference in the operating wavelengths of the 

polarimeter and the radiometer. 

In computing radiance temperature, the mean effective wavelength λT0-Tλ was assumed 

constant at 656.3 nm throughout the covered temperature range, as explained in §(3.7.3). In 

converting radiance temperature to thermodynamic temperature, the mean effective 

wavelength between a different pair of temperatures has to be used. Namely, between the 

radiance temperature and the thermodynamic temperature of the specimen. Since T depends 
on the normal spectral emittance of the specimen, so does λTλ-T. However, the error caused by 

the use of λTλ-T = 656.3 nm for this computation as well, was negligible compared to the 

overall uncertainty caused by the uncertainty in the normal spectral emittance. λTλ-T as a 

function of Tλ for three values of normal spectral emittance is shown in fig. (4.1). For ease of 
comparison, λT0-Tλ from fig. (3.11) is also shown. Figure (4.2) shows the error caused by the 

use of a constant value of 656.3 nm for λTλ-T , as a function of radiance temperature in the 

range 1500 to 3000 K. 
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Fig. 4.1: The mean effective wavelength λTλ-T as a function of radiance temperature Tλ, 
computed for three values of normal spectral emittance εn. λT0-Tλ from fig. (3.11) is also 
shown here for ease of reference. 
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4.2 Electrical resistivity 

The specimen resistance at each instant, was determined from the measured voltage U across 

the effective1 specimen length leff and the measured current I through the specimen. 

Computing resistivity requires knowledge of the specimen dimensions as a function of time, 

as well. Since no experimental means were available to measure thermal expansion, the 

resistivity data reported in this work are based on the room-temperature specimen dimensions. 

They were obtained using2: 

 
eff0

lin
el I

U
l⋅γ

γ⋅=ρ  (4.2) 

where γlin is the linear density of the specimen (mass per length) and γ0 is its density at room-

temperature. Prior to pulse-heating a specimen, its linear density was derived from a weight 

measurement, using a precision scale, and a length measurement, using a traveling 

microscope. This proved more reliable than a direct measurement of the specimen diameter. 

By measuring the linear density of each individual specimen, small differences in the 

specimen diameter, caused, for instance, by different degrees of polishing, could be taken into 

account. The average value of γlin for the niobium specimens was 1.682×10-2 kg.m-1, and for 

the titanium specimens 0.8490×10-2 kg.m-1. For the density γ0, values of 8570 kg.m-3 and 

4540 kg.m-3 were used for niobium and titanium, respectively. 

Having obtained the ‘uncorrected’ electrical resistivity using eq. (4.2), it is a simple matter to 

account for thermal expansion if such data are available from literature: 
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The subscript ‘c’ stands for ‘corrected’. r0 denotes the specimen radius at room temperature, 

r the specimen radius as a function of temperature3. 

For each experiment the thermodynamic temperature was plotted against resistivity. A plateau 

                                                 
1 The effective specimen length was defined by the distance of the voltage probes (§3.6) and was measured using 
a traveling microscope. 
2 Although the symbol ρ has already been used to denote reflectance, it will always be clear from the context and 
the different subscripts which quantity is actually meant. 
3 Thermal expansion was only possible in the radial direction because the specimens were tightly clamped at 
both ends. In addition, buckling does not take place at sufficiently high heating rates [19, 36]. 
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indicated melting of the specimen. Linear functions were fitted to the data in the solid phase 

and in the liquid phase. In the case of niobium a linear function was also fitted to the data in 

the melting plateau. The intersections of the melting-plateau fit with the solid-phase fit and 

with the liquid-phase fit provided the resistivity values at the start and at the end of melting, 

respectively. In the case of titanium, however, resistivity changed little during melting. Fitting 

a straight line to such a short melting plateau (in terms of resistivity change) was impractical. 

In order to obtain the resistivity values at the start and at the end of melting the solid- and 

liquid-phase fits were extrapolated to the average measured melting temperature, instead. 

Using the fits obtained from each experiment in the solid and in the liquid phase, resistivity 

was computed every 50 K in the temperature range of interest. At each of these temperatures 

(every 50 K) the mean of the individual-experiment-values was computed. Linear functions 

were then fitted to these mean resistivity values from all experiments, in the solid and in the 

liquid phase. 

4.3 Specific enthalpy 

The specific energy absorbed by the specimen during heating, as a function of time, was 

obtained from the integral of imparted electrical power over time, divided by the number of 

moles of the ‘effective’ specimen: 

 ( ) ( ) ( )∫ ′′′
γ

=∆
t

0efflin

tdtItUMtq
l

 (4.4) 

where M is the molar mass of the specimen material. For niobium M = 92.91×10-3 kg.mol-1 

and for titanium M = 47.88×10-3 kg.mol-1 was used. 

For an isobaric experiment, the increase in the specific enthalpy h of the specimen is equal to 

the electrical energy ∆q(t) absorbed by it during heating: 

 ( ) ( ) )t(qhthth 0 ∆=−=∆  (4.5) 

h0 denotes the specific enthalpy at room temperature and ambient pressure. 

At the temperatures and speeds involved in the present work, the only significant heat loss 

from the specimen can be that due to thermal radiation. Using the Stefan-Boltzmann law that 

relates the total self-exitance of a surface element to the fourth power of its temperature, this 

heat loss can be estimated. With an effective specimen length of 23 mm and a specimen 
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radius of 0.8 mm, we obtain values1 of 687 W and 154 W for the emitted radiant power at 

3200 K and 2200 K, respectively. These two temperatures correspond to the upper limit of the 

temperature ranges in which data for niobium and titanium are reported in this work. At that 

point of the discharge (near the experiment end), the imparted electrical power was 

approximately 4 MW, in the case of niobium, and larger than 1 MW in the case of titanium. 

Thus, at the highest temperatures, the heat losses due to thermal radiation represented less 

than 0.02% of the imparted power and could be neglected without significant reduction in 

accuracy. 

4.4 Heat of fusion 

To obtain the heat of fusion, the temperature was plotted as a function of ∆h. A plateau in that 

plot indicated melting of the specimen. In the case of niobium, a quadratic function was fitted 

to the solid-phase data and linear functions were fitted to the melting plateau and to the data in 

the liquid phase. For titanium linear functions were fitted to the data in the solid phase, the 

melting plateau and in the liquid phase. The intersections of these three fits were used to 

define the beginning and the end of melting. The heat of fusion hF was then computed as the 

increase in specific enthalpy between the beginning and the end of the melting plateau. 

4.5 Specific heat capacity 

The specific heat capacity at constant pressure cp, is equal to the derivative of specific 

enthalpy with respect to temperature: 
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Having already obtained functions of temperature vs. specific enthalpy (§4.4), cp was 

computed as the reciprocal of the slope dT/dh of these functions. 

4.6 Thermal conductivity and thermal diffusivity 

The principal mechanism for thermal conduction in pure metals in the liquid state is through 

the transport of electrons. Although lattice conduction can make a significant contribution at 

                                                 
1 These values were computed using a value of one for the total-hemispherical emittance of the specimen 
surface. The increase in specimen radius because of thermal expansion was not accounted for. 
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lower temperatures, electronic conduction is dominant at temperatures around the melting 

point [37]. Under these conditions, thermal conductivity1 λ can be derived from electrical 

resistivity using the Wiedemann-Franz-Lorenz law: 

 
c,el

0 TL
ρ

⋅=λ  (4.7) 

where T is the thermodynamic temperature, ρel,c is the ‘corrected’ electrical resistivity, and 

L0 = 2.45×10-8 W.Ω.K-2 is the theoretical Lorenz number (as given by Sommerfeld). 

However, data computed using eq. (4.7) should only be regarded as estimates, since 

experimentally determined values for the Lorenz number can vary with temperature and 

specimen material. 

Thermal diffusivity α is related to thermal conductivity by: 
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cp is the specific heat capacity (expressed in J.mol-1.K-1), M denotes the molar mass of the 

specimen, γ is the density as a function of temperature, γ0 is the density at room temperature, 

and ρel denotes the electrical resistivity based on the room-temperature dimensions of the 

specimen. 

                                                 
1 The symbol λ has been used throughout this work to denote wavelength. It is reintroduced here because of its 
widespread use in the materials-science literature, where it refers to thermal conductivity. It will always be clear 
from the context, which meaning is attributed to λ. 
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5 EXPERIMENTS 

5.1 Measurements on niobium 

The purity of the niobium material was 99.9+%. The impurities, as reported by the 

manufacturer, were: Ta, 100 ppm; O, 73 ppm; W, 50 ppm; N, 29 ppm; Zr, Mo, Ti, Fe, Ni, Si, 

Mn, Ca, Al, Cu, Sn, Cr, V, Co, Mg, Pb, and Hf, each less than 20 ppm; and C, H, B, and Cd, 

together less than 21 ppm. 
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Fig. 5.1: Current, voltage, and radiance temperature at 656.3 nm, as functions of time, during 
a pulse-heating experiment with niobium. 

In a typical experiment, the capacitor bank was charged to 6.6 - 6.7 kV and discharged in the 

crowbar-mode of operation (§3.4). The specimen was heated from room temperature to its 

melting point in approximately 50 µs. After 100 µs, it reached a radiance temperature of 

approximately 2850 K, corresponding to a true temperature close to 3300 K. Figure (5.1) 

shows the time variation of current, voltage, and radiance temperature at 656.3 nm, during an 

experiment with niobium. The peak current through the specimen was about 45 kA and the 

peak voltage across its effective length was close to 275 V. The apparent phase difference 

between current and voltage is most likely due to the rapidly increasing resistance of the 

specimen as it heats. The peak electrical power imparted on the specimen was approximately 
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11 MW. The plateau in the radiance temperature trace indicates the melting of the specimen. 

The heating rate in the solid phase, at about 200 K below the melting point, was 

approximately 5×107 K.s-1. 

Though some of the specimens were used ‘as received’, most of them were given some 

treatment prior to pulse-heating in the capacitor-discharge circuit. The purpose of this 

treatment was to improve the specimen surface for the polarimetric measurement by removing 

possible oxide layers and making the surface more specular. These two conditions of an 

oxide-free, specular surface, had to be met as closely as possible, in order to justify the use of 

the Fresnel-equations (eqs. 2.87a and 2.87b). 

To achieve this goal, some of the specimens were finely ground, some were subjected to one 

or two ‘pre-heating’ pulses prior to the experiments, and some were both ground and pre-

heated. Grinding was done in successively finer steps, using silicon carbide sheets down to 

4000-grade. Pre-heating was done using the millisecond-resolution pulse-heating system at 

NIST [1]. This system is designed for highly accurate thermophysical property-measurements 

of electrically conducting materials up to their melting range. It uses a battery bank for energy 

storage, a variable resistor for rough control of the heating rate, and a computer-controlled 

FET-switch for accurate control of the current through the specimen [38]. The temperature is 

determined by means of radiation thermometry and millisecond-resolution laser polarimetry. 

The radiometer output is coupled to the FET-switch via a feedback algorithm that allows 

heating the specimen to a preset radiance temperature and holding it at that temperature for a 

specified amount of time (up to 20 s). All pre-heating pulses were carried out in argon, at 

slightly above atmospheric pressure. They were about 250 ms in duration. 

In order to obtain the optimum parameters for pre-heating, a series of trials was conducted on 

‘as received’ specimens. The results are summarized in figs. (5.2) - (5.7). In general, it was 

observed that some surface cleaning took place in the first shot, provided the temperature was 

high enough, which manifested itself in a ‘bumpy’ emittance1 trace. As a consequence, the 

room-temperature emittance (after the specimen had cooled off again) decreased significantly. 

Subsequent pre-heating pulses on the same specimen to the same radiance temperature (but 

                                                 
1 All emittance values reported in this section in conjunction with pre-heating, are normal spectral emittance 
values at 633 nm, the wavelength of the He-Ne laser used with the millisecond-resolution polarimeter. 
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slightly higher true temperature because of the lower emittance), exhibited a much smoother 

and very reproducible decrease in emittance with temperature. In addition, the room-

temperature emittance did not decrease significantly with subsequent pre-heating pulses to the 

same temperature. 

Figure (5.2) shows the radiance and true temperature traces, as functions of time, during two 

pre-heatings to 1800 K radiance temperature1, conducted on the same specimen (Nb1). The 

second pre-heating took place two days after the first one, during which time the specimen 

remained in the experiment chamber but was exposed to air. Figure (5.3) shows the pre-

heating of a different specimen (Nb8) to a higher temperature, in which the same ‘bumpy’ 

emittance is observed. Despite the higher temperature, the emittance at the peak temperature 

dropped to the same value it had dropped to during the lower temperature pre-heating pulse. 

Also, the decrease in the room-temperature value of emittance was the same as in the lower 

temperature pre-heating. 

Figures (5.4) and (5.5) offer a different view of the emittance vs. true temperature traces of 

the previous two figures. It is interesting to see that there is some hysteresis between the 

heating and cooling branches of the curves. Its width was always large in the first shot, as 

expected, since the cleaning of the surface could not be undone. The remaining hysteresis in 

subsequent pre-heating shots could not be explained. It probably indicated some surface 

changing process that could not keep pace with heating and continued to take place in the 

initial cooling period, when the temperature was still high. 

Figure (5.6) shows the change in room-temperature emittance of several specimens, after one 

or more pre-heating pulses. Specimens Nb1, Nb2, and Nb3 (upper row), were heated to 

1800 K in radiance temperature. In the middle row (specimens Nb8, Nb9, and Nb10), the 

peak radiance temperature was nominally 2000 K. No significant difference was observed 

between the higher and lower temperature pulses, with respect to their effect on room-

temperature emittance. Specimens Nb1 and Nb10 were pre-heated twice. It is interesting to 

see, that the room-temperature emittance of specimen Nb1, rose slightly in the two days 

between the two pre-heatings, during which time it was exposed to air. This was not the case 

                                                 
1 Radiance temperatures reported in this section in conjunction with the pre-heating experiments, were measured 
at the mean effective wavelength of the millisecond-system radiometer, which was approximately 651 nm. 
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with specimen Nb10, that was subjected to the second pre-heating pulse some ten minutes 

after the first one and remained in the argon atmosphere during this time. Specimen Nb15 was 

pre-heated several times to temperatures1,2 that were increasingly close to the melting point of 

niobium (2422 K in radiance temperature at 653 nm, [39]). This was done in an effort to 

produce a mirror-like surface by surface-melting, and consequently increase the polarimeter 

signals. 

Figure (5.7), which is the counterpart of the previous figure, shows the change in the room-

temperature millisecond polarimeter signals after every pre-heating pulse. It can be seen, that 

after the ninth and tenth shot on specimen Nb15, the polarimeter signals did, indeed, all rise. 

However, it was rather difficult to achieve this result with all specimens. Often, after a pulse 

this close to the melting point, deep grain boundaries appeared on the specimen surface. 

Though the individual grains themselves were very shiny, the grain boundaries had a 

deteriorating effect on the reflected laser beam (scattering) and the polarimeter signals. 

Therefore, this effort was abandoned. Instead, it was decided to pre-heat the specimens only 

to a radiance temperature (at 651 nm) of 1750 to 2000 K, corresponding to a thermodynamic 

temperature of 1880 to 2170 K, which was enough to produce the ‘cleaning’ effect described 

above. 

 

                                                 
1 The temperatures shown in figs. (5.6) and (5.7) for the pre-heating pulses on Nb15, are inaccurate (lower) by a 
few degrees. The error was probably caused by an old transmittance value for the neutral density filter that had 
to be placed in front of the radiometer in this high-temperature pre-heating series. In other words, the actual 
temperatures were even closer to the melting point of niobium. 
2 Unfortunately, some data of the first and eighth pre-heating pulses on Nb15 were not saved properly. The 
radiance temperatures shown in figs. (5.6) and (5.7) (2400 K and 2410 K) are the nominal peak radiance 
temperatures, to which the system was preset. The actual values could have differed by 1-2 K. The 
corresponding values of peak true temperature could not be recovered. 
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Fig. 5.2: Pre-heating specimen Nb1 twice to a nominal radiance temperature of 1800 K at 
651 nm, using the slow millisecond-system. The second preheat was done two days after the 
first one. The radiance and thermodynamic temperature traces, as well as normal spectral 
emittance at 633 nm, are shown as functions of time. 
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Fig. 5.3: Pre-heating specimen Nb8 to a radiance temperature of 2000 K at 651 nm, using the 
slower millisecond-system. The radiance and thermodynamic temperature traces, as well as 
normal spectral emittance at 633 nm, are shown as functions of time. 
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Fig. 5.5: Pre-heating specimen Nb8 to a radiance temperature of 2000 K at 651 nm, using the 
slower millisecond-system. The normal spectral emittance at 633 nm is shown as a function 
of thermodynamic temperature during pulse-heating and subsequent natural cooling. 
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5.2 Measurements on titanium 

As reported by the manufacturer, the titanium material was 99.9% pure, with the following 

major impurities: O, 700 ppm; Fe, 300 ppm; C, 100 ppm; N, 40 ppm; H, 35 ppm. 

All specimens were treated with abrasives prior to the experiments, as described in the 

previous section for niobium. Attempts to pre-heat resulted in discolored specimens that had 

to be discarded. The reason was probably the high affinity of titanium for oxygen and 

nitrogen1, combined with residual atmospheric gases inside the experiment chamber. 
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Fig. 5.8: Current, voltage, and radiance temperature at 656.3 nm, as functions of time, during 
a pulse-heating experiment with titanium. 

Because of the significantly higher resistivity of titanium as compared to niobium, it was 

much easier to pulse-heat, and required a lower capacitor voltage. In a typical experiment, the 

capacitor bank was charged to 4.3 kV and discharged in the crowbar-mode of operation 

(§3.4). Figure (5.8) shows the time variation of current, voltage, and radiance temperature at 

656.3 nm, during an experiment with titanium. The peak current through the specimen was 

about 26 kA and the peak voltage across its effective length was approximately 510 V. The 

                                                 
1 This property of titanium is useful in its application as a deoxidizer and denitrogenizer in metallurgy, and as a 
getter pump inside vacuum tubes. 
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peak electrical power imparted on the specimen exceeded 13 MW. The melting point was 

reached in about 35 µs. After 63 µs, the specimen had reached a radiance temperature of 

approximately 2050 K, corresponding to a true temperature of about 2250 K. The heating rate 

in the solid phase, at about 200 K below melting, was approximately 6.5×107 K.s-1. The α→β 

phase transformation (from hexagonal close-packed to body-centered cubic) of titanium at 

1166 K [40], which is accompanied by a rapid resistance change, was visible as a sudden 

change in the slope of the voltage trace. 
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6 RESULTS 

6.1 Niobium 

6.1.1 Melting point 

As outlined in §(4.1), the thermodynamic temperature of the specimens was computed from 

the measured radiance temperature and normal spectral emittance. Although radiance 

temperature, as such, does not bear much significance from a materials-science point of view, 

it plays an important role in high-temperature radiation thermometry. 

As a result of a significant amount of research in the last three decades, it has been observed 

that, at a given wavelength (in the range of 0.5 to 1 µm), the radiance temperature of pure 

metals at their melting points remains constant, at least during the initial melting period1, and 

that this value is highly reproducible for different specimens of the same metal, irrespective of 

the initial surface condition of the specimen or the operational conditions of the experiment 

[41, 42, 43]. This was found to be valid over a wide range of heating rates, 300 to 

20000 K.s-1, corresponding to a range in heating durations (from room temperature to the 

melting point) of 0.04 to 1.2 s. Since radiance temperature is a surface property, it may be 

concluded that, at these heating rates, the surface topography of the specimen becomes 

uniform upon melting. Furthermore, it is reasonable to assume that the same holds for slower 

experiments, as well. 

The present work, however, involved heating rates that were higher by a factor of at least 

2.5×104. Therefore, the possibility of a different melting behavior could not be excluded. 

Figure (6.1) shows the radiance temperature at the melting transition of niobium, as measured 

with (i) specimens that were pulse-heated without any prior treatment, (ii) specimens that had 

been pre-heated to 1750 K in radiance temperature (at nominally 650 nm), and (iii) specimens 

that had been pre-heated to higher temperatures. The mean melting radiance temperature was 

highest for the ‘as received’ specimens and lowest for those preheated to the higher 

temperatures. A modified one-sided t-test applied to the measured data [44], confirmed that 

the mean value of melting temperatures in the first specimen group (2430.9 K) exceeded that 

                                                 
1 In slower millisecond-resolution experiments the specimen collapses before melting is completed, except in 
microgravity or in levitation experiments. 
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of the second group (2425.3 K) at a statistical significance level of approximately 99%. 

Similarly, the mean melting temperature of the second group exceeded that of the third group 

(2416.0 K) with the same level of confidence. Although this by no means represents a 

systematic study, it certainly points to an interesting trend. 
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Fig. 6.1: Effect of pre-heating on the melting point radiance temperature at 656.3 nm. The 
sample means and standard deviations are shown for the three groups of specimens. 

As mentioned above, radiance temperature is a surface property. At the melting point, the 

highest value it can assume is that of the thermodynamic melting temperature, as is the case 

with specimens incorporating a blackbody cavity (emittance≈1). With a perfectly planar 

surface, the radiance temperature will be a minimum, determined by the optical properties 

(n, k) of the specimen material. In all other cases, the radiance temperature at the melting 

point will lie in-between the two extremes. 

When the specimen surface melts, it becomes very smooth because of the surface tension of 

the liquid. This might explain, why in the slower millisecond-resolution pulse-heating 

experiments, the radiance temperature at the melting transition of pure metals is very 

reproducible, irrespective of the initial surface condition of the solid specimen. At higher 

heating rates, however, the characteristic time of the surface smoothening may be too long 
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compared to the duration of the melting plateau, so that some residual roughness is still 

present during melting, affecting the measured radiance temperature. In other words, at high 

heating rates it is conceivable that the melting-point radiance temperature is, to some degree, 

a function of the initial surface roughness of the specimen. 

Along these lines, fig. (6.1) suggests that pre-heating a specimen changes its surface in a way 

that it behaves closer to ideal (perfectly smooth surface) at melting. This is another 

manifestation of the ‘cleaning’ effect that was always observed in the emittance-vs.-time trace 

of the first pre-heating pulse, as described in §(5.1). Pre-heating to higher (than 2000 K) 

temperatures or multiple pre-heating pulses did not further decrease the melting-point 

radiance temperature. 

According to everything mentioned so far, the radiance temperature at the melting point of the 

third specimen group of fig. (6.1) should be closest to that measured in millisecond-resolution 

experiments (2422 K at 653 nm [39]). The fact that it is even lower (2416 K), may be 

explained, at least in part, by the ‘size-of-source’ effect [8, 45]. In short, we talk about a ‘size-

of-source’ effect, when radiation from outside the specified target area1 can enter the field-

defining aperture and reach the detector, because of lens aberrations, internal reflections 

inside the radiometer, and scattering2 in the lenses of the radiometer or the window of the 

chamber. The radiometer output then becomes dependent on the size of the hot object being 

viewed. This effect is cancelled if the measurement conditions are identical to the calibration 

conditions. In our case, the radiometer was calibrated on the 3 mm - wide tungsten strip of the 

reference lamp (§3.7.2), but the objects viewed during measurement were wires of 1.6 mm 

nominal diameter. If the total area on the tungsten strip from which the detector received 

radiation during calibration, extended in width3 beyond the edges of the wire during 

measurement, then viewing a wire at the same radiance temperature as the strip would yield 

an apparently lower radiance temperature4 for the wire. In order for the difference to be 6 K at 

2422 K, the radiometer would have to receive approximately 2.3% of the total radiant flux 

                                                 
1 In our case, 0.5 mm × 9.8 mm (§3.7.1). 
2 Dust on the outer surface of the objective lens is a commonly encountered source of scattering. 
3 In both cases, calibration and measurement, the objects viewed by the radiometer extended in height much 
beyond the nominal target height of 9.8 mm, so that any size-of-source effect in that direction was probably 
cancelled. This, of course, is based on the assumption that there is no temperature gradient along the portion of 
the tungsten filament viewed by the radiometer during calibration, as there is none along the pulse-heated wire. 
4 The impact of radiation reflected off the experiment chamber wall into the radiometer is neglected here. 
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that it received during calibration from the area on the tungsten strip to the left and right of the 

central portion of 1.6 mm in width1. 

The difference, in terms of radiance temperature at the melting point, between the first and 

third specimen groups of fig. (6.1), corresponds to a difference in normal spectral emittance of 

close to 6%. Unfortunately, the between-experiments variation of the measured emittance at 

the melting point was of the same order of magnitude2, so that this difference could not be 

resolved. In other words, the systematic decrease in the melting-point normal spectral 

emittance, caused by pre-heating the specimens, was obscured by the random error of the 

polarimetric measurement. 

At this point, it should again be stressed that the determination of normal spectral emittance 

by laser polarimetry requires specimen surfaces that are as close as possible to the ideal case 

of an optically smooth surface. The measurements on titanium (§6.2.1) suggest that the 

polarimeter does measure a higher normal spectral emittance on rougher surfaces. It is not 

clear yet, where the limits, in terms of roughness, are, within which the results can be trusted. 

In any case, it appears that the degree of surface roughness encountered in this work, did not 

have too much of a deteriorating effect on the measurement, other than perhaps reducing the 

polarimeter signal levels. These problems are of course much reduced in the liquid phase, 

when the specimen surface becomes very smooth. 

The mean value of the thermodynamic temperature at the melting transition of niobium was 

2736 K, compared to the accepted value (on ITS-90) of 2749 K [46]. The normal spectral 

emittance exhibited a rapid decrease at melting, and remained constant in the liquid phase, up 

to 3200 K. Its mean value in the liquid phase was 0.36 at 677 nm, somewhat higher than the 

value at melting of 0.339 at 653 nm, which is computed from the melting point of 2749 K and 

the melting-point radiance temperature (at 653 nm) of 2422 K [39]. 

Figure (6.2) shows the radiance temperature, thermodynamic temperature, and normal 

spectral emittance of a niobium specimen, as functions of time during a pulse-heating 

                                                 
1 This estimate was computed using Wien’s approximation to Planck’s law (§2.1.8). Furthermore, some 
simplifying assumptions were made, notably that both the strip of the reference lamp and the wire-shaped 
specimen can be treated as iso-radiance emitters (lambertian and uniform). In the case of a wire, this also means 
neglecting the curvature of its surface. 
2 This rather large variation, is mainly caused by differences in the initial alignment of the PSD and/or specimen 
movement. 



 104

experiment. For a given specimen, the plateau temperature (radiance or thermodynamic) was 

determined by averaging the measured temperatures along the plateau. The standard deviation 

of an individual temperature from the plateau average was in the range of 0.1 to 2.7 K, for the 

radiance temperature plateaus, and of 11 to 29 K, for the thermodynamic temperature 

plateaus. The trend of radiance and thermodynamic temperature along each plateau was 

determined by (least-squares) fitting a linear function of time to the measured temperatures. 

The slope of the radiance temperature plateaus was in the range of 0.038 to 0.664 K.µs-1, and 

that of the thermodynamic temperature plateaus in the range of -0.765 to 3.3 K.µs-1. 
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Fig. 6.2: Radiance temperature (at 656.3 nm), thermodynamic temperature, and normal 
spectral emittance (at 677 nm), as functions of time, during a niobium pulse-heating 
experiment. 

The variation of the four polarimeter signals with time during a niobium pulse-heating 

experiment is shown in fig. (6.3). During melting and in the liquid, three out four signals 

increased significantly. The decrease in the signals at the experiment end is probably caused 

by specimen movement. Also shown, as a function of time, is the degree of polarization of the 

reflected laser beam, computed from the measured Stokes parameters. A significant deviation 

from one would have indicated some problem and questioned the use of eq. (3.38) (see the 

discussion in §3.8.2.4). 
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Fig. 6.3: The four polarimeter signals, the normal spectral emittance of the specimen, and the 
degree of polarization of the reflected laser beam, as functions of time, during a niobium 
pulse-heating experiment. s and e indicate the start and end of melting, respectively. 

6.1.2 Electrical resistivity 

The linear functions representing the measured resistivity ρel (not corrected for thermal 

expansion) of solid and liquid niobium, in the ranges of 1600 to 2700 K and 2800 to 3200 K 
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respectively, were 

 solid: ( )1600T1042.28.60 2
el −×+=ρ −  (6.1) 

 liquid ( )2800T1095.37.98 3
el −×+=ρ −  (6.2) 

ρel is expressed in µΩ.cm and the temperature T in K. The resistivity at the beginning and at 

the end of melting was 87.5 µΩ.cm and 98.5 µΩ.cm, respectively. 

Using data from literature, the measured electrical resistivity was corrected for thermal 

expansion. Specifically, the linear thermal expansion of solid niobium as a function of 

temperature in the range of 1500 to 2700 K that is reported in [47], was used: 

 solid: 
416312

2863

0

0

T103476.6T104002.4

T102993.1T108553.8104424.5

−−

−−−

×+×−

×+×−×=
−
l
ll

 (6.3) 

Since niobium is of body-centered cubic structure, the linear thermal expansion can be 

converted to a purely radial volume expansion using: 
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l
ll  (6.4) 

where V denotes volume, and V0 is the volume of the ‘effective’ specimen at room 

temperature. 

For liquid niobium, expansion data from [19] were used: 

 liquid: 312285

0

T1017.1T1014.3T105.29627.0
V 
V −−− ×−×+×−=  (6.5) 

By combining eqs. (6.4) and (6.5) with eqs. (6.1) and (6.2), the following functions of 

temperature were obtained for the corrected electrical resistivity of niobium, in the same 

temperature ranges as above: 

 solid: ( ) ( )262
c,el 1600T1044.11600T1064.28.62 −×+−×+=ρ −−  (6.6) 

 liquid: ( )2800T1076.1110 2
c,el −×+=ρ −  (6.7) 

Again, ρel,c is expressed in µΩ.cm and the temperature T in K. Extrapolation of these 

functions to the measured melting temperature of 2736 K, yields 94.7 µΩ.cm and 
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108.9 µΩ.cm for the resistivity of niobium at the beginning and at the end of melting, 

respectively. The ratio of these two values (liquid/solid) did not change significantly by the 

correction for thermal expansion. 

Figure (6.4) summarizes these results and compares them to data obtained at NIST in the past, 

using the millisecond-resolution [48] and microsecond-resolution pulse-heating facilities [49]. 

Thermodynamic temperature in [49] was computed from radiance temperature using the 

known melting temperature of niobium, under the assumption of constant emittance in the 

liquid. Since it was found that the normal spectral emittance of liquid niobium is indeed 

constant, the older liquid phase resistivity data agree well with that obtained in the present 

work. 
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Fig. 6.4: Electrical resistivity of niobium as a function of temperature. 

6.1.3 Heat of fusion 

The mean value of the heat of fusion from all experiments was 32.0 kJ.mol-1. The standard 

deviation from the mean was 1.5 kJ.mol-1. This value for the heat of fusion agrees reasonably 

well with results obtained at NIST in the past. In [50] a value of 31.5 kJ.mol-1 is reported. It 
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was measured with the slower millisecond-resolution system using the ‘sandwich’ technique1 

to prevent the specimen from collapsing during melting. In [51] a value of 31.1 kJ.mol-1 is 

reported. This was measured using the microsecond system. Since there were no means to 

obtain true temperature at that time, the heat of fusion in [51] was computed from least-

squares fits to the radiance-temperature-vs.-absorbed-energy data. 

6.1.4 Specific heat capacity 
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Fig. 6.5: Specific heat capacity of niobium as a function of temperature. 

The quadratic function representing the specific heat capacity of solid niobium, in the range of 

1600 to 2700 K, was: 

 solid: ( ) ( )263
p 1600T108.71600T107.40.30c −×+−×+= −−  (6.8) 

cp is expressed in J.mol-1.K-1 and T in K. 

In the liquid phase, up to 3200 K, the specific enthalpy increased linearly with temperature 

From the slope of the linear function that was fitted to the specific enthalpy vs. temperature 

                                                 
1 This means that a strip of the metal under study (niobium in this case) was ‘sandwiched’ between two strips of 
another metal with a higher melting temperature. The two outer strips provided support for the inner strip when it 
melted. 
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data, a value of 38.9 J.mol-1.K-1 was obtained for the specific heat capacity of liquid niobium. 

The solid and liquid heat capacity of niobium is shown in fig. (6.5) as a function of 

temperature. The results of the present work agree, within their uncertainty, with data 

obtained at NIST in the past, which, for ease of reference, are also shown in the same figure. 

6.1.5 Thermal conductivity 
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Fig. 6.6: Thermal conductivity of solid and liquid niobium as a function of temperature, 
estimated from the corrected electrical resistivity data, using L0 = 2.45×10-8 W.Ω.K-2. Tm is the 
melting point of niobium, as measured in the present work. 

From the corrected resistivity data, eqs. (6.6) and (6.7), the thermal conductivity of solid and 

liquid niobium could be estimated, using eq. (4.7), in the ranges 1600 to 2700 K (solid) and 

2800 to 3200 K: 

 solid: ( ) ( )262 1600T1093.31600T1017.15.62 −×−−×+=λ −−  (6.9) 

 liquid ( ) ( )262 2800T1028.32800T1028.14.62 −×−−×+=λ −−  (6.10) 

λ is expressed in W.m-1.K-1 and the temperature T in K. A value of 2.45×10-8 W.Ω.K-2 was 

used for the Lorenz number L0. Equations (6.9) and (6.10) are plotted in fig. (6.6), together 

with estimates for the thermal conductivity of niobium reported in [52]. 
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6.1.6 Thermal diffusivity 

The thermal diffusivity of solid and liquid niobium, in the temperature ranges 1600 to 2700 K 

(solid) and 2800 to 3200 K (liquid), was estimated from the measured resistivity (not 

corrected for thermal expansion) and specific heat capacity, using eq. (4.8): 

 solid: 
( ) ( )

( )311

285

1600T1082.2

1600T1064.81600T1064.1233.0

−×+

−×−−×+=α
−

−−

 (6.11) 

 liquid: ( )2800T1005.6194.0 5 −×+=α −  (6.12) 

α is expressed in cm2.s-1 and T in K. A value of 2.45×10-8 W.Ω.K-2 was used for the Lorenz 

number L0. 

Equations (6.11) and (6.12) are plotted in fig. (6.7). 
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Fig. 6.7: Thermal diffusivity of solid and liquid niobium as a function of temperature, 
computed from the estimated thermal conductivity data (fig. 6.6). Tm is the melting point of 
niobium, as measured in the present work. 
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6.2 Titanium 

6.2.1 Melting point 

The mean value of the measured radiance temperatures (at 656.3 nm) at the melting transition 

of the titanium specimens was 1835 K. This is considerably higher than the accepted value of 

1800 K (at 653 nm), determined using a (slower) millisecond-resolution pulse-heating 

technique [53]. The difference may be explained by the much higher heating rates involved in 

the present work. The standard deviation of the melting-point radiance temperatures of the 

individual specimens from the overall mean1, was 10 K, which is rather large. It should be 

remembered that the titanium specimens could not be pre-heated in the slower millisecond-

system, prior to pulse-heating in the microsecond-system (§5.2). Their treatment with 

abrasives to remove any oxides, probably produced surfaces with varying degrees of 

roughness, which, combined with the high heating rates, could be the reason for this large 

standard deviation. 

The mean value of the computed thermodynamic temperatures at the melting transition of all 

specimens was 1941 K, close to the accepted value of 1945 K for the melting point of 

titanium [54]. The standard deviation from the mean was 6 K. The mean value of the normal 

spectral emittance at the melting point of titanium was 0.52. This is significantly higher than 

the value of 0.4 that was obtained with the slower pulse-heating technique. But it is 

compatible with the higher radiance temperature at the melting point, yielding a much better 

agreement with the slower experiments in terms of thermodynamic temperature. Whatever the 

reason for the higher melting-point radiance temperature, the polarimeter ‘reacted’ correctly 

to it. If the reason was indeed residual surface roughness at the melting point, then it is not 

clear at this point why the polarimeter measured the correct emittance (within the 

measurement uncertainty), considering that its ‘measurement equation’ (§3.8.2.4) is based on 

the assumption of a perfectly smooth specimen surface. 

As outlined in §(6.1.1), the melting plateau temperature (radiance or thermodynamic), for a 

given specimen, was determined by averaging the measured temperatures (data points) along 

                                                 
1 It is not strictly correct to compute the mean value of the radiance temperatures at the melting transition of the 
different specimens, since there is reason to believe that in fast pulse-heating experiments the observed 
differences between specimens, are, at least in part, real, and not entirely attributable to a random measurement 
error. 
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the plateau. The standard deviation of an individual temperature from the plateau average was 

in the range of 0.75 to 1.9 K, for the radiance temperature plateaus, and of 5.9 to 10 K for the 

thermodynamic temperature plateaus. The trend of radiance and thermodynamic temperature 

along each plateau was determined by (least-squares) fitting a linear function of time to the 

measured temperatures. The slope of the radiance temperature plateaus was in the range of 

-0.14 to 0.8 K.µs-1, and that of the thermodynamic temperature plateaus in the range of -1.0 to 

2.3 K.µs-1. 

Figure (6.8) shows the radiance temperature, thermodynamic temperature, and normal 

spectral emittance of a titanium specimen, as functions of time during a pulse-heating 

experiment. The normal spectral emittance gradually decreased in the solid, remained 

constant during melting, and further decreased in the liquid phase. The rapid drop at the onset 

of melting that was observed with niobium, is absent here. It is interesting to note that the 

emittance decreased in the liquid until it reached a value of approximately 0.4, which is the 

value measured with the slower pulse-heating technique at the melting point of titanium. 

In the past, when no means were available to measure normal spectral emittance in such high-

speed pulse-heating experiments, the measured radiance temperature was converted to 

thermodynamic temperature using the known melting point of the specimen (from literature), 

under the assumption that the emittance was constant in the liquid phase and equal to its value 

at the melting transition1. As demonstrated by niobium, this assumption was justified in some 

cases. In the case of titanium however, it would have introduced an error in true temperature 

because the normal spectral emittance decreased significantly after melting was completed. 

Figure (6.9) shows that this error would quickly have exceeded 50 K. 

Figure (6.10) shows the four polarimeter signals, the normal spectral emittance, and the 

degree of polarization of the reflected laser beam, as functions of time during a titanium 

pulse-heating experiment. All four signals increased during melting, something that was 

observed with niobium, as well. The low-frequency fluctuation of the signals in the liquid 

phase was probably caused by specimen movement and did not affect the computed 

emittance, since all four signals varied ‘in step’. 

                                                 
1 A serious limitation of this method was of course that it could not be used in the solid phase, and hence no 
reliable temperature measurement was possible below melting. 
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Fig. 6.8: Radiance temperature (at 656.3 nm), thermodynamic temperature, and normal 
spectral emittance (at 677 nm), as functions of time, during a titanium pulse-heating 
experiment. 
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6.2.2 Electrical resistivity 
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Fig. 6.11: Electrical resistivity of titanium as a function of temperature. 

The linear functions representing the resistivity ρel (not corrected for thermal expansion) of 

solid and liquid titanium, in the ranges of 1500 to 1900 K and 1950 to 2200 K respectively, 

were: 

 solid ( )1500T1057.16.149 2
el −×+=ρ −  (6.13) 

 liquid ( )1950T1048.69.156 3
el −×−=ρ −  (6.14) 

ρel is expressed in µΩ.cm and the temperature T in K. The resistivity at the beginning and at 

the end of melting was 156.5 µΩ.cm and 157 µΩ.cm, respectively. 

In the liquid, the measured resistivity was corrected for thermal expansion using volume-

expansion data from [55]: 

 liquid: ( ) ( )2
m

9
m

4

0

TT10671.5TT10575.1093.1
V 
V −×+−×+= −−  (6.15) 

where Tm denotes the melting temperature. By substituting 1941 K for Tm, the following 

function of temperature was obtained for the corrected electrical resistivity of liquid titanium, 
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in the range 1950 to 2200 K: 

 liquid: ( )1950T1076.17.171 2
c,el −×+=ρ −  (6.16) 

Again, ρel,c is expressed in µΩ.cm and the temperature T in K. Extrapolation of this function 

down to the melting temperature, yields 171.5 µΩ.cm for the resistivity of titanium at the end 

of melting. 

Figure (6.11) summarizes these results. The resistivity in the solid phase (not corrected) is 

compared to data that was obtained at NIST in the past [56] using the millisecond-resolution 

pulse-heating system. The corrected resistivity of liquid titanium is compared to the data 

reported in [55]. Temperature in [55] was computed using the assumption of constant normal 

spectral emittance in the liquid phase. 

6.2.3 Heat of fusion 

The mean value of the heat of fusion from all experiments was 13.2 kJ.mol-1. The standard 

deviation from the mean was 0.4 kJ.mol-1. In the past, a value of 13.0 kJ.mol-1 had been 

measured at NIST using the same microsecond-resolution pulse-heating technique [57]. At 

that time, a different radiometer was in use, whose measurement range started above the 

radiance temperature of titanium at its melting point. In order to be able to detect a melting 

plateau, the interference filter was removed to increase the radiant flux incident on the 

detector. The radiometer output therefore corresponded to an integral of the emitted radiance 

over a wide wavelength range. Heat of fusion was computed from least-squares fits to the 

radiometer-output-vs.-absorbed-energy data. 

6.2.4 Specific heat capacity 

For the specific heat capacity of titanium in the ranges of 1500 to 1900 K (solid) and 1950 to 

2200 K (liquid), constant values of 37.6 and 35.3 J.mol-1.K-1, were obtained. Although, it is 

common for liquid metals to have a constant heat capacity, a constant value in the solid phase 

is not realistic. The reason for not being able to resolve a positive (upward) curvature in the 

specific-enthalpy-vs.-temperature data, was the noise in the computed true temperature 

combined with the short temperature interval that was covered in the solid. Consequently, the 

agreement with heat capacity data of solid titanium obtained in the past at NIST, using the 

slower millisecond-system, is not good, particularly at the lower temperatures (fig. 6.12). 
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Fig. 6.12: Specific heat capacity of titanium as a function of temperature. 

6.2.5 Thermal conductivity 

Using the corrected resistivity data, eq. (6.16), the thermal conductivity of liquid titanium was 

estimated, in the range of 1950 to 2200 K: 

 ( )1950T1011.183.27 2 −×+=λ −  (6.17) 

λ is expressed in W.m-1.K-1 and the temperature T in K. A value of 2.45×10-8 W.Ω.K-2 was 

used for the Lorenz number L0. Equation (6.17) is plotted in fig. (6.13). 

6.2.6 Thermal diffusivity 

The thermal diffusivity of liquid titanium, in the temperature range 1950 to 2200 K, was 

estimated from the measured resistivity (not corrected for thermal expansion) and specific 

heat capacity, using eq. (4.8): 

 ( )1950T10094.51010.9 52 −×+×=α −−  (6.18) 

α is expressed in cm2.s-1 and T in K. A value of 2.45×10-8 W.Ω.K-2 was used for the Lorenz 

number L0. 

Equation (6.18) is plotted in fig. (6.14). 
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Fig. 6.13: Thermal conductivity of liquid titanium as a function of temperature, estimated 
from the corrected electrical resistivity data, using L0 = 2.45×10-8 W.Ω.K-2. Tm is the melting 
point of titanium, as measured in the present work. 
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Fig. 6.14: Thermal diffusivity of liquid titanium as a function of temperature, computed from 
the estimated thermal conductivity data fig. (6.13). Tm is the melting point of titanium, as 
measured in the present work. 
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7 MEASUREMENT UNCERTAINTIES 

In computing and reporting measurement uncertainties, an effort was made to comply, as 

closely as possible, with the guidelines outlined in [58] and [59]. In what is to follow, the 

symbol u will be used to denote standard uncertainties, which are estimated standard 

deviations. When an output quantity y is not measured directly but is derived from N input 

quantities, x1,…,xN, through a functional relation, the standard uncertainty components, 

ux1(y),…,uxN(y) of the output quantity will be determined using the law of propagation of 

uncertainty. The symbol uc(y) will then be used to denote the combined standard uncertainty 

of y, computed as the square root of the sum-of-the-squares of these uncertainty components. 

The symbol U(y) will be used to denote the expanded uncertainty of y, which is obtained by 

multiplying uc(y) by a coverage factor k. In this work k = 2 was used, and thus expanded 

uncertainties represent two-standard-deviation estimates. 

7.1 Radiance temperature 

In order to estimate the uncertainty of the measured radiance temperature Tλ, eq. (3.11) was 

written in a simpler form, that was derived using the Wien approximation to Planck’s law 

(eq. 2.16): 

 





λ⋅+=

λ S
Sln

c
n

T
1

T
1 0

20

 (7.1) 

where T0 denotes the calibration temperature, n the refraction index of air, λ the mean 

effective wavelength of the radiometer between T0 and Tλ, S0 the radiometer output signal 

during calibration (target at radiance temperature T0), and S the signal during measurement 

(target at radiance temperature Tλ). 

The (relative) uncertainty components of Tλ were obtained by forming the partial derivatives 

of 1/Tλ with respect to 1/T0, S0, S, and λ: 
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It is important to note that the first two (absolute) uncertainty components (eqs. 7.2 - 7.3) 

increase with temperature as Tλ
2. The third component (eq. 7.4) actually decreases with 

increasing temperature, because the signal S increases with temperature much faster1 than Tλ
2. 

Finally, the uncertainty with which the mean effective wavelength is known gives rise to an 

uncertainty in Tλ that is exactly zero at the calibration temperature, and increases with 

|Tλ.(Tλ-T0)| in both directions. 

Uncertainty in the calibration temperature T0 

The calibration certificate for the tungsten-filament reference lamp that was used as the 

secondary standard stated that the expanded uncertainty in radiance temperature was 1.0 K at 

2073.15 K (1800°C) and 1.3 K at 2373.15 K (2100°C). The expanded uncertainty due to drift, 

since the lamp was last calibrated by the NIST Optical Technology Division, did not exceed 

1.5 K at 2073.15 K and 2.0 K at 2373.15 K. This estimate was based on the changes observed 

between periodic recalibrations of the lamp (its calibration history). 

The current through the tungsten filament of the lamp, was computed from the voltage across 

a calibrated high-stability resistor, that was connected in series with the lamp. The voltage 

was measured using an 8½-digit multimeter. The auto-calibration feature of the digital 

multimeter was always used prior to performing a radiometer calibration. The expanded 

uncertainty of the lamp radiance temperature, stemming from the uncertainty in the measured 

lamp current (based on the multimeter manufacturer’s specifications), was 0.6 K at 2073.15 K 

and 0.85 K at 2373.15 K. 

Combined, these uncertainties yielded an expanded uncertainty in T0 of 1.9 K for the 

calibration at 2073.15, and 2.5 K for the calibration at 2373.15 K. 

No systematic correction was applied to account for the different mean effective wavelengths 

(by about 1 nm) of the NIST Photoelectric Pyrometer (PEP) [20], against which the reference 

                                                 
1 The sensitivity of blackbody spectral radiance to temperature variations can be expressed as the fractional 
change in spectral radiance per fractional change in blackbody temperature (dL/T)/(dT/T) = Z(T). For small 
temperature changes the function Z(T) is approximately constant, Z(T)≈Z, and we may write L~TZ. In the Wien 
approximation (accurate to better than 1% for nλT ≤ 3100 µm.K), Z = c2/nλT. Thus, at the lower limit of our 
measurement range (≈1500 K) L increases with temperature approximately as T15, whereas at the highest 
temperatures (≈2850 K) it increases approximately as T8. This holds for the radiometer signal S, as well, since 
S~L. 
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lamp was calibrated, and the microsecond pyrometer. Because of this difference, the radiance 

temperature of the reference lamp as seen by the microsecond-system pyrometer deviated 

somewhat from the certified radiance temperature. This probably introduced an error of about 

0.4 to 0.6 K in T0 [22]. 

No systematic correction was applied to account for the different field of views of the two 

pyrometers. Specifically, the microsecond-pyrometer accepted light from the lamp over a 

larger solid angle, as compared to the NIST PEP. Since the emittance of the tungsten strip 

varies with direction (it increases with angle from the normal), the radiance temperature of the 

lamp as seen by the microsecond radiometer was probably a little higher than the certified 

radiance temperature. The error in T0 introduced by not applying a correction is estimated to 

be less than 1 K [22]. 

Furthermore, the NIST PEP measured the radiance emitted from a 0.8 mm × 0.6 mm 

rectangular area on the lamp filament, whereas the microsecond-pyrometer accepted radiance 

from a 9.8 mm × 0.5 mm area on the filament. Because the emittance of the tungsten filament 

is not uniformly constant over its entire area, and because of true-temperature gradients along 

the length of the filament, again, the radiance temperature of the lamp as seen by the 

microsecond-pyrometer differed from the certified radiance temperature. No correction was 

applied to account for this difference. However, in order to estimate the magnitude of the 

error introduced by not making a correction, the tungsten-filament was ‘scanned’ using a 

small-target pyrometer (circular target, 0.2 mm in diameter), with the lamp at a radiance 

temperature of 1973.15 K (1700°C). It was found that the lamp radiance temperature as seen 

by the microsecond-pyrometer was lower by about 1.2 K than that seen by the small-target 

(∅  0.2 mm) pyrometer. 

Uncertainty in S0 and S 

Two of the uncertainty sources in the recorded signals were the noise from the radiometer 

electronics and the digitization by the analog-to-digital converter. Their combined effect on 

the signals was determined by computing the standard deviation of individual digitized 

samples from the mean of a thousand samples taken when the radiometer was focused on a 

steady radiance source (the tungsten-filament lamp). This standard deviation was found to be 

independent of the signal level, which indicated that the uncertainty in radiance temperature 

due to noise and digitization rapidly increased with decreasing temperature. 
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To compensate for any drift in the radiometer amplifiers with time and room temperature, the 

signal was always computed as the difference between a ‘bright’ signal, with the radiometer 

viewing the target, and a ‘dark’ signal, with the radiometer aperture blocked. Hence, the noise 

and digitization errors entered the computation twice. 

The (relative) expanded uncertainty in S0, due to noise and digitization, was 0.015% for the 

calibration at 2073.15 K, and 0.006% for the calibration at 2373.15 K. The expanded 

uncertainty in S was 19 mV for the high-gain-low-temperature radiometer channel (used for 

the titanium measurements) and 3.2 mV for the low-gain-high-temperature radiometer 

channel (used for the niobium experiments). 

In the case of S0, there was an additional uncertainty caused by the combined effect of the 

angular alignment of the reference-lamp and the positional alignment of the radiometer on the 

tungsten strip during calibration. The corresponding (relative) expanded uncertainty of S0 was 

0.2%, based on the difference in S0 after each of several realignments of the lamp and the 

radiometer. 

In the case of the signal S, some uncertainty was introduced by the fact that the experiment 

chamber window during measurement was different than the window that was interposed 

between the reference lamp and the radiometer during calibration. In addition, the chamber 

window was replaced after each experiment (§3.2). Allowing for a variation (expanded 

uncertainty) of 1% in the transmittance of the individual windows around the transmittance of 

the calibration window, we obtain an expanded uncertainty of about 1 K at 1500 K radiance 

temperature and about 3.6 K at 2800 K radiance temperature. 

No correction was applied to the measured signals to account for possible non-linearities in 

the radiometer amplifiers and/or the data acquisition cards. 

Effective wavelength 

The expanded uncertainty in the determined mean effective wavelength of the radiometer, 

arising from sources such as errors in the spectral transmission measurement and drift of the 

interference filters, was estimated at 2 nm. 

As explained in §(3.7.3), no correction was applied for the variation of the mean effective 

wavelength with temperature. The error introduced in the measured radiance temperature was 

estimated to be less than 0.2 K over most of the measurement range. 
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Scattered light 

As described in §(6.1.1), the size-of-source effect probably caused the measured radiance 

temperatures to be too low by a few degrees. If the difference in the melting radiance 

temperature of the preheated niobium specimens from that measured in the slower 

millisecond-system were entirely attributable to the size-of-source effect (-6 K at 2422 K), 

then the error, caused by scattered light, would be approximately -2.4 K at 1500 K and -8.2 K 

at 2800 K. However, since the radiometer was not actually characterized with respect to the 

size-of-source effect, no systematic correction was applied. 

Table (7-1) gives a summary of expanded uncertainty components of Tλ, as well as its (total) 

expanded uncertainty, at three temperatures, for each of the two radiometer output signals 

(high-gain-low-temperature and low-gain-high-temperature). It is important to keep in mind, 

that this expanded uncertainty of Tλ is rather optimistic, considering that probably significant 

uncertainty components were not taken into account, because of the incomplete 

characterization of the instrument. 

Table 7-1: Uncertainty components in the measurement of radiance temperature using the 
microsecond-resolution radiation thermometer. 

Amplifier gain 10 1 

Calibration at 2073.15 K 2373.15 K 

  Expanded uncertainties of Tλ (in K) at 

  1500 K 1800 K 2150 K 1600 K 2400 K 2800 K 

uncertainty of T0 (B)a 1.0 1.4 2.0 1.1 2.6 3.5 

noise and digitization of S0 (A)a 0.02 0.02 0.03 0.01 0.02 0.02 

alignment during calibration (B)a 0.21 0.3 0.42 0.23 0.53 0.72 

noise and digitization of S (A)a 18 2.3 0.45 12 0.33 0.12 

mean eff. wavelength (B)a 1.3 0.72 0.24 1.6 0.1 1.5 

U
nc

er
ta

in
ty

 c
om

po
ne

nt
s 

window transmittance (B)a 1.0 1.5 2.1 1.2 2.6 3.6 

 Expanded uncertainty:    U(Tλ) = 18 3 3 12 4 5 

a The uncertainty components may be grouped into two categories according to the method used to estimate 
their numerical values:  

A. those which are evaluated by statistical methods, 
B. those which are evaluated by other means. 
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7.2 Thermodynamic temperature 

The uncertainty in thermodynamic temperature T was determined from the uncertainty in the 

radiance temperature Tλ and the uncertainty in the measured normal spectral emittance ε of 

the specimen. Again, using Wien’s approximation to Planck’s law, eq. (4.1) may be written in 

the simpler form: 

 ( )Tln
c

n
T
1

T
1

2

ελ⋅+=
λ

 (7.6) 

As outlined in §(4.1), λ should strictly be the mean effective wavelength between Tλ and T. 

However, the error introduced by using the m.e. wavelength between T0 and Tλ instead, is 

negligible compared to the other uncertainties (see fig. 4.2). 

Equation (7.6) is identical to eq. (7.1), if T is replaced by Tλ, Tλ by T0, and ε by S0/S. Hence, 

the (relative) uncertainty components of T were obtained in the same fashion 
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The component arising from the uncertainty in λ has already been taken into account in u(Tλ). 

The largest contributions to the uncertainty of the measured normal spectral emittance come 

from signal noise, alignment of the PSD, and specimen movement. This uncertainty was 

estimated from the standard deviation of the normal spectral emittance at the melting point of 

niobium and titanium from its mean value. 

With an expanded relative uncertainty of 7% in ε, and using the expanded uncertainty in Tλ 

from the previous section, we obtain an expanded uncertainty in the reported melting 

temperatures of 25 K, in the case of niobium, and 13 K, in the case of titanium. 

7.3 Resistivity 

A detailed discussion of uncertainties associated with the measurement of current and voltage 

can be found in [60]. Specific items in the error analysis were recomputed when the present 

conditions differed from those in the earlier publication. 
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A summary of uncertainty components contributing to the expanded uncertainty of ρel is given 

in the following table. 

Table 7-2: Uncertainty components of the measured resistivity (not 
corrected for thermal expansion). 

Source of uncertainty Expanded relative 
uncertainty component

Voltage measurement (B) 2% 

Current measurement (B) 2% 

Linear specimen density (B) 0.4% 

Volume density (B) 0.4% 

Effective specimen length (B) 1% 

Expanded relative uncertainty:   Ur(ρel) = 3% 

 

The uncertainty in the linear density was computed from the uncertainties of the weight 

measurement and the measurement of the total specimen length, and was rounded upwards. 

According to the scale manufacturer’s specifications for the range that was used, the 

uncertainty in the measured total weight of the specimens was 0.042% for the niobium 

specimens and 0.084% for the titanium specimens. The uncertainty in the measurement of the 

total specimen length, using the traveling microscope, was estimated at 0.15%. 

The uncertainty in the reported resistivity-vs.-temperature functions was computed from the 

uncertainty in ρel, the uncertainty in the determination of thermodynamic temperature, and the 

standard deviation of the mean resistivity values from all experiments that were computed 

every 50 K (§4.2). A summary of the magnitudes of the various uncertainty components is 

given in Table (7-3). 
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Table 7-3: Uncertainty components of the linear functions of temperature representing the 
measured electrical resistivity of niobium and titanium. 

  Expanded relative uncertainty components 
of the ρel(T) functions 

  niobium titanium 

  solid liquid solid liquid 

uncertainty in ρel (B) 3% 3% 3% 3% 

uncertainty in T (B) 1.0% 0.2% 0.2% 0.1% 

U
nc

er
ta

in
ty

 
so

ur
ce

s 

uncertainty in the mean resistivity values 
from all experiments (A) 0.8% 0.8% 0.3% 0.2% 

 Expanded relative uncertainty: Ur[ρel(T)] = 3% 3% 3% 3% 

 

7.4 Heat of fusion 

The uncertainty in the computed heat of fusion was determined from the uncertainty in 

specific enthalpy, the uncertainty in the determination of thermodynamic temperature, and the 

standard deviation of the mean value from all experiments. The uncertainty in specific 

enthalpy was, in turn, determined from the combined uncertainties in the imparted power 

(product of voltage and current), the effective specimen length, and the linear density of the 

specimens. A summary of the magnitudes of the various uncertainty components is given in 

Table (7-4). 

7.5 Specific heat capacity 

The uncertainty in the computed specific heat capacity was determined from the uncertainty 

in specific enthalpy, the uncertainty in the determination of thermodynamic temperature, and 

the standard deviation of the mean value from all experiments at each temperature. A 

summary of the magnitudes of the various uncertainty components is given in Table (7-5). 
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Table 7-4: Uncertainty components of the computed heat of fusion of niobium and 
titanium. 

  Expanded relative uncertainty components

  niobium titanium 

imparted power (B) 2.8% 2.8% 

effective specimen length (B) 1% 1% 

linear specimen density (B) 0.4% 0.4% 

temperature measurement (B) 2% 0.5% 

U
nc

er
ta

in
ty

 so
ur

ce
s 

uncertainty in the mean value from all 
experiments (A) 

4% 6% 

 Expanded relative uncertainty:  Ur(hF) = 5% 7% 

 

Table 7-5: Uncertainty components of the computed specific heat capacity of niobium and 
titanium. 

  Expanded relative uncertainty components 

  niobium titanium 

  1600 K 2200 K 3200 K liquid solid liquid 

specific enthalpy (B) 3% 3% 3% 3% 3% 3% 

temperature measurement (B) 6.6% 0.2% 13% 1.8% 0.22% 0.12% 

U
nc

er
ta

in
ty

 
so

ur
ce

s 

uncertainty in the mean value 
from all experiments (A) 2.6% 1% 4.8% 6.6% 1.4% 4% 

 Expanded rel. uncertainty: 8% 3% 14% 7% 3% 5% 
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8 DISCUSSION AND OUTLOOK 

The present work proved the applicability of the laser polarimetric technique to the 

measurement of thermophysical properties of metals using a microsecond-resolution pulse-

heating technique. The obtained data were in reasonable agreement with data that had been 

obtained in the past at NIST, using both the millisecond and microsecond systems. For the 

first time, it was possible to measure the normal spectral emittance of the pulse-heated 

specimens at such speeds. This allowed the determination of their thermodynamic 

temperature over a wide range that, in the case of niobium, extended some five hundred 

degrees into the liquid phase. The technique has the potential to provide accurate 

thermophysical property data up to much higher temperatures. Assumptions about the 

behavior of the normal spectral emittance of liquid metals will no longer be necessary. 

In the course of this work some interesting observations were made, concerning the 

dependence of the radiance temperature at the melting point of niobium on the treatment that 

the specimens had received prior to being pulse-heated in the microsecond system. Whereas 

in slower millisecond-resolution pulse-heating experiments it is well established that the 

melting-point radiance temperature of pure metals is highly reproducible, irrespective of the 

initial surface condition of the specimen, the opposite was found to be true at the higher 

heating rates of the microsecond system. In the case of titanium, the radiance temperature at 

the melting point was significantly higher than the value obtained with slower experiments. 

Even more importantly, its normal spectral emittance was found to decrease upon completion 

of the melting transition, down to a value that was approximately equal to that at the melting 

point of titanium when measured with the slower pulse-heating technique. This would have 

led to a significant error in thermodynamic temperature, had the assumption been made of a 

constant emittance in the liquid phase, and effectively demonstrated the advantage of an in-

situ measurement of the normal spectral emittance, simultaneously with the radiance 

temperature measurement. 

A possible explanation for these differences in melting behavior, as compared to the slower 

technique, could be residual roughness at the melting point and even in the first stages of the 

liquid phase. This raises questions about the use of a polarimeter on surfaces that are not 

ideally smooth. Apparently, the instrument has some tolerance to surface roughness, at least 
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within its accuracy. Nevertheless, more work, on an experimental as well as a theoretical 

level, is required to understand its response to roughness. 

Future work involving this microsecond-resolution pulse-heating technique will undoubtedly 

have to focus on alloys instead of pure metals. On one hand, thermophysical properties of 

industrially significant alloys in their liquid phase are of great interest in many applications 

related to high-temperature technologies, particularly in the casting industry. On the other 

hand, such measurements on complicated systems can provide important insight into the 

physics of high-speed melting of alloys. A study on the effect of heating rate and grain size on 

the melting behavior of a relatively simple binary alloy, Nb-47 mass% Ti, was recently 

conducted at NIST, using the slower millisecond-resolution system [61]. In this study the 

heating rate was varied in the range of 100 to 10000 K.s-1, and the observed melting behavior 

was successfully explained by a model that included diffusion in the solid coupled with a heat 

balance during the melting process. This model predicted that T0 (diffusionless) melting 

would take place at significantly higher heating rates, at a temperature between the solidus 

and liquidus temperatures of the alloy. Preliminary experiments with this alloy in the 

microsecond system, showed that heating rates up to 108 K.s-1 were not high enough to 

achieve T0 melting. It would be interesting to modify the capacitor-discharge circuit and/or 

use specimens of smaller diameter to heat the alloy even faster. Ideally, the circuit could be 

modified to cover a much wider range of heating rates, for instance by using inductive coils to 

slow it down, in order to close the gap between the slower millisecond and the faster 

microsecond systems. 

In the case of alloys, it will also be very interesting to study the effect of composition on the 

normal spectral emittance. If there is such an effect, it will probably be difficult to model. 

However, even some sort of an empirical law might prove very helpful for the high-

temperature alloy industry. The question here is, can an expression be found, reasonably 

accurate for industrial applications, that relates the normal spectral emittance of an alloy to 

that of its major constituents, via the alloy composition? 
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