
Supplementary: Shading Atlas Streaming

A PARALLEL MEMORY MANAGEMENT
Our memory management strategy uses three distinct phases, a
request phase, a provision phase and an assignment phase. The
phases have the following responsibilities:
• The request phase frees unused blocks and counts how many
blocks will be allocated.
• The provision phase allocates superblocks depending on how
many blocks are already available and have to be newly allo-
cated from superblocks.
• The assignment phase uses the information prepared in the
previous two phases to allocate the blocks.

We manage free memory in resource stacks. The subdivision into
phases, where either allocation or deallocation occur, lets us operate
each resource stack by atomically increasing or decreasing stack
counters, leading to a lock-free algorithm that is friendly to SIMD
operation. We use one stack for each block size and an additional
stack for unused superblocks. Free memory is either available on a
block stack, at or inside an unused superblock. In the former case,
the memory can only be used for a block of the corresponding size,
while memory inside an unused superblock still has the potential
to be allocated for any block size.

Superblocks are not freed separately, possibly leading to memory
fragmentation. As soon as blocks have been allocated from within
a superblock, they are managed on the resource stacks and cannot
change their size. These blocks will only be reused if the same
block size is requested again. An efficient parallel algorithm that
finds free blocks that can be merged into larger ones is hard to
implement. Instead, we capitalize on a property of MPEG encoding
that allows us to break with our requirement for temporal coherence.
The problem is solved with a garbage collection step that frees all
memory and newly allocates it. Doing this in correspondence with
MPEG I-frames leads to ideal use of the video encoding bandwidth,
since the temporal coherence is still ensured between I-frames.

A.1 Request phase
The request phase runs in parallel for all patches as outlined in
algorithm 1. Patches that have become invisible are inserted into
a block resource stack corresponding to their level (lines 3 to 5).
Patches that have become visible increase an atomic request counter
corresponding to their level (line 7) storing the resulting slot num-
ber P .s . Patches can also be reallocated, i.e., removed and re-inserted
in the same frame, where both conditions evaluate true (lines 2 and
6). At the end of the phase, we have determined the total number of
blocks required to be allocated for each level, and each patch stores
its slot, i.e., the value it has drawn from the request counter.

A.2 Assignment phase
We first investigate the assignment phase to see which information
the provision phase has to provide. The assignment phase runs in
parallel for all patches as outlined in algorithm 2. Based on its slot,
each patch determines whether its request is served by a list of
superblocks (lines 4 to 6) or the block resource stack (lines 8 to 13).

ALGORITHM 1: Request Phase

/* the request phase runs in parallel over all patches

that are visible or allocated */

1 for all patches P that are visible or allocated do
/* the patch should be deallocated as it became

invisible or is reallocated */

2 if P .toDeallocate then
/* the block b assigned to the patch P is pushed

onto the block stack for level l */

3 p ← atomicAdd(blockStack[l].count, 1)
4 blockStack[l].entries[p]← P .b
5 P .b← INVALID

/* the patch should be allocated as it became visible

or is reallocated */

6 if P .toAllocate then
/* a slot s is reserved as the number of blocks to

be allocated for level l is counted */

7 P .s ← atomicAdd(blocksRequested[l], 1)

ALGORITHM 2: Assignment Phase

/* the assignment phase runs in parallel over all visible

patches */

1 for all visible patches P do
/* if the patch is allocating a block */

2 if P .toAllocate then
/* check if the slot falls within range allocating

from the superblock list */

3 if P .s < slotCount[l] then
/* we compute the position in the list of

allocated superblocks */

4 s ← P .s + slotOffset[l]

5 i ←
⌊

s
BpSB(l)

⌋
/* get the corresponding superblock and compute

the block id within the superblock */

6 P .b← [sb[lx ][i], s − i · BpSB(l)]
7 else

/* we try to allocate from the stack */

8 p ← atomicAdd(blockStack[l].count, -1) - 1
9 if (p < 0) then

/* if that failed, we are out of memory */

10 atomicAdd(blockStack[l].count, 1)
11 P .b← INVALID
12 else
13 P .b← blockStack[l].entries[p]

This strategy is not only lock-free, it also deals with provisioning
on a superblock level, avoiding tedious bookkeeping during bulk
allocations. Recycling happens on the level of individual blocks, but



:2 • Mueller, et al.

uses efficient atomically operated stacks to manage the recycled
blocks.

To determine which of the two methods is used for a given patch,
the slotCount for the patch’s level l is compared to the patch’s slot
number P .s in line 5. If the patch is allocated from a superblock, the
patch uses its slot and the slotOffset to compute which superblock is
provisioned to fulfill its request (lines 4 and 5). The BpSB(l) function
gives the number of blocks a superblock can store for level l if
all blocks were the same level. The slot can directly be used to
compute the patch’s offset in the superblock (line 6). By reading the
superblock index corresponding to the slot from the sb array, the
allocation is fulfilled (also line 6). The slot number P .s of the patch
was determined in the request phase, but the remaining information
about allocation from superblocks has to come from the provision
phase. This information includes the slotCount, slotOffset and sb
arrays, where the later is shared for all levels with the same block
width.

If the slot index P .s points to an entry outside the bounds of the
array, it draws a block from the resource stack (starting at line 8).
The atomic decrement (line 8) returns the position p on the stack of
the block that is allocated. If the position p is negative, allocation
fails, since there are no blocks left on the stack (line 9). In this
case we revert the atomic decrement (line 10) and remember that
allocation failed (line 11). Otherwise, we simply get the block from
the resource stack (line 13).

A.3 Provision phase
The provision phase determines how many requests from patches
can be served from the block resource stack. For the remaining
patches, it draws free superblocks from the superblock resource
stack. The indices of the provisioned superblocks are stored in the
sb array, allowing patches to pick their respective slots from this
array in the assignment phase. In most cases, the last superblock
drawn from the resource stack will not be fully filled by the requests.
Therefore, we memorize the fill-rate of the last superblock for each
level, and top it up in the next frames before requesting a new
superblock for that level.
The provision phase operates in parallel per block width as out-

lined in algorithm 3. It allocates superblocks for all levels with the
same block width in the sb array as shown in figure 1. The su-
perblocks for one specific width are subdivided into columns of this
width. Within the columns blocks are allocated in order with de-
creasing size. This ensures that there will be no alignment problems,
such as a block split in half as it should begin at the end of one
column and end at the beginning of the next column.
First, the number of superblocks to be allocated has to be com-

puted. We do this by add up the number of pixel lines r within the
columns (lines 2 to 4) This can also be thought of as the number of
blocks of the smallest block size - with one pixel height. Since we
carry over the last superblock from the last frame that has not been
completely filled, we first consider the remaining space within this
superblock (line 2). The carryOver offset stores how many square
blocks of this size have already been allocated in the block. Using
the number of blocks that would fit in the superblock (BpSB) we
can compute the remaining space. At this point r is zero or negative

ALGORITHM 3: Provision Phase
/* the provision phase runs in parallel over all block

widths */

1 for all block widths lx do
/* compute how many superblocks need to be newly

allocated */

2 r ←
(
carryOver[lx ].offset − BpSB

(
[lx lx ]T

))
· 2lx

3 for all block heights ly do
4 r += max(0, blocksRequested[l] - blockStack[l].count) ·2ly

/* try to allocate as many superblocks as required and

fill in the sb array */

5 sb[lx ][0]← carryOver[lx ].id
6 superblockCount← 1

7 for i ← 1 to

⌈
r

BpSB
(
[lx 0]T

) ⌉ do
8 p ← atomicAdd(superblockStack.count, -1) - 1
9 if p < 0 then
10 atomicAdd(superblockStack.count, 1)
11 break

12 sb[lx ][i]← superblockStack.entries[p]
13 superblockCount + = 1

/* compute per level information of the slot range
within the sb array and store results in the
slotOffset and slotCount arrays */

14 o ← carryOver[lx ].offset

15 a ← superblockCount ·BpSB
(
[lx lx ]T

)
− o

16 for ly ← lx to 1 do
17 r ← clamp(blocksRequested[l] - blockStack[l].count, 0, a)
18 slotOffset[l]← o
19 slotCount[l]← r
20 blocksRequested[l]← 0
21 o ← 2 · (o + r )
22 a ← 2 · (a − r )

/* put remaining rectangular blocks on their

respective stacks */

23 for ly ← 1 to lx − 1 do
24 o ←

⌈ o
2
⌉

25 if o is odd then
26 p ← atomicAdd(blockStack[l].count, 1)
27 blockStack[l].entries[p]← [o%BpSB (l),

sb[lx ][superblockCount - 1]]

/* store carryOver information for the next frame */

28 carryOver[lx ].offset = o
29 carryOver[lx ].id = sb[lx ][superblockCount - 1]]

as this space has already been allocated and will be used up first.
Before the first frame the carryOver offset has to be initialized with
the value from BpSB in order to initialize r correctly in the first
frame. In the following loop, we then add up the number of pixel
lines necessary for each block size, counting only requested blocks,
that cannot be allocated from the corresponding block stack (lines
3 and 4).



Supplementary: Shading Atlas Streaming • :3

b1

b2

b3

b4

b7

b8

b5

b6

b9

b14

b10

b11

b12

b13

S1

a b

S2 S3

c

d
e

f

Fig. 1. Example of the provisioning phase of the parallel memory allocation
and the corresponding lines in algorithm 3. (a) The superblock carried over
from the last frame S1 is partially filled (line 2). The actual allocation of
superblocks requested for each block size (b to d) is done in lines 3 to 22,
separated into three distinct steps: counting how many superblocks are
required (lines 3 and 4), allocating the superblocks (lines 5 to 13) and then
assigning the superblocks to each level (lines 14 to 22). (b) The allocation
of the 4 × 4 blocks in the first and second superblock S2 is done in the first
iteration of the loops in lines 3 to 4 and 16 to 22). (c) For the 4 × 2 blocks,
another superblock S3 is provisioned in the second iteration in the loops in
lines 3 to 4 and 16 to 22. (d) The 4 × 1 blocks fit into the remaining space of
S3 (third iteration in the loops in lines 3 to 4 and 16 to 22). (e) Remaining
rectangular blocks are put on block stacks (lines 23 to 27). (f) The remaining
space in S3 will be used in the provisioning phase of the next frame (lines
28 to 29).

Next, we allocate the required superblocks. The sb array is started
with the carried over superblock (lines 5 and 6). The following loop
(lines 7 to 13) allocates the new superblocks from the superblock
stack in the same way allocation works for block stacks in the
assignment phase (lines 8 to 12). If we run out of memory, the loop
is aborted early (line 11), resulting in less superblocks allocated
(superblockCount) than requested.

The next step is to fill in the slotOffset and slotCount arrays for
the assignment phase. We use an offset variable o that stores the
offset and an available block count variable a that stores the number
of still available blocks within the superblocks. The variables are
initialized with values for the largest (square) block size (lines 14 and
15). In the following loop (lines 16 to 22) the offsets are assigned in
the discussed order from largest to smallest block size. The number
of blocks that can be allocated from the superblocks needs to be
clamped between zero and the number of available blocks (line
17). This value and the offset are then stored in the slotCount and
slotOffset arrays and the number of requested blocks blocksRequested
is reset for the next frame (lines 18 to 20). For the next iteration the
offset o and available blocks a are updated and doubled as the next
iteration’s block size is halved (lines 21 and 22).
With the arrays sa, slotCount and slotOffset prepared for the as-

signment phase, the remaining task is to prepare the last superblock
for the next frame. The alignment needs to be fixed to start with the
allocation of square blocks in the next frame. In a loop we deallocate
any non-square blocks that remain at the end of the last superblock
(lines 23 to 27). This is done by looping over the block sizes in the
opposite direction - from smallest to largest - and halve the final
offset o again (lines 23 and 24) until we arrive back at the square
block size. If the offset o cannot be halved without a remainder (line
25), we deallocate a block of the current size (lines 26 and 27) in the
same way it is done in the request phase. The modulo operator % is

used to calculate the block’s index within the superblock. Finally,
we store the resulting final offset and the last superblock’s id for
the next frame (lines 28 and 29).


	A Parallel memory management
	A.1 Request phase
	A.2 Assignment phase
	A.3 Provision phase


