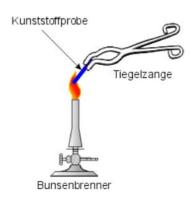


Arbeitsvorschrift Polymeranalytik – Vorproben

Die ausgegebenen Polymerproben werden hinsichtlich ihrer äußeren Merkmale (Aussehen, Farbe, Form, Haptik) beschrieben und mit einfachen qualitativen Methoden analysiert.

Löslichkeit und Dichte

Die **Löslichkeit** der Polymerproben wird in verschiedenen Lösungsmitteln getestet. Eine kleine Menge des Polymers wird in eine Eprouvette gegeben, mit einer ausreichenden Menge Lösungsmittel versetzt und vorsichtig geschüttelt. Über die Zeit hinweg werden eventuelle Löslichkeit oder Quellung, optische Veränderungen usw. beobachtet.^{1,2}


Mit demselben Versuch wird zugleich auch die **Dichte** bestimmt (sogenannter Schwimmtest).² Je nachdem ob die Polymerprobe absinkt, schwebt oder aufschwimmt kann aufgrund der bekannten Lösungsmitteldichte der Dichtebereich der Probe ermittelt werden.

Beilsteinprobe - Nachweis von Halogenen

Ein einfacher und schneller Nachweis von Halogenen ist durch den Beilsteintest möglich. Dazu wird ein Kupferdraht in der Bunsenbrennerflamme ausgeglüht bis keine Färbung mehr zu sehen ist. Danach wird eine kleine Menge des Polymers auf den Draht gegeben und in die Flamme gehalten. Bei Anwesenheit von Halogenen zeigt sich eine grüne bis blaugrüne Flammenfärbung.^{1,3}

Brennprobe

Die Polymerprobe wird mit einer Pinzette oder Spatel in die Flamme gehalten (Abbildung **1**). Sobald die Probe brennt wird diese langsam aus der Flamme genommen und das weitere Brennverhalten bestimmt. Es wird beobachtet ob sich die Probe leicht oder schwer entzündet, brennt oder nicht brennt, rußt oder glüht, sprüht oder tropft und ob diese außerhalb der Flamme weiterbrennt oder erlischt. Hierbei ist auch auf die Färbung der Flamme (leuchtend oder rußend) und den Geruch der Dämpfe zu achten (wobei sich dieser besser bei der Pyrolyse festgestellt wird).^{2,3} Anmerkung: viele Kunststoffe enthalten flammhemmende Zusätze.

Abbildung 1. Versuchsaufbau Brennprobe. Fehler! Textmarke nicht definiert.

Erhitzen im Glührohr (Pyrolyse)

Bei der Pyrolyse zersetzt sich die Polymerprobe und dabei entstehen Schwaden. Für diesen Versuch wird eine kleine Menge Probe in einem Glührohr über einer kleinen Flamme vorsichtig und so lange erhitzt, bis die Schwaden den oberen Rand des Glührohrs erreichen. Mit Hilfe eines sich dort befindenden angefeuchteten pH-Papieres wird die Reaktion der Schwaden bestimmt (Abbildung 2). Beobachtet werden hierbei das Schmelzverhalten, die Reaktion und der Geruch der Schwaden.³

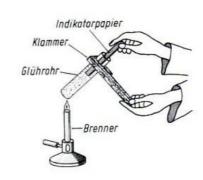


Abbildung 2. Versuchsaufbau Pyrolyse.3

Schmelzverhalten: die Probe schmilzt, schmilzt nicht, wird dick- oder dünnflüssiger. Die Schmelze färbt sich dunkel, gegebenenfalls ist eine Blasenbildung oder Zersetzung zu beobachten.

Reaktion der Schwaden: mittels pH-Papier kann eine saure, neutrale oder alkalische Reaktion nachgewiesen werden.

Geruch der Schwaden: die entstehenden Schwaden werden sehr vorsichtig der Nase zugefächelt.

Anhang

Tabelle 1. Brennverhalten von Kunststoffen.⁴

Brennbarkeit	nbarkeit Flamme Geruch der Dämpfe		Kunststoff
	-	-	Silikone, Polyimide
nicht brennbar	-	stechend nach Flusssäure	Polytetrafluorethylen, Polytrifluorchlorethylen
schwer entzündbar	hell, rußend	Phenol, Formaldehyd	Phenoplaste
	hellgelb	Ammoniak, Amine, Formaldehyd	Aminoplaste
erlischt außerhalb der Flamme	grüner Saum	Chlorwasserstoff	Chlorkautschuk, Polyvinylchlorid, Polyvinylidenchlorid
	leuchtend rußend	-	Polycarbonate
	gelb, grauer Rauch	-	Silikongummi
	gelborange, blauer Rauch	verbranntes Horn	Polyamide
	dunkelgelb, rußend	Essigsäure	Celluloseacetat
	gelb	Phenol, verbranntes Papier	Phenolharzschichtstoffe
	leuchtend, Zersetzung	kratzend	Polyvinylalkohol
brennt in der Flamme,	gelborange	verbrannter Gummi	Polychloropren
erlischt außerhalb	gelborange, rußend	süßlich, aromatisch	Polyethylenterephthalat
langsam oder nicht	gelb, blauer Rauch	stechend (Isocyanat)	Polyurethane
	gelb, blauer Kern	Paraffin	Polyethylen, Polypropylen
	leuchtend, rußend	scharf	Polyesterharze (glasfaserverstärkt)
	leuchtend, rußend	süßlich, Stadtgas (Styrol)	Polystyrol
	dunkelgelb, schwach	Essigsäure	Polyvinylacetat
	rußend	Essigsäure, Buttersäure	Celluloseacetobutyrat
leicht entzündbar, brennt	dunkelgelb, rußend	verbrannter Gummi	Kautschuk
außerhalb der Flamme weiter	leuchtend, blauer Kern, knisternd	süßlich-fruchtig	Polymethylmethacrylat
	bläulich	Formaldehyd	Polyoxymethylen
	hellgrün, Funken	Essigsäure	Celluloseacetat
	gelborange	verbranntes Papier	Cellulose
	hell, heftig	Stickoxide	Cellulosenitrat

Tabelle 2. Erkennungstafel für Polymere. 1,3,4,5,6

Polymer	Dichte (g·cm ⁻³)	löslich in	Verhalten beim Verbrennen	Verhalten im Glührohr			
ABS	1.06	Toluol, Aceton, Ethylacetat, DCM, Diethylether, THF	Brennt außerhalb der Flamme weiter, stark rußend. Flamme: leuchtend gelb, flackernd.	Schmilzt und zersetzt sich, schwarzer Rückstand. Dämpfe: neutral			
			Geruch: PS und Zimt,				
NR	0.93	HalogenKW, Benzol	Leicht entzündbar, erweicht, klebrig. Flamme: dunkelgelb, rußend.	Dämpfe: neutral			
			Geruch: verbrannter Gummi.				
PA 6	m-Kresol, 1.12-1.15 konz. H₂SO₄, Ameisensäure		Erlischt außerhalb der Flamme. Flamme: abtropfend, fadenziehend, knisternd bläulich, gelber Rand.	Schmilzt bei stärkerem Erwärmen, Schmelze ist blasig und fadenziehend, erst klar dann braun. Dämpfe: alkalisch			
			Geruch: Horn und Ammoniak.	<u></u>			
PA 66	m-Kresol, 1.13-1.16 konz. H ₂ SO ₄ , Ameisensäure		Erlischt außerhalb der Flamme. Flamme: abtropfend, fadenziehend, knisternd bläulich, gelber Rand	Schmilzt bei stärkerem Erwärmen, Schmelze ist blasig und fadenziehend, erst klar dann braun. Dämpfe: alkalisch			
			Geruch: Horn und Ammoniak.				
PC	1.20-1.24	DCM, THF	Erlischt außerhalb der Flamme, blasig, verkohlt. Flamme: leuchtend, rußend.	Schmilzt zähflüssig und braun. Dämpfe: anfangs schwach sauer, später neutral.			
			Geruch: Phenol	•			
PE	0.92-0.95	Tetralin, Dekalin, Xylol, Trichlorbenzol, Dichlorethylen,	Tropfen brennen im Fallen weiter, ruhig brennend. Flamme: gelb mit blauem Kern.	Wird klar, schmilzt, zersetzt sich, wenig sichtbare Dämpfe. Dämpfe: neutral.			
		Toluol (@ b _p)	Geruch: schwach paraffinartig				
PET	1.33-1.38 konz. H ₂ SO ₄ , <i>o</i> -Chlorphenol		Brennt nach dem Anzünden weiter, erweicht, schmilzt und tropft ab. Flamme: leuchtend, rußend.	Schmilzt, zersetzt sich, dunkelbraun, weißer Beschlag oben. Dämpfe: sauer			
			Geruch: süßlich kratzend				
PLA	1.20-1.40	DCM, THF, Chloroform	Brennt heftig. Flamme: hell	Schmilzt, wird braun. Dämpfe: sauer			
			Geruch: süßlich				
РММА	A 1.15-1.19 Ketone, Ester, HalogenKW		Brennt nach dem Anzünden weiter. Flamme: knisternd, tropft ab, leuchtend.	Erweicht, bläht sich auf, wenig Rückstand, braun dann schwarz. Dämpfe: neutral			
			Geruch: fruchtartig				

Fortsetzung Tabelle 2.

Polymer	Dichte (g·cm ⁻³)	löslich in	Verhalten beim Verbrennen	Verhalten im Glührohr
РОМ	1.41-1.43	DMSO, DMF (@ b _p), Benzylalkohol	Brennt nach dem Anzünden weiter. Flamme: blau fast farblos. Geruch: Formaldehyd	Schmilzt, zersetzt sich und vergast. Dämpfe: neutral, (sauer)
PP	0.89-0.92	Chloroform, Xylol, Toluol (@ b _p)	Tropfen brennen im Fallen weiter, ruhig brennend. Flamme: gelb mit blauem Kern.	Wird klar, schmilzt, zersetzt sich. Wenig sichtbare Dämpfe, neutral.
PS	1.05	Benzol, Toluol, Aceton, THF, Ethylacetat, Chloroform, DCM	Geruch: schwach paraffinartig Brennt nach dem Anzünden weiter. Flamme: leuchtend gelb, flackernd, rußend.	Schmilzt und vergast. Dämpfe: neutral
PTFE	2.15-2.20	-	Geruch: Styrol Brennt nicht. Flamme: blaugrüner Saum. Geruch: stechend nach Flusssäu	Wird klar, schmilzt nicht. Dämpfe: stark sauer
PVAc	1.18	Toluol, DCM, Aceton, EtOH, Ethylacetat, Butylacetat	Brennt nach dem Anzünden weiter. Flamme: leuchtend, rußend.	Schmilzt, wird braun und vergast. Dämpfe: sauer
PVC	1.30-1.44	DMF, THF, Cyclohexanon, Methylethylketon	Geruch: Essigsäure und Beigeru Erlischt außerhalb der Flamme. Flamme: gelb, rußend unterer Flammensaum ein wenig grün gefärbt.	Erweicht, zersetzt wird braun bis schwarz. Dämpfe: stark sauer.
PVOH	1.21-1.32	Formamid, Wasser	Geruch: Salzsäure Brennt in der Flamme, erlischt außerhalb langsam. Flamme: leuchtend. Geruch: kratzend	Schmilzt, zersetzt, brauner Rückstand. Dämpfe: neutral
SAN	1.08	Toluol, Ethylacetat, DCM, Aceton, THF, (Diethylether)	Brennt außerhalb der Flamme weiter, stark rußend. Flamme: leuchtend gelb, flackernd.	Schmilzt, wird gelb und zersetzt sich. Dämpfe: alkalisch
Silikon			Geruch: Styrol, kratzend Brennt sehr schwer, erlischt außerhalb der Flamme	Zersetzt sich nur bei starkem Erhitzen, weißer Rauch und weißer SiO ₂ -Rückstand. Dämpfe: neutral
			Geruch:	

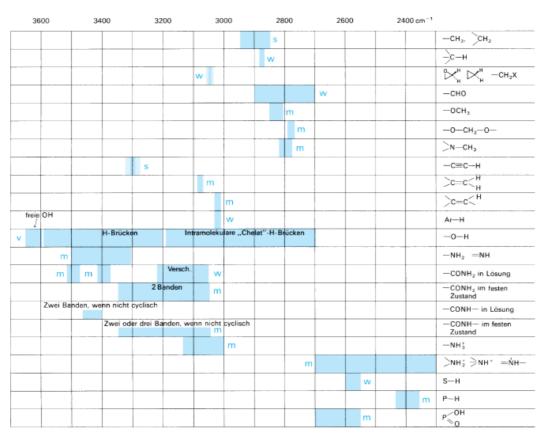


Tabelle 3. Thermische Daten wichtiger Polymere.⁷

Polymer	Abkürzung	T _g (°C)	T _m (°C)	ΔH _m (J·g ⁻¹)
ABS	Acrylnitril-Butadien-Styrol	110-125	-	-
CA	Celluloseacetat	45-60	-	-
PA 6	Polyamid 6	40-60	210-220	190
PA 66	Polyamid 66	50-60	240-265	185
PAM	Polyacrylamid	160-170	-	-
PBT	Polybutylenterephthalat	45-65	220-230	142
PC	Polycarbonat	140-150	-	-
PCL	Polycaprolacton	-60	60	-
PEEK	Polyetheretherketon	145-155	335-345	130
PE-HD	Polyethylen high density	-130-100	130-140	293
PE-LD	Polyethylen low density	-130-100	100-120	-
PET	Polyethylenterephthalat	70-80	245-265	140
PMMA	Polymethylmethacrylat	85-100	-	-
РОМ	Polyoxymethylen	-75-(-60)	140-175	190
PP	Polypropylen	-20-(-5)	165-175	207
PS	Polystyrol	90-110	-	-
PTFE	Polytetrafluorethylen	120-130	320-330	82
PVAc	Polyvinylacetat	25-35	-	-
PVC	Polyvinylchlorid	65-85	-	-
PVF	Polyvinylfluorid	30-45	190-200	164
PVOH	Polyvinylalkohol	80-90	220-260	156
SAN	Styrol-Acrylnitril-Copolymer	95-110	-	-
EP	Epoxidharz	50-200	-	-
PF	Phenol-Formaldehyd-Harz	70-210	-	-
PUR	Polyurethan	10-180	-	-
UP	Polyesterharz	60-170	-	-
BR	Butadien-Kautschuk	-95-(-85)	110-130	-
CR	Chloropren-Kautschuk	-50-(-30)	40-70	1-10
NBR	Acrylnitril-Butadien-Kautschuk	-40-5	-	485
NR	Naturkautschuk	95-110	-	-
SBR	Styrol-Butadien-Kautschuk	-55-(-35)	-20	170

Tabelle 4: Lage verschiedener Valenzschwingungen.8

2400	2300	2200	21	100	2000	1900 cm ⁻¹
				w		-с≡сн
			٧			-c=c-
		V				-c≡n
	S					-N ⁺ ₂
			S			-s-c≡n
s						CO2
		S				-NCO
		S				-N ₃
		S				-N=C=N
		s				-N=C=N
		S				-N=C=S
			S			C=N=Ñ
				s		>c=c=n-
					m	c=c=c

1800	1700	16	00	15	500	1400 cm ⁻¹
				m		-NH ₂ (Amide: s)
					w	NH (Amide: s)
			s		s	NH ² ,
		V				>c=n
		v				C=C
					v	konj. cycl. >C=N-
	т.		П	٧		-N=N-
						-N+=N- >c=c<
m-	w					>c=c<
			m			>C=C< Aryl konj.
	s		s			Diene, Triene etc.
			s)c=c ^{co-}
		s ein	od	er zwei	Banden)c=c N_
				m	m	Benzole, Pyridine etc.
					s	C-NO ₂
			s			-0-NO ₂
				s		>N-NO ₂
2	wei B	anden			s	C-N=0
			5			-0-N=0
				s		>n-n=0
					s	-cs-NH-

Protokoll

Spätestens 7 Tage nach dem Praktikum per E-Mail als PDF, ein gemeinsames pro Team.

- Titelseite: LV-Bezeichnung, LV-Nummer, Überschrift, Name + Matrikelnummer,
 Gruppenbezeichnung, Betreuer
- **Einleitung** (inkl. Aufgabenstellung/Ziel): max. 1 Seite (kurz)
- Experimentelles/Durchführung: Durchführung der Vorproben
- Ergebnisse und Diskussion: + Strukturformeln
 - <u>Vorproben</u>: Angabe von Löslichkeit, Dichtebereich, Flamm- und Glühverhalten,
 Beilsteinprobe, pH-Wert Dämpfe, Geruch, Aussehen,....
 - Thermoanalyse (DSC): inkl. DSC-Graph, Berechnung von Kristallisationsgrad α,
 Interpretation der Kurven, Literaturvergleich
 - <u>ATR-IR Spektroskopie</u>: inkl. ATR-IR Spektren, Zuordnung der Banden (Tabelle)
 - <u>GPC</u>: inkl. GPC-Mess-Sheet, Angabe von M_n, M_w, M_z, Berechnung von PDI
 - Messdaten mit Literaturwerten vergleichen und Angabe der Quellen!!!
- Zusammenfassung: max. 1 Seite, inkl. Struktur der identifizierten Polymere
- Anhang

Quellen

¹ Lechner, M. D.; Gehrke, K.; Nordmeier, E. H. *Makromolekulare Chemie*, 4. Auflage; Birkhäuser Verlag: Basel, 2010.

² Karlsruher Institut für Technologie, Institut für Technische Chemie und Polymerchemie, Abteilung Polymerchemie, Skriptum: *Polymer-Praktikum*, 2015.

³ Baur, E.; Harsch, G.; Moneke, M.; *Werkstoff-Führer Kunststoffe: Eigenschaften - Prüfungen - Kennwerte*, 11., aktuallisierte Auflage; Carl Hanser Verlag: München, Wien, 1999. [Online-Leseprobe, https://books.google.at]

⁴ Universität Paderborn, Skriptum: *Grundlagenpraktikum Makromolekulare Chemie*, 2017.

⁵ Ehrenstein, G. W.; *Polymer Werkstoffe-Kunststoffe: Struktur - Eigenschaften - Anwendungen*, 2., völlig überarbeitete Auflage; Carl Hanser Verlag: München, 2019.

⁶ Braun, D.; *Erkennen von Kunststoffen*, Kunststoff-Bestimmungstafel nach Dr. Hansjürgen Saechtling, Carl Hanser Verlag: München, 2012, Download https://www.hanser-elibrary.com/doi/pdf/10.3139/9783446433229.bm

⁷ Polymer characterization technical poster from PerkinElmer.

⁸ Hesse, M.; Meier, H.; Zeeh, B.; *Spektroskopische Methoden in der organischen Chemie*, 7., überarbeitete Auflage, Georg Thieme Verlag: Stuttgart, 2005.