Shading Atlas Streaming

JOERG H. MUELLER, Graz University of Technology
PHILIP VOGLREITER, Graz University of Technology
MARK DOKTER, Graz University of Technology
THOMAS NEFF, Graz University of Technology

MINA MAKAR, Qualcomm Technologies Inc.

MARKUS STEINBERGER, Graz University of Technology

DIETER SCHMALSTIEG, Graz University of Technology and Qualcomm Technologies Inc.

Fig. 1. Game scenes (top row) with corresponding shading atlas (bottom row). The shading atlas contains all the shading information of the visible surfaces
corresponding to the rendered scenes. The object-space parametrization is created fully dynamically. From the shading atlas, novel views at close viewpoints
can be rendered for framerate upsampling and warping. The shading atlas is temporally coherent and lends itself to efficient MPEG compression and streaming.

Streaming high quality rendering for virtual reality applications requires
minimizing perceived latency. We introduce Shading Atlas Streaming (SAS),
a novel object-space rendering framework suitable for streaming virtual re-
ality content. SAS decouples server-side shading from client-side rendering,
allowing the client to perform framerate upsampling and latency compen-
sation autonomously for short periods of time. The shading information
created by the server in object space is temporally coherent and can be
efficiently compressed using standard MPEG encoding. Our results show
that SAS compares favorably to previous methods for remote image-based
rendering in terms of image quality and network bandwidth efficiency. SAS

J. Mueller, P. Voglreiter, M. Dokter and T. Neff are affiliated with the Christian Doppler
Laboratory of Semantic 3D Vision established at Graz University of Technology.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.

0730-0301/2018/11-ART199 $15.00

https://doi.org/10.1145/3272127.3275087

allows highly efficient parallel allocation in a virtualized-texture-like mem-
ory hierarchy, solving a common efficiency problem of object-space shading.
With SAS, untethered virtual reality headsets can benefit from high quality
rendering without paying in increased latency.

CCS Concepts: « Computing methodologies — Rendering; Virtual re-
ality;

Additional Key Words and Phrases: Streaming, Shading, Texture atlas, Object-
space shading, Virtual reality

ACM Reference format:

Joerg H. Mueller, Philip Voglreiter, Mark Dokter, Thomas Neff, Mina Makar,
Markus Steinberger, and Dieter Schmalstieg. 2018. Shading Atlas Streaming.

ACM Trans. Graph. 37, 6, Article 199 (November 2018), 16 pages.
https://doi.org/10.1145/3272127.3275087

1 INTRODUCTION

The current state of the art to deliver virtual reality (VR) to a con-
sumer audience is to combine a high-end PC with a tethered VR
headset. Obviously, both the need for an expensive PC and the tether
are undesirable. Untethering the headset gives the user freedom
to roam the virtual environment. All-in-one VR headsets, such as

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275087
https://doi.org/10.1145/3272127.3275087

199:2 « Mueller, et al.

Oculus Go, are untethered by design, and some (e.g., VIVE Focus or
HoloLens) offer superb inside-out tracking. However, an embedded
GPU in an all-in-one-device will not be able to deliver the high-end
graphics required for VR in the foreseeable future, since it is limited
by power budget, thermal restrictions and production cost.

As an alternative to standalone operation, VR games can be deliv-
ered as a streaming service from cloud or edge computing directly
to the VR headset, eliminating the need for owning and maintaining
an expensive gaming PC. Cloud game services over wide-area net-
works are commercially offered by vendors such as Sony or NVidia.
However, bandwidth and latency of wireless networks are major
concerns. Unlike video-on-demand services, which can hide latency
and bandwidth variations by heavy buffering, VR games must be
instantly responsive [Chen et al. 2011; Manzano et al. 2012]. Even
edge servers [Choy et al. 2012] or wireless local area networks [Lee
et al. 2015] barely meet the latency and bandwidth requirements of
game streaming.

One opportunity for improving the perceived latency in such
a streaming scenario is to better utilize the GPU of the all-in-one
device, which is only relatively lightly loaded with tasks such as
video decoding and displaying a pixel stream. We leverage this
opportunity by proposing a remote rendering approach, where the
graphics pipeline is subdivided across a client-server system such
that perceived latency is minimized [Shi and Hsu 2015].

In the search for a good remote rendering solution, it is impor-
tant to identify natural splits in the rendering pipeline. Current VR
systems (including tethered ones, such as Oculus Rift or Sony PSVR)
use a two-stage graphics pipeline, where a framebuffer is generated
by a rendering stage and warped by a display stage. Warping jointly
addresses viewpoint extrapolation, spatial upsampling, temporal
upsampling, and distortion compensation for headset optics.

However, an intrinsic problem of image-based rendering (IBR)
methods, such as warping, is that they index by view (i.e., in image
space) and therefore lack object-space information needed to de-
tect visibility changes. Hence, viewpoint extrapolation suffers from
disocclusion artifacts.

Rendering caches that operate in object space [Ragan-Kelley et al.
2011] represent an interesting alternative to warping in image space.
Object-space shading is employed in some game engines to amortize
shading or texture synthesis cost [Baker 2016; Chen 2015]. However,
for large scenes, a global object-space map becomes expensive to
maintain [Liktor and Dachsbacher 2012] and prohibitive to stream.
A scalable solution for streaming VR must ensure that all relevant
aspects - memory consumption, shading load and transmission
bandwidth - are output-sensitive, i.e., proportional to the final image
display and not to the scene size.

In this paper, we introduce a novel approach for remote rendering,
called shading atlas streaming (SAS). In SAS, the server GPU fills an
atlas with shaded pixels corresponding to just the visible triangles.
The client GPU performs a final geometry pass, but samples the
shading information from the atlas rather than invoking expensive
fragment shaders. SAS makes the following contributions:

o Potentially visible set approximation. We combine a visibility
pass with motion prediction to approximate a potentially vis-
ible set [Airey et al. 1990], or PVS. The atlas is filled with

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

shading information for triangles that have recently been
visible or will likely be visible according to the motion pre-
diction. In practice, this corresponds to an online sampling
of the PVS, sufficient for preventing almost all disocclusion
events, provided the motion prediction is reliable!.

Virtual memory for shading information. The atlas acts as a
cache. This cache is filled incrementally with shaded pixels
corresponding to the currently visible triangles. Coupling vir-
tual memory allocation to visibility makes physical memory
requirements proportional to the target resolution.

Implicit mipmapping. Allocation sizes in the SAS are derived
from the footprint of the triangle in image space, thereby
delivering the equivalent of anisotropic mipmapping.
Graceful degradation. Under high memory pressure (for ex-
ample, during phases of rapid view rotation), the memory
stress induced by the enlarged PVS can be alleviated by bias-
ing the mipmap level selection, trading temporarily reduced
image quality for disruptive disocclusions. This behavior is
akin to dynamic resolution scaling in contemporary games,
with the important difference that ours works in object space
and can easily support advanced behaviors such as per-object
priorities and foveation.

Efficient transmission. Changes to the atlas can be efficiently

encoded as incremental video frames, compatible with hardware-

accelerated MPEG encoding and transmission. No proprietary
transmission layer is necessary.

We illustrate our work with examples drawn from a prototype of an
end-to-end system, targeting an all-in-one headset prototype. We
show that our approach outperforms conventional video streaming
in terms of image quality at the same network bitrate.

2 RELATED WORK

The SAS architecture is related to image-based rendering, remote
rendering, object-space shading and virtualized textures. In this
section, we discuss previous work in these areas and link them to
our research.

2.1 Image-based rendering

IBR synthesizes an image from a novel viewpoint by warping a
previous image. Probably the most widely known warping is asyn-
chronous time warping (ATW) popularized by the Oculus Rift [Ocu-
lusVR 2018]. ATW compensates for the perceived latency during
rapid rotational head motion by re-adjusting the displayed viewport
inside a slightly overscanned framebuffer. This adjustment happens
just prior to display scan-out, based on the most recent tracked (or
predicted) head motion. An important limitation of ATW is that it
does not support full 3D camera motion.

Full 3D motion can be handled by more advanced warping meth-
ods, which use a variety of intermediary representations. Some
avoid polygonal geometry and use alternatives such as point splat-
ting [Chen and Williams 1993], layered depth images [Shade et al.
1998] or unstructured lumigraphs [Buehler et al. 2001]. However,
the most widely used strategy for real-time warping is to create a
geometric proxy from the depth buffer and associate the shading

! A problem which we consider out of scope for our purposes

content with the proxy via projective texture mapping [Mark et al.
1997]. Geometric simplification can be used to obtain a more light-
weight proxy [Bowles et al. 2012; Didyk et al. 2010; Lee et al. 2015].
However, IBR methods relying on the depth buffer as a representa-
tion of scene geometry can suffer from the limited resolution of the

depth buffer.

2.2 Remote rendering

A good way to classify remote rendering systems is by the charac-
teristics of the transmitted data [Shi and Hsu 2015]. We can coarsely
distinguish approaches that transmit only video, systems that trans-
mit precomputed IBR information for static scenes, systems that
transmit dynamically computed IBR views with the original scene
geometry, and systems that transmit color+depth buffers.

The simplest system category does not send any geometry to
the client. While such a minimal system is limited to pure ATW on
the client side, the server still can use rendering information for
more efficient MPEG encoding [Noimark and Cohen-Or 2003] or
proprietary color+depth compression [Pajak et al. 2011].

If a static scene can be assumed, complex scenes can be con-
verted to an IBR database in precomputation. The proxy geometry
used to organize the IBR can take on a variety of forms, such as
sparse [Teler and Lischinski 2001] or dense [Boos et al. 2016] im-
postors, view-dependent texture maps [Cohen-Or et al. 1999], or
geometry images [Sheng et al. 2011].

For dynamic scenes, we can take advantage of the fact that, in
most games, only the appearance changes dynamically, while most
of the geometry is static. The static geometry can be used directly
for perspective texture mapping, possibly with simplification [Rein-
ert et al. 2016]. Rendering the same model at server and client can
reduce transmission to residual images remaining after consider-
ing disocclusion [Mann and Cohen-Or 1997], low-frequency illu-
mination effects [Levoy 1995], or factoring out expensive indirect
illumination effects [Crassin et al. 2015].

Deriving the proxy geometry from the rendered depth buffer
makes IBR completely independent of the scene complexity. Data
can be transmitted as color+depth images and rendered via splatting
or texture-mapping to a meshed depth buffer [Chang and Ger 2002;
Shi et al. 2012]. This strategy can be combined with residual image
transmission [Bao and Gourlay 2004; Cuervo et al. 2015; Yoon and
Neumann 2000] or speculative rendering [Lee et al. 2015].

One implicit assumption of most, if not all, IBR approaches is that
real-time geometric rendering is inherently expensive and must be
avoided as much as possible. This may have been true 20 years ago,
but today even a mobile GPU has a fairly high geometry and rasteri-
zation throughput. The real cost of today’s rendering workloads lies
in complex surface shaders. For scenes of reasonable complexity,
the most interesting use of IBR lies in amortizing the shading results.
We explore this design point in our work.

2.3 Object-space shading

Shading in object space has recently become a viable alternative to
shading in image space [Baker 2016]. While traditional IBR primarily
uses image space representations to exploit temporal coherence,
object-space shading [Cook et al. 1987] can exploit spatio-temporal

Shading Atlas Streaming « 199:3

coherence in real time [Ragan-Kelley et al. 2011]. Unfortunately,
many sophisticated object-space shading ideas are implemented
in software rendering [Andersson et al. 2014; Burns et al. 2010;
Clarberg et al. 2014, 2013] and would require future GPU extensions
for real-time use in VR.

However, some variants of object-space shading can be imple-
mented with shaders using multiple passes. A visibility stage deter-
mines visible geometry, a shading stage updates shading information
in the texture, and a display stage generates the image to be displayed
from the texture. The explicit mapping into object-space makes it
straight forward to take advantage of spatio-temporal coherence, for
example, by adjusting shading rates. However, memory consump-
tion and shader load are directly dependent on the effectiveness of
the visibility pass.

In scenes with limited overdraw, such as in games with a zoomed-
out viewpoint, it can be sufficient to allocate a pre-charted texture
per object on demand (for each object that is not culled) to store the
shading information [Baker 2016]. In scenes with high overdraw,
visibility can be determined per triangle using a depth buffer. For
example, texel shading [Hillesland and Yang 2016] shades only the
visible portion of the scene, but organizes the shaded pixels using
pre-charted, mipmapped textures per object. Large portions of the
allocated memory remain empty, making texel shading unsuitable
for video streaming. Another example, the compact G-buffer [Liktor
and Dachsbacher 2012], stores only the shaded pixels, but organizes
them using a hash map. Hashing is convenient for stochastic raster-
ization, but not so suitable for video streaming, since it scrambles
spatial coherence.

In contrast to previous object-space methods, SAS has both a com-
pact memory footprint and temporal coherence. We fill our object-
space texture with shaded information for individual triangles at
appropriate sampling rates. The per-triangle sampling rates of our
approach are determined similarly to vertex color textures [Yuksel
2017], but the triangle-to-texture mapping is determined using an
approach inspired by virtualized textures, as described below.

2.4 Virtualized textures

A memory-efficient representation of shading information usually
requires a texture atlas, i.e., a one-to-one mapping from all object
surfaces into a single texture space [Carr and Hart 2002]. When
the amount of surface space to be mapped is too large, it may be
necessary to use a virtualized texture (VT). The texture is split into
square tiles (pages), of which only a working set is loaded [Chadjas
et al. 2010]. For terrain rendering, this working set is implicitly given
by the viewing frustum [Tanner et al. 1998]. For general polygonal
objects, an indirection texture (pagetable) is required [Kraus and
Ertl 2002]. Dynamic updates to the working set additionally require
a tile fault component to determine missing tiles and a tile fetch
component that loads these tiles [Lefebvre et al. 2004].

Today’s GPU architectures expose hardware-accelerated paging
for VT [Cebenoyan 2014], albeit only with a single level of indi-
rection and a fixed tile size. Therefore, VT has been mostly used
with paging in software, for example, in the well-known id tech 5
engine [van Waveren 2009].

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

199:4 « Mueller, et al.

Visibility
Stage

Shading
Stage

Encoding
Stage

Networking
Stage

Client

Display

Meta-info

(encoded)

MPEG frame MPEG frame 5a

Pose updates

Framerate
upsampling

Meta-info path

(encoded)

> I

Fig. 2. Our pipeline is split across a server and a client part, with the shading atlas as the central data structure connecting the two. Camera pose updates
generated by the user are sent upstream, on a slow (networked) path to the server for rendering new shading into the atlas, and on a fast (direct) path to the

client to render new images to the display.

Terrain rendering lends itself to a hierarchical VT implementa-
tion, since the terrain can easily be broken up into square chunks.
Visibility and level of detail for each chunk can be implicitly deter-
mined [Tanner et al. 1998], so dynamic packing of visible terrain
chunks given at multiple resolutions into a single "stitch map" can
be computed on the CPU [Baker 2016; Chen 2015; McAnlis 2009].

In contrast, SAS requires a dynamic packing of shading informa-
tion associated with individual triangles, rather than large chunks
or objects. Computing the packing of a large number of entities
given at different levels of detail on the CPU would be too slow. We
will show how to efficiently allocate a hierarchical VT on the GPU
at full frame rate.

3 SYSTEM OVERVIEW

To understand the design constraints of a remote rendering system
using object-space shading, we begin with an overview of the server-
client pipeline (Figure 2). The end-to-end latency for a round trip
from client to server and back can be broken down as follows:

Fig. 3. (top) Image-based rendering methods typically suffer from artifacts
caused by disocclusions (red arrow), when the viewpoint is translated. (bot-
tom) SAS can avoid artifacts by predicting future viewpoints and rendering
all geometry in the corresponding potentially visible set.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

(1) The client sends the current view matrix to the server. This
duration is owed to network latency. It can be changed with
faster networking technology.

(2) The message waits at the server until a new frame starts
rendering. This duration depends on how frequent the client
sends pose updates, since the most recently received pose is
used for the next frame.

(3) The server renders the atlas frame. This duration corresponds
to the processing times for visibility, shading and encoding
stages. It depends on server CPU and GPU performance.

(4) Atlas frame and corresponding meta-information are sent to
the client. This duration is owed to network latency.

(5) The client decodes (5a) the atlas frame and (5b) the meta-
information. This duration corresponds to the maximum of
client’s processing time for the two decoding tasks, since
they are carried out by different hardware units. The duration
depends on client CPU and GPU performance.

(6) The received data waits at the client until a new frame starts
rendering. This duration depends on the client frame rate and
varies between 0 and the client frame time.

(7) The client renders the final frame. This duration corresponds
to the client’s processing times for the display stage. It de-
pends on the client’s CPU and GPU performance.

(8) The final frame is displayed. The most recently received
server frame is used to render additional frames at the client
(framerate upsampling). Thus, this duration increases with
every upsampled frame, until a new atlas frame arrives.

The end-to-end latency of a streaming system not only depends on
the network latency, but also on the server’s frame rate for send-
ing data and the client’s frame rate for displaying new images. If
the server has a lower framerate than the client, this framerate up-
sampling induces additional variable latency on top of the network
latency. However, lowering the server frame rate has several ad-
vantages. First, the server can render higher quality results, as it
has more time per frame. Second, a lower server frame rate can be
encoded at a lower bitrate. Third, the client has to decode fewer
frames, benefiting from faster processing and power savings. We

have found that these advantages outweigh the overhead of shading
all polygons in a PVS, even when the PVS becomes large.

The system design must balance server and client framerates to
deliver optimal quality for a given bitrate. In an optimal pipeline,
every stage must be both fast and avoid any loss of image quality.
In the remainder of this section, we discuss the design decisions of
the various pipeline stages, before returning to our central enabling
technology, the shading atlas, in section 4. We report on a system
evaluation in section 5.

3.1 Visibility stage

The target of the visibility stage is to determine which geometry is
visible and needs to be shaded. It addresses the main problem IBR
methods have with framerate upsampling - disocclusions. While
disocclusions provoked by camera rotation can be avoided with an
extended field of view (FOV), disocclusions provoked by camera
translation would need additional views of the scene. Unlike most
IBR methods, SAS only has disocclusion problems if the disoccluded
geometry is not part of the PVS (Figure 3, top). We compute the PVS
by predicting the future viewpoints that will be used at the client
and include the associated visible geometry into the PVS (Figure 3,
bottom).

The unit for determining visibility is a patch, i.e., a group of two
or three adjacent triangles (Figure 4), which are suitable for dense
atlas packing [Carr and Hart 2002]. In section 5.2, we demonstrate
that this fine-grained visibility determination is necessary to keep
the atlas size small. Assignment of triangles to patches is determined
during preprocessing with a heuristic optimization; solo triangles
are used only when unavoidable.

The visibility stage renders a patch id buffer, with depth buffer
enabled. A subsequent compute pass marks the patches in the id
buffer as visible, effectively computing an exact visible set (EVS). To
extend the EVS into a PVS covering the geometry that may become
visible as the camera moves, we combine two measures (Figure 5):

e We enlarge the FOV at the borders by increasing the resolu-
tion of the id pass and adapting the projection matrix to keep
the original FOV and resolution in the center of the id buffer.
This procedure is typically applied in IBR methods to ensure
visibility for small rotations of the view.

e Based on head motion prediction, we extrapolate motion for
a short period into the future and sample an EVS for multi-
ple viewpoint locations, starting from the current viewpoint

(a) One-triangle patch (b) Two-triangle patch (c) Three-triangle patch

Fig. 4. Our system supports three different patch types with one, two or
three triangles. The preferred patch type is the two-triangle patch.

Shading Atlas Streaming « 199:5

location. The PVS is determined as the union of all patches
contained in at least one EVS sample. We heuristically sample
the EVS several times, using either prediction based on the
visual-inertial tracking system of the client device or simple
linear extrapolation (for deterministic testing). We also con-
sider the motion of animated objects corresponding to the
predicted time for which an EVS is created. Note that this
only applies to deterministic object motion or object motion
that can be reliably predicted. We do not consider speculative
rendering [Lee et al. 2015].

The success of a sampling approach to PVS depends on the quality
of the motion prediction. For short look-ahead periods, we found
our simple approach to deliver perceptually correct results. If the
PVS computation misses a triangle that would otherwise be visible,
the client cannot render this triangle, and a hole may appear. We
report in section 5.1 on the correctness of the PVS computation and
demonstrate that missed triangles are rare.

Atlas memory management—allocating and deallocating space
for patches—is directly derived from the PVS. Newly visible patches
are allocated in the atlas; patches that have become invisible are
removed from the atlas. Patch sizes are determined based on the
projected area of a patch on the screen as detailed in Section 4.3. De-
tails on the atlas memory management are given in Section 4.2. The
atlas memory management also writes a vertex buffer containing
the visible geometry including corresponding texture coordinates
for the shading atlas.

3.2 Shading stage

In the shading stage, visible patches are shaded into the atlas. The
number of shader invocations should be proportional to screen
size with some overhead factor. Since a vertex buffer containing
the visible geometry was created, the shading stage can be imple-
mented as a standard geometry rendering pass with the following
characteristics:

e No depth buffer is needed, since triangles do not overlap.
o Instead of screen space positions, the vertex shader needs to
output the shading atlas texture coordinates as position.

We designed the shading stage to be able to use a standard geometry
pass, because it has important advantages. First, there are no special
limitations in terms of materials. Unlike many deferred rendering
approaches, no uber-shader is required. Second, object-space render-
ing methods which perform shading in a compute shader [Hillesland
and Yang 2016] must interpolate all attributes in software instead
of using hardware interpolation units, and they do not benefit from
the free derivatives delivered by hardware quad shading.

3.3 Encoding stage

In the encoding stage, the updates to atlas and meta-information
that must be sent to the client are prepared for network transmission.
We collect changes to the PVS data structures directly on the GPU
during the visibility stage, so that a single readback to the CPU in
the encoding stage suffices.

The network load is dominated by the atlas, while the meta-
information consumes comparatively little bandwidth. However,
the atlas content is temporally coherent, as both the visible triangles

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

199:6 « Mueller, et al.

and their shading changes only slowly with a moving viewpoint.
Therefore, the atlas can be efficiently encoded as an MPEG stream.

Hardware-accelerated MPEG encoding on the GPU is very effi-
cient and offers sufficient throughput for our use case. Therefore,
we designed our atlas in an MPEG friendly way, as a single large tex-
ture filled with temporally coherent shading loads. MPEG encoders
maintain internal state, which makes it expensive to run multiple
encoders in parallel. Therefore, storing the shading information as a
collection of variable-sized per-object textures [Baker 2016] would
be difficult to fit to MPEG encoding.

We optimize our video coding configuration for low complexity
and low latency. We encode the texture atlas using the H.264 video
coding standard. The compressed frames are small enough so that
the readback time to the CPU is negligible. Moreover, readback
(and subsequent network transmission) can run in parallel with
rendering of the next frame.

The client has no need to know of the memory management
associated with the atlas. The client only requires visible triangles
with corresponding vertices and texture coordinates pointing into
the atlas. Thus, we encode the vertices, triangles, and texture co-
ordinates for the shading atlas as meta-information. Vertices and
triangles are only transmitted once, when they first become vis-
ible. Texture coordinates are transmitted periodically, whenever
patches are re-located inside the atlas. Rigid body animations are
supported by tracking per-object transformation matrices. Anima-
tions computed in the vertex shader must be transmitted in every
frame, provided the vertex is visible. Note that we implemented
meta-information transmission to demonstrate an operational end-
to-end system. However, meta-information transmission is not yet
optimized and not explicitly considered in the system evaluation.

© O O
O © O

"¢

Q
Q
Q

Ol

.0
.
®
:
w

O
o

Fig. 5. From the current viewpoint P;, two future viewpoints, P; and P3 are
predicted, with the corresponding FOV shown in color. An EVS is computed
for each of the three viewpoints, and the PVS is determined as the union of
all objects visible in any EVS (visible objects are marked as white circles).
In the example, object A is only visible from P;, but not from P, or Ps.
Conversely, object D is only visible from P3. Object C is jointly occluded by
objects A and B from Py, but becomes visible from Py.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

3.4 Networking stage

The network transmission must consider two channels with dif-
ferent characteristics. The atlas is transmitted as an MPEG stream
over a potentially lossy channel optimized for throughput. For this
channel, we rely on RTP over UDP. Since the UDP connection is
prone to packet losses, the video encoder inserts I-frames at regular
intervals (typically every five frames) to stop error propagation in
the decoded atlas due to a packet loss.

The meta-information (geometry, patches, and animation up-
dates) use a comparatively small bandwidth, but must be transmit-
ted over a reliable channel to ensure that the scene structure at the
client is kept intact. We considered using a custom sub-channel of
the MPEG stream [Collet et al. 2015] or APP messages of RTCP for
this purpose, but ultimately decided for a simple TCP connection,
because it trivially ensures reliable transmission.

3.5 Decoding stage

The client decodes received messages immediately upon arrival and
updates its internal structures. MPEG decoding on the mobile device
is handled by a dedicated hardware unit. The meta-information is
decoded on the GPU.

Since the client prototype receives network updates over two
separate connections, it must ensure that both streams are synchro-
nized after each frame is received. Decoding and display stages run
in multiple threads at different update rates and communicate via
triple buffering to avoid any latencies from locked buffers.

3.6 Display stage

The display stage at the client relies on a very simple forward ren-
dering pass. The client issues a single draw call on a vertex buffer
that has been generated by processing the incoming server data.
This vertex buffer already contains the correct texture coordinates
into the atlas, requiring no indirect lookup. Rendering is decoupled
from the remaining pipeline; if an update has been received from the
server and is ready to be used, the rendering thread simply switches
buffers and continues rendering at full speed.

Since we have a direct uv-mapping from vertices to shading atlas,
no projective or indirect texture mapping is required, as necessary in
other IBR methods. The variable shading resolution baked into the
atlas even relieves the client from having to perform mipmapping.
The remaining requirements of rendering to a VR headset are taken
care of in two sub-stages:

(1) Framerate upsampling uses the latest pose from the head
tracker for rendering, while the shading information in the
atlas is generated based on an earlier pose. Moreover, a stereo
image pair is generated by rendering twice, with a statically
calibrated offset for left and right eye. The results of the first
sub-stage are stored in a framebuffer object.

(2) We compensate for the barrel distortion induced by the magni-
fying lenses in the VR headset by applying radial corrections
for every pixel on the screen. The distortion is considered
separately in each RGB color channel to compensate for the
color abberations of the lens system.

Screen Space

A @
/1 \

Atlas Space

VT~ \
\ b

A ®

Fig. 6. A patch consisting of two neighboring triangles is mapped from
screen space to a block in atlas space. The vertices are inset by half a pixel
from the block edges in order to allow bilinear interpolation in the atlas
without results being influenced by neighboring blocks.

4 SHADING ATLAS
An atlas suitable for streaming must meet several requirements:

e Small footprint: The total number of pixels must be small
enough so a hardware-accelerated encoder can deal with the
atlas in real time.

o Temporal coherence: The location of shading information cor-
responding to a particular triangle must change as little as
possible from frame to frame, so that efficient MPEG encoding
is possible [Collet et al. 2015].

e Compactness: Memory fragmentation, i.e., interleaving of oc-
cupied and empty areas, makes it more difficult to find places
for new memory allocation, especially bigger areas. Moreover,
fragmentation reduces video encoding efficiency.

e Dynamic memory management: Since we do not know in
advance what parts of the scene will become visible and how
large a visible triangle will appear on the screen, we cannot
precompute any atlas layout or uv-coordinates.

e Parallel allocation: Fine-grained memory allocations of variable-
size memory chunks for a large number of triangle patches
cannot be performed on the CPU at full frame rate. Allocation
must happen on the GPU in a highly parallel manner, with
as little need for thread synchronization as possible.

We approach this challenging combination of requirements with
an atlas based on VT with a three-layer memory hierarchy and
a variable tile size (see supplementary material for implementa-
tion details). We begin by introducing the data structure and atlas
memory hierarchy. Then, we discuss parallel memory allocation.
Finally, we explain how to handle situations of high memory pres-
sure. We demonstrate the resulting minimal memory fragmentation
in Section 5.4.

4.1 Patches and blocks

We pack one, two or three adjacent triangles into a patch, as shown
in Figure 4. All atlas operations, such as allocation, deallocation and
shading, operate on whole patches. The shading information corre-
sponding to a patch fits into a block, as shown in Figure 6. Given the
index of a triangle, we can look up the corresponding information
in the atlas using a two-step indirection: For each triangle, we store
a patch id; each patch contains a record on a block in the atlas.

Shading Atlas Streaming « 199:7

Blocks have a rectangular, landscape format with each side length
corresponding to a power of two. We call the block size a level
because of its conceptual similarity to a mipmap level. The power-
of-two dimensions enable subdivision without leftover space and
allow for compact integer addressing using the binary logarithm of
the dimension. They also support the video encoder in matching
MPEG macroblocks. The disadvantage of this decision is that only
a discrete set of block sizes are available and can cause occasional
seams between neighboring patches, as they transition between
different resolutions. This problem can be minimized by careful
construction of the patches.

A half-pixel wide reserve at the border of the block is sufficient
when sampling with bilinear filtering. No conservative rasteriza-
tion [Akenine-Moller and Aila 2005] per triangle, as in other object-
space methods [Hillesland and Yang 2016], is required. Our block
layout is motivated by similar goals as in the vertex color tex-
ture work [Yuksel 2017]. A larger border could be used to support
anisotropic sampling [Mittring 2008]. However, our atlas already
contains pre-shaded, pre-filtered content. Avoiding anisotropic sam-
pling during the final display stage benefits the client, which has
only modest GPU performance.

We manage the atlas memory over multiple frames, with the goal
of optimizing temporal coherence. Already allocated patches, which
remain visible in subsequent frames, should remain unchanged,
while new allocations should strive to fill gaps between previous
blocks, so that fragmentation is minimized. This ensures a small
memory footprint, but, more importantly, temporal coherence: Blocks
remain in the same place over multiple frames. The shading stored
inside a block is updated in every frame. However, the shading typi-
cally changes gradually, so the MPEG encoder needs to transmit only
local image differences. The blocks are organized in a three-layer
hierarchy (Figure 7):

(1) The atlas is regularly subdivided into square superblocks of
the same size.

(2) Each superblock is subdivided into columns of equal width.

(3) Each column is divided into blocks of the same width, but
variable height.

The three-layer hierarchy allows a tight packing of blocks of variable
sizes without having to resort to a global optimization scheme. The
effort for insertions and deletions is linear in the number of block
changes, without being affected by block sizes. This is made possi-
ble by managing one block dimension (width) across superblocks,
while the other block dimension (height) is managed inside each
superblock. See section 4.2 for a detailed example.

4.2 Parallel memory allocation

On a massively multi-threaded GPU, dynamic memory allocation is
known to be a hard problem. However, the required fine-grained
allocation is too computationally demanding to run it on the CPU
on just 1-2 cores, as it would be too slow (see section 5.3 for de-
tails). On the GPU, conventional solutions for memory management,
such as global free-space lists, quickly become infeasible due to
excessive locking requirements when many threads compete for
access [Steinberger et al. 2012]. Instead, we address this problem by

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

199:8 « Mueller, et al.

Column width 2 Column width 4

Fig. 7. The atlas is divided into square superblocks (8x8 in the figure). The
green superblock is subdivided into columns of width 2, and the red su-
perblock is subdivided into columns of width 4. Columns are packed with
blocks of variable height.

combining two strategies, a GPU-friendly allocation strategy and a
global garbage collection step.

We use lock-free allocation, which is not affected by race con-
ditions. Every thread performing an allocation step is guaranteed
to finish within bounded time. Each block is serviced by an inde-
pendent thread. To keep fragmentation minimal without requiring
locking, we manage free blocks in block stacks and let the allocation
run in three distinct phases: a request phase, a provisioning phase
and an assignment phase. In each phase, either allocation or deallo-
cation occurs, but not both. This approach lets us operate each stack
by atomically increasing or decreasing a stack counter without any
need for locks.

Request phase. This phase runs in parallel for all patches. Blocks
of patches that have become invisible are inserted into a block
stack corresponding to their level. Patches that have become visible
increase an atomic request counter corresponding to their level.
Patches that are reallocated, e.g., because their desired block size
changed, execute both operations. Upon conclusion of the phase, we
have determined the total number of blocks required to be allocated
for each level, and each patch allocating a block stores its slot, i.e.,
the value it has drawn from the request counter.

Provisioning phase. This phase operates in parallel with one thread
per column width. It determines how many requests from patches
can be served from the block stacks. For the remaining patches, it
draws free superblocks from a superblock stack. It starts in decreas-
ing order of block height and sums up the total memory needed,
storing offsets and number of required blocks to be allocated from
superblocks per block height. We also memorize the fill-rate of the
last superblock for each level and top up the superblock in the next
frames before requesting a new superblock for that level.

An example of this procedure is shown in Figure 8. In this example,
the provisioning phase runs for a column width of 4 pixels with
8 X 8 superblocks. The job description is given in Table 1, where
each column represents a block height. The table lists, per height,
the requested blocks, the blocks that are free on the block stack, the

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

S, S,
by 6 b
bs tlo
11
= g e
i A b13
b& blA

Fig. 8. Example of the provisioning phase of the parallel memory allocation.
(a) The current superblock Sy is partially filled. (b) For the allocation of the
4 % 4 blocks, a second superblock S has to be allocated. (c) For the 4 x 2
blocks, another superblock S3 has to be allocated. (d) The 4 X 1 blocks fit
into the remaining space of Ss. (e) Remaining rectangular blocks are put on
block stacks. (f) The remaining space in Ss will be used in the provisioning
phase of the next frame.

Table 1. Job description for the provisioning example. The data corresponds
to the example shown in Figure 8. It shows the state before (top rows),
values computed during (center rows) and the state after (bottom rows) the
provisioning phase.

Height of block ‘ 4px 2px 1px
Requested blocks 7 16 10
Free on block stack (before) 5 7 7
Required blocks 2 9 3
Offset (in height units) 3 10 34
Free on block stack (after) 5 8 8
Total available blocks 7 17 11

required blocks, i.e. requested blocks remaining after using up the
block stack, and the offset (in height units) from the first superblock.

We start with the largest height 4 and first consider superblock
Si. (a) It already contains three blocks of height 4, which gives us a
starting offset of 3. (b) Since we need to allocate space for two blocks
b1, by, but only b, fits into S, we allocate a second superblock Sz
with space for by. We proceed to a height of 2 and compute the offset
from the starting point, Sy, as (3 + 2) - 2 = 10 blocks of height 2. (c)
We need space for seven blocks b3 - - - by, but Sz has only enough
space for six, so a third superblock S5 is allocated, with space for bo.
(d) For height 1, we start with an offset of (10+7) - 2 = 34 blocks and
determine that we can fit all remaining blocks byg - - - b12 into S3. (e)
Since Ss3 is not completely filled, we put the remaining rectangular
blocks b3 on the block stack for level (4, 1) and by4 on the block
stack for level (4, 2). This ensures that we can start with a block of
height 4 again in the next frame. (f) We memorize that two blocks
of height 4 are left in S3 for the next frame.

Assignment phase. This phase runs in parallel for all allocating
patches. Based on its slot and the required blocks from the last
phase, each patch determines whether its request is served by the
allocated superblocks or the block stack. If the slot is within the
number of required blocks, we directly compute the position within
the provisioned superblock with the slot number and stored offset.
Otherwise, the patch directly draws a block from the block stack.

This strategy is not only lock-free, it also deals with provisioning
by superblock, avoiding tedious bookkeeping during bulk alloca-
tions. Recycling happens on the level of individual blocks, but uses
efficient atomically operated stacks to manage the recycled blocks.

Remaining fragmentation is taken care of by global garbage col-
lection, which is aligned with the creation of a new MPEG I-frame.
Unlike a P-frame, an I-frame does not rely on temporal coherence,
so the garbage collection is free to re-arrange all blocks arbitrarily in
order to minimize fragmentation, without hurting MPEG bitrate. We
call this process an atlas reset. The atlas reset is invoked adaptively:
If the memory load exceeds a high water mark, an atlas reset is
performed in sync with an I-frame. Clearing of unused blocks in the
atlas happens for every I-frame to avoid compression of outdated
shading information.

In section 5.4, we compare our parallel memory management
strategy to simpler alternatives. We show that only our method can
keep memory fragmentation low enough to handle large scenes.

4.3 Level selection

Level selection determines the block size to which a visible patch is
mapped. We encode the rectangular block size as 2D vector of binary
logarithmic values, the level I The goal of the level selection is to
assign each patch an appropriate share of the texture atlas. Under
memory pressure or if other objectives, such as foveated rendering,
should be addressed, a bias can be applied to this level.

Shading information is stored in atlas space, but applied in screen
space. Therefore, the aim of the level selection should be to preserve
the shading rates of the triangle in screen space. Choosing the level
based on screen-space edge lengths and area fulfills this requirement.
We compute the edge length s of an edge as

s=£cos_1(01.02), (1)
f V1V2

where r is the resolution in pixels, f is the field of view, and 7} and
U, are the vectors from the camera to the vertices of the edge. This
approximation has the advantage of being independent of the view
direction, as it assumes a curved image plane.

Given the edge lengths, we can compute area (Heron’s formula)
and aspect ratio of the block. The aspect ratio is computed from the
maximum edge lengths of those edges that are axis-aligned in the
patch layout. To choose one of the discrete block sizes, the binary
logarithms of the area, A, and of the aspect ratio, a, are computed,
rounded and clamped; a is rounded so that it has the same parity
as A, and we arrive at integer values. With A and a, the binary
logarithmic width w and height h are computed as

I- m _

The chosen levels must respect the anticipated memory pressure, to
avoid running out of memory if too many patches must be allocated.
A bias b is derived from the ideal area I (the sum of all triangle areas,
clamped to the smallest and largest block area), and the total atlas
space S. We correct the computation by removing the number of
1 % 1 blocks d that cannot be further scaled down.

—-d
b=log2(§fd))

A+a
2
A-a
2

@)

Shading Atlas Streaming « 199:9

Fig. 9. Untethered smartphone-based headset prototype based on the Qual-
comm Snapdragon™ 835 Mobile Platform, with a resolution of 2560 x 1440,
displaying a stereo view of the Robot Lab scene.

On this log-scale, a bias of 0 means that the ideal level is accepted,
a bias of 1 means the ideal area is halved and so on. The bias is
subtracted from the logarithmic area before rounding and clamping.

5 RESULTS

Our software prototype has been implemented using the Vulkan
graphics API and runs under Windows, Linux and Android. Tests
were conducted on a desktop PC (NVidia GeForce GTX 1080 Ti GPU,
Intel i7-5820K CPU 3.3 GHz, 24 GB RAM) and a headset prototype
based on the Qualcomm Snapdragon™ 835 Mobile Platform (Fig-
ure 9). The PC was used for frame-by-frame tests (sections 5.1-5.8)
and as a server for end-to-end timings with the headset as the client
(section 5.9).

In our tests, we used a rendering target for the client with a
resolution of 1920 x 1080 at a horizontal FOV of 90°. All our tests
run with realistic game scenes. We use the Unity3D sample scenes
"Viking Village" (outdoor scene, 4.7M triangles, 1215 objects, 31
textures) and "Robot Lab" (indoor scene, 0.5M triangles, 645 objects,
49 textures), and the Crytek scene "Sponza" (indoor scene, 0.3M
triangles, 392 objects, 53 textures). For each scene, we recorded a
camera path with a total length of 10 seconds (1200 frames).

To compute the PVS, we enlarge the FOV by 20%. Moreover, the
PVS uses linear extrapolation of the camera path based on the two
most recent view matrices. Unless otherwise noted, prediction is
done in steps of 33.3 ms. The number of prediction steps varies based
on the overall maximum latency, which depends on an assumed
static network latency and the server frame rate. For example, at a
server frame rate of 30 fps (33.3 ms per frame) with a static latency
of 100 ms, the maximum latency is 133.3 ms. In this case, prediction
intervals of 33.3 ms, 66.6 ms, 100 ms and 133.3 ms are used.

5.1 PVS correctness

We begin by demonstrating that our sampling strategy to determine
a PVS is effective, which is a prerequisite for correct operation of
the system. Since we want to avoid disocclusion coming from PVS
underestimation, the main interest lies on the false negatives, i.e.,
the patches that are not classified as part of the PVS, yet become
visible. We also record the false positives, i.e., the patches that are
reported as part of the PVS, although they never become visible.
We compare the following modes: Linear prediction uses a linear
extrapolation of motion in five steps, with the EVS computed at
120 Hz (0 ms, 8.3 ms, 16.7 ms, 25 ms, 33 ms) and added to the PVS.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

199:10 « Mueller, et al.

1.0 A EEA Linear prediction
Il Linear prediction, extended FOV
0.8 4 2= No prediction
EE No prediction, extended FOV
WA Perfect prediction
o 06 Il Perfect prediction, extended FOV
©
o
0.4 4
0.2 1
1| 18
Coverage Coverage Coverage Overest. Overest. Overest.
Robot Lab Sponza Viking Village Robot Lab Sponza Viking Village

Fig. 10. For PVS computation, we report coverage rate (how many visible
patches were not overlooked) and overestimation rate (how many patches
were needlessly classified as visible).

Reference prediction works like linear prediction, but using the actual
(recorded) camera path instead of a predicted one. No prediction uses
the EVS sampled at 0 ms as the PVS, establishing a baseline.

Let v denote the total number of patches visible over the five EVS
sample positions, computed by reference prediction and weighted
by the projected area of the patches’ triangles in screen space, as a
measure of visual importance. Similarly, let f;, denote the number
of area-weighted false negative patches, and, f, denote the number
of area-weighted false positive patches. We measure the coverage
rate rc = 1 — f, /v and the overestimation rate r, = fp /v, both for
the regular FOV and the extended FOV.

Figure 10 shows averages for our test scenes. We see that even
simple linear prediction achieves an average coverage rate >99%.
In contrast, no prediction has an average coverage rate of 96%. We
expect that the result of no prediction would be even lower for
a faster moving camera. We conclude that our PVS algorithm is
suitable for framerate upsampling in the considered interval.

The main reason why linear prediction misses a small percentage
of the triangles is geometric aliasing from rasterizing tiny, sub-pixel
sized triangles in the test scenes. Such tiny triangles can occasionally
produce isolated flickering. They can be avoided with better level
of detail management (see section 6.4). A similar problem with
numerical limitations of rasterization precision causes reference
prediction to miss the 100% mark for the extended FOV.

As expected, the overestimation of the regular FOV is negligible,
but the overestimation of the extended FOV compared is around
10%. It could be reduced by using a more modest setting for the
extended FOV, provided a better prediction model is used.

5.2 Visibility algorithm vs memory requirements

We were interested in how the visibility computation strategy influ-
ences the memory requirements of the shading atlas. In conventional
game engines, per-object visibility is often determined on the CPU
during view-frustum culling and avoids a potentially expensive
GPU visibility pass. However, without occlusion culling, the num-
ber of pixels that need to be represented in the atlas is dependent
on the depth complexity, and thus not necessarily proportional to

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

Table 2. Comparison of memory management speed CPU/GPU.

Scene CPU GPU Speedup
Robot Lab 44.66 0.19 235X
Sponza 37.21 0.14 266X

Viking Village 37720 024 1715x

the screen resolution. Since streaming performance is sensitive to
pixel count, we must strive for a small atlas size.

Therefore, we compare memory requirements (without bias) of
per-patch visibility and per-object view-frustum culling. In all our
test sequences, culling required a large multiple of allocated pixels
compared to per-patch visibility: Robot Lab 16.42Xx, Sponza 11.25X,
Viking Village 95.96X. Since even a factor of 2x would already
imply using twice the network bandwidth, we conclude that coarse-
grained visibility based on culling is not sufficient for SAS.

5.3 Memory management speed

Since fine-grained multi-layer memory allocation has been shown
to be fast enough on the CPU for terrain VT [Mittring 2008], we
investigated if our memory allocation could be run on the CPU
as well, avoiding a more complex GPU-side memory management.
For comparison, we implemented a single-threaded CPU memory
allocation strategy, which uses a quadtree-like layout to allocate
blocks and achieves fragmentation that is always better than or
equal to our GPU allocation strategy. We compare the performance
of CPU and GPU allocation. We report only the runtime of the mem-
ory allocation itself, assuming that all other stages of the pipeline
are identical. In favor of the CPU variant, we do not consider the
additional transfer times between GPU and CPU. Table 2 shows the
measured times.

We see that, on average, the CPU variant takes at least 30 ms
even for the smallest scene, while the time required by the GPU
version is <0.25 ms. At a targeted server framerate of 30 Hz (33 ms
per frame), adding an additional 30 ms for memory management
would lower the framerate to <15 Hz. We therefore rule out the
possibility of memory allocation on the CPU.

5.4 Fragmentation vs allocation strategy

When the atlas size is limited, fragmentation results in excessive
memory pressure and reduced image quality. We demonstrate the
difference between our recommended strategy, denoted by S0, to
simpler strategies S1 (no columns), S2 (no columns, no block stack),
and S3 (no columns, no block stack, no atlas reset). We compare how
memory is used by each method, for an atlas size of 4 MPix. New
memory can be either allocated in free superblocks, at the end of
partially filled superblocks, or by claiming free areas in the middle of
superblocks. We consider the latter two cases as fragmented memory.
Free memory in the middle of superblocks is either available on
the block stacks (S0, S1) or temporarily inaccessible until the whole
superblock is freed (52, S3).

As can be seen in Figure 11, the recommended strategy SO shows
the least memory fragmentation and requires the least number of
atlas resets. It only runs out of memory once across all tests, when

Shading Atlas Streaming « 199:11

S0 (0, 7) S0 (0, 22) S0 (1, 20) B Allocated
S1(0, 16) S1 (33, 315) S1 (3, 38) B Superblock
B Stack
S2 (16, 104) S2 (90, 428) S2 (81, 178) =1 Inaccessible
[Free
S3 (990, 0) S3 (996, 0) S3 (988, 0)
I T T T T 1 I T T T T 1 I T T T T 1
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Memory Usage [%] Memory Usage [%] Memory Usage [%]
(a) Robot Lab (b) Sponza (c) Viking Village

Fig. 11. Comparison of the influence of the memory allocation strategy on atlas memory averaged over 1000 frames. Compared are SO (reference strategy), S1
(no columns), S2 (no columns, no block stack), and S3 (no columns, no block stack, no atlas reset). Stated in parenthesis are the number of frames where out
of memory occurs and the number of atlas resets. The 4 MPix atlas memory is either allocated (green), at the end of a superblock that is partially filled (blue),
within blocks on the block stacks (red), temporarily inaccessible (orange) or within free superblocks (purple). Only SO0 can reliably maintain a safety margin for
all atlas sizes.

= 6 - = = 6 -

w [92) w

c c c Q

£ 8) \ @ SAS04
© © g AN e s
§ é § \ ~#— Forward
Z Z c Deferred
= = =

] 9] o]

o k] o

© © ©

< < <

n n n

Rate K

(a) Robot Lab (b) Sponza

(c) Viking Village

Fig. 12. Comparison of fragment shader invocations (in millions) for forward rendering, deferred rendering and standalone object-space shading with our
Shading Atlas. The x-axis displays the upsampling factor K, describing how many frames are generated from a single shading atlas.

1.00 1.00
s s s i
2 2 %% 7% o e
£ Z 0.90 Z 0.90 - ATW
> > > - W
s < 0.85 < 0.85 - —— MW
> > =}
© © 0.80 © 0.80

1 1 1 1 1 T T T T T 1 1 1 1 1

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Latency [ms]

(a) Robot Lab

Latency [ms] Latency [ms]

(b) Sponza (c) Viking Village

Fig. 13. Image quality (reported as MSSIM) for varying network latency, compared for SAS (using multiple atlas sizes). As latency increases, SAS maintains
image quality better than asynchronous time warping (ATW), mesh warping (MW) and iterative image warping (IIW).

we set an aggressive high water mark of 96% for Viking Village.
The simpler strategies S1 and S2 require more atlas resets and run
out of memory frequently. Strategy S3, which can neither suppress
fragmentation nor recover on atlas resets, consistently runs out
of memory within the first few frames of the test sequence. We
conclude that our preferred memory management strategy SO is
mandatory for sustainable operation of the shading atlas.

5.5 Rendering amortization from framerate upsampling

Before we investigate how our object-space rendering performs
in a client-server system, we evaluate how well rendered pixels

can be amortized during framerate upsampling in a standalone
configuration (assuming a tethered headset is connected to a desktop
computer). Compared to conventional forward rendering, object-
space shading introduces some amount of overhead, which is largely
related to the atlas size.

In Figure 12, we compare fragment shader invocations of forward
rendering and deferred rendering at 1920 X 1080 to our object-space
rendering with atlas sizes of 4 and 8 MPix. The x-axis varies the
upsampling factor K (e.g., K = 4 for upsampling from 30 to 120Hz).
Object-space rendering becomes more efficient in all cases for K > 3
and even for K > 2 in comparison to forward rendering. Note that

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

199:12 « Mueller, et al.
1.00 - 1.00 - 1.00 -

s A&, | | s i s _
ﬁ 0.95 - @ 0.95 g 0.95 :_ 2ﬁ§gg
Z 0.90 - Z 0.90 Z 0.90 - ATW
F 2 F o W
= 0.85 = 0.85 £ 0.85 A MW
= > =}
© 0.80 1 © 0.80 © 0.80

T T T T 1 1 1 1 T T T T

25 50 75 100 125 25 50 75 100 125 25 50 75 100 125

Server Frame Rate [Hz]

(a) Robot Lab (b) Sponza

Server Frame Rate [Hz]

Server Frame Rate [Hz]

(c) Viking Village

Fig. 14. Image quality (reported as MSSIM) for varying upsampling rate, compared for SAS (using multiple atlas sizes), asynchronous time warping (ATW),

mesh warping (MW) and iterative image warping (IIW).

1.0 1.0
s s s
5 0.9 5 0.9 5 —@— SAS04
] o a -® SAS08
— 0.8 — 0.8 — = - ATW
z : z o
S 0.7 - S 0.7 S 0.7
o o o

0.6 T T T T 0.6 T T T T 0.6 T T T T

20 40 60 80 20 40 60 80 20 40 60 80
Bitrate [MBit/s] Bitrate [MBit/s] Bitrate [MBit/s]
(a) Robot Lab (b) Sponza (c) Viking Village

Fig. 15. Rate distortion curves after MPEG compression. We report image quality (MSSIM) as a function of network bitrate for SAS (using multiple atlas sizes),
asynchronous time warping (ATW), mesh warping (MW) and iterative image warping (IIW).

4 MPix is already more than adequate in terms of shading quality
for 4x upsampling. We conclude that our approach is suitable for
operation as a standalone object-space shading system.

5.6

Conventional streaming combines forward rendering with fram-
erate upsampling via IBR. The key measure for a good streaming
solution is the relationship of image quality to pixel rate (i.e., pixels
per second that must be transmitted).

We compare SAS against three IBR methods. Asynchronous Time
Warping (ATW) is the most simple IBR method which just applies
a homography transformation to the source image. Mesh Warp-
ing (MW) [Mark et al. 1997] uses a dense vertex grid with one quad
per pixel and transforms the grid based on the depth buffer. Iterative
Image Warping (IIW) [Yang et al. 2011] reverses the warping flow
and searches for an input pixel starting from the output pixel.

The experiment shown in Figure 13 varies the (simulated) network
latency, while keeping the client and server frame rate fixed at 120
Hz. Without latency, IBR methods have the advantage of using
exactly the same input view as the ground truth, while SAS depends
on the atlas size.

To measure image quality, we use the structured similarity image
measure (SSIM) [Wang et al. 2004]. We compute the SSIM using
a Gaussian filter with a window size of 11 pixels and a standard
deviation of o = 2, and constants C; = 0.0001 and C3 = 0.0009. The
ground truth for the comparison uses the scene rendered with a

Image quality vs network latency

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

forward rendering pass. We compute the mean SSIM (MSSIM) for
the whole sequence of 1200 frames.

As can be expected, quality decreases at different rates as network
latency increases: While the quality of IBR methods starts to de-
crease immediately, SAS manages to keep the quality at a high level
due to its geometric model. For large scenes, the crossover point is
already at 20 ms. This is noteworthy, since end-to-end latency is
typically much larger (see also section 5.9).

5.7

In this experiment, we vary framerate upsampling rather than net-
work latency. The latter is set to zero. The client frame rate is fixed
at 120 Hz, while the server frame rate varies (7.5, 15, 30, 60, and 120
Hz). Increasing the framerate upsampling can be seen as introducing
variable latency (duration (8) in Figure 2) from zero to a maximum
just before a new server frame arrives. The average latency resulting
from a server framerate of K Hz is % s. The results in Figure 14
are consistent with this average latency estimate. We conclude that
average latency resulting from framerate upsampling can be added
to network latency in our system model.

ATW cannot compete with the other methods quality-wise. SAS
beats MW and IIW at upsampling rates of 4x (30Hz) or higher
for Viking Village, but not for the smaller scenes, Robot Lab and
Sponza. However, in practice, the effects of latency from framerate
upsampling must be added to network latency, which is at least
60ms (see section 5.9), giving SAS an advantage for all scene sizes.

Image quality vs upsampling rate

5.8 Rate distortion

All experiments presented so far did not consider the impact of
lossy MPEG compression on image quality. In an end-to-end system,
the main concern is network utilization. Consequently, we report a
rate distortion curve, relating image quality (measured as SSIM) to
bitrate (Mbps after compression).

We compare SAS with atlas sizes of 4 and 8 MPix to ATW, MW
and ITW. The experiment uses a server frame rate of 30 fps, while
the client target frame rate is 120 fps. Network latency was assumed
to be zero. First, the server generates uncompressed texture atlases.
Then, we apply H.264 video coding, with CAVLC entropy coding, a
single reference frame, and no B-frames. We vary the bit-rate in 2X
steps (5, 10, 20, 40, and 80 Mbps). Atlas reset and I-frame interval is
set to five frames. The decoded atlases are passed to the client, and
are used to render the output frames at the target framerate.

Figure 15 presents the results for our test sequences. Even at a
bitrate of 10 Mbps, ATW is already beaten by the other methods. For
the smaller scenes, MW and IIS benefit more from higher bitrates,
outperforming SAS at 20-40 Mbps. However, this measurement does
not account for the need of MW and IIS to encode stereo pairs, so
the actual crossover point would be at half this bitrate. Moreover, all
methods except ATW have SSIM above 90%, which is already a very
high image quality with little room for improvements. For the large
scene, Viking Village, SAS always delivers the best image quality,
by a large margin. In general, we observe diminishing returns for
bitrates above 40 Mbps in the tested configuration, approaching the
quality of rendering from an uncompressed atlas.

5.9 End to end performance

Finally, we report on system performance on a mobile client device
based on the headset running Android. The headset has a single
display (shared by both eyes) with 2560 X 1440 resolution at 60 Hz,
driven by an Adreno 540 GPU. Typically, a mobile GPU has at least
an order of magnitude less compute power than a high-end desktop
GPU, like the GeForce used in our tests. Moreover, the larger scenes,
such as Viking Village and Robot Lab, do not even fit in the RAM of
the mobile device. Therefore, we cannot report on any native VR
rendering results on the headset for comparison to SAS.

We connected the headset to the desktop computer by 802.11ac
WiFi at a throughput of about 526 Mbps. The client code is not yet
optimized, so overall results have to be interpreted with caution.
Figure 16 reports performance figures for the various system stages
(Figure 2). The server framerate was locked to 30 Hz and the client
framerate was unlocked. We tested the system with an atlas size of
4 MPix and high shading load (400 light sources).

The sum of phases 1-7 (until the first upsampled image appears)
leads to a median total round-trip-latency of around 86 ms. Pose
transmission time from client to server is about 2 ms; server idle
time around 4 ms; server processing takes around 29 ms. MPEG
transmission time is a significant factor at ~ 30 ms, but it can
be amortized by creating stereo pairs from a single atlas, and by
framerate upsampling. This early-generation headset is limited to
60 Hz, but future generations will be able to display 120 Hz, which
works in favor of framerate upsampling, as more frames can be
amortized within the same prediction period.

Shading Atlas Streaming « 199:13

Client to Server _| 2 : 2 2 é 2 ; 2
azoms W f § 4§ 1§ AEENLEAE?
Server Idle _]
(4.14 ms)
Server Processing _|
(28.72 ms)
Server to Client _]
(29.62 ms)
Client Decoding _|
(16.23 ms)
Client Idle _|
(2.41 ms)
Client Rendering _' % 7%
(6.70 ms) o7
I I I I I I I LI I I

0 20 40 60 85.65 100 120

Time [ms]

Fig. 16. End to end latency for the Robot Lab scene, measured with the
headset as the client device. We report median times for all stages in addition
to the median end to end latency (dashed line). The ‘Server to Client’ and
‘Client Decoding’ stages show the timing of the longest sub-path.

Meta-information transmission takes a non-negligible amount of
time of around 19 ms. We believe this is because of our inefficient
implementation. First, we apply only rudimentary compression
to this data (Section 6.5). Second, TCP should be replaced with a
more throughput-oriented protocol. Occasional packet losses can
be rectified during atlas reset.

The client decoding stage is taking around 16 ms total, whereby
the atlas and the meta-information are decoded in parallel. The
MPEG frame is sent to a dedicated hardware decoder unit, at a
rate of 1.7-2.2 Mpix/s (slightly higher for more complex shading).
The meta-information is decoded on the GPU. As expected, MPEG
decoding is the limiting factor, requiring roughly twice the time
of meta-information decoding. While MPEG decoding will become
faster with future generations of hardware, the meta-information
decoding is currently most affected by scattered memory accesses.
This problem can be addressed by a more batch-oriented encoding
of meta-information.

The final part of the pipeline consists of waiting for the GPU (2 ms)
and rendering the final image (7 ms). The last phase (illustrated using
hatched rectangles in Figure 16) renders multiple frames using the
same atlas, until new data from the server arrives.

While the throughput of our early prototype obviously needs
improvements, we can already make two important observations:
First, the fraction of the round trip latency that does not depend on
the rendering method (network transmission, encoding, decoding,
idle times) already exceeds 50 ms. We have demonstrated in sec-
tion 5.6 that SAS is a competitive solution at this latency. Second,
the display stage at the client is very lightweight. At the observed
6.7 + 2.6 ms for drawing an average of 32K triangles per frame, we
can reliably achieve a frame rate of 120 Hz. Outliers of frame times
rarely happen (< 0.6 % of all frames). We conclude that SAS is a
valid approach for future generation VR headsets.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

199:14 « Mueller, et al.

6 LIMITATIONS AND EXTENSIONS

In this section, we discuss limitations of our system, and we report
some preliminary results on extensions that address them.

6.1 View-dependent rendering

Our current implementation does not consider fast changing view-
dependent effects, like crisp highlights. If shading information is
re-used by framerate upsampling, fast camera motion can reveal
incorrectly extrapolated shading. One obvious method to suppress
such problems is by introducing variable-rate shading. Since the
shading information belonging to a particular object is explicitly
represented in the atlas, each object can be updated at any time. More
important objects, or objects with highly view-dependent materials,
could be updated more often than others. If an atlas is partially
updated in this way, the bitrate required by an MPEG P-frame
produced from such a partially updated atlas will be proportional to
the amount of changes, and not the overall atlas size. Consequently,
bitrate can be allocated based on object priorities without changing
the streaming format.

6.2 Transparent geometry

Transparent geometry in the scene can be handled in SAS by adding
a traditional (order-dependent) pass for transparent geometry to the
client. The transparent geometry must be marked by the server, and
rendered by the client after completing the rendering of the opaque
geometry, in back to front order, using alpha blending. This requires
a second draw call to be executed by the client, but otherwise, the
client’s rendering pipeline is not significantly complicated. This
makes the approach compatible with mobile GPU capabilities, since
no costly fragment shaders need to be run.

Only the meta-information must be augmented to distinguish
transparent geometry; the shading information of transparent and
opaque geometry can be stored together in the atlas in a uniform
way. Alpha values that are uniform per triangle can be stored in the
triangle meta-information; per-pixel alpha values would have to be
stored by extending the atlas from RGB to RGBA channels. If this is
undesirable (for example, because hardware MPEG encoders do not
support RGBA formats), a 1-bit alpha value can be expressed in a
regular RGB atlas by chroma keying.

6.3 Postprocessing effects

Many game engines use postprocessing effects after the main ren-
dering pass, which operate on color, depth and other rendering
results stored in a G-buffer. Technically, a postprocessing stage can
be added to the shading stage on the server or to the display stage of
the client. However, adding general-purpose postprocessing to the
client would imply shipping a G-buffer to the client (which would be
too costly in terms of network bandwidth) and running proprietary
shaders on the client (which would be too costly on a mobile GPU
and violate the "thin client" idea).

Therefore, we believe it is more beneficial to add postprocessing
to the shading stage of the server. One caveat is that view-dependent
postprocessing effects are subject to the same restrictions as view-
dependent forward rendering effects. They could be handled with
variable shading rates, as discussed in section 6.1. For shipping

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

Fig. 17. To demonstrate how postprocessing effects can be integrated into
SAS, we added screen-space ambient occlusion to the shading stage. The
screenshots show Phong shaded images without (left) and with (right)
SSAO.

postprocessing effects to the client, they can be classified according
to if/how they interpret the scene geometry:

Effects that modify surfaces (e.g., depth of field effects or ambient
occlusion) can be baked into the shading atlas.

Effects that are purely screen-space aligned can be rendered into
a transparent billboard, aligned with the near clipping plane. The
billboard is handled in the same way as the transparent geometry
described in section 6.2. This would, for example, work for lens
flare, etc. For best results, the 2D area affected by the screen-space
effects should be subdivided into a quad or triangle mesh, such that
moderate block sizes can be assigned to the individual pieces of the
screen-space effect.

Effects located in free-space (e.g., particle effects) can be rendered
onto strategically placed billboards as well. The billboard is best
placed at the average depth of the corresponding 3D object. If the
client renders the billboard with depth test enabled, occlusion be-
tween the effect pixels and the scene can be approximately resolved,
even when the camera is moved during framerate upsampling.

As a proof of concept, screen-space ambient occlusion (SSAO)
rendering [Mittring 2007] was added to SAS. Our SSAO implemen-
tation uses multiple depth layers [Bavoil and Sainz 2009] via depth
peeling on the server to acquire correct results also for occluded tri-
angles. The result is baked into the shading atlas for every polygon
in the PVS, including those that only become visible in the future.
Figure 17 shows the result rendered at the client from the shading
atlas with SSAO enabled and disabled. For better demonstration of
the effect, only simple Phong shading with color textures was used.

In a similar way, high dynamic range (HDR) can be added to the
server rendering. A post-perspective HDR G-buffer can be replaced
by an object-space HDR atlas. Tone mapping on the server converts
the HDR atlas to a standard RGB atlas, which is shipped to the client.
Like with all other shading effects, the client does not have to be
concerned with how the tone-mapped result was created.

6.4 Geometric scene complexity

A fundamental assumption of SAS is that the client is able to handle
the geometric complexity of the visible part of the scene. The size
of the visible scene will generally be much smaller than the size of
the total scene, but the visible part can still exceed the capabilities

of a mobile GPU. We also observe that our multi-sampled PVS puts
a high geometry processing load on the server.

However, if either client or server suffer from too large scenes,
the geometric complexity can be reduced with standard methods:
In the simplest case, a conventional geometric level of detail (LOD)
system uses a fixed set of simplifications and chooses to display one
of them based on the distance from the viewer. Removed details
after simplification can optionally be baked into normal maps.

Geometric LOD is also beneficial to suppress subpixel-sized tri-
angles, which produce geometric aliasing and can be troublesome
for PVS estimation. On the one hand, the LOD system chooses a
level where triangles in screen-space are large enough to avoid
geometric aliasing and reduce the geometric load on the system,
especially on the client. On the other hand, the screen-space tri-
angle size should not exceed the size of a superblock, so that the
triangle can be shaded at a high enough resolution. Therefore, we
favor a combination of simplification and tessellation of overly large
triangles to effectively place a band-limit on triangle sizes, such that
they fit into the available block sizes.

6.5 Dynamic geometry

Our current system supports dynamic geometry (rigid and non-rigid
animations), as can be seen in the "water scene" of the supplementary
video. Non-rigid animation or tessellation shaders do not require
special handling; changed vertices are transmitted in the same way
as newly visible vertices. However, dynamic geometry requires more
network bandwidth.

Static scenes typically create a bitrate peak only in the first frame,
when many vertices and triangles need to be transmitted at once.
This peak can be hidden by delaying the display start of the client
until the second frame. In contrast, scenes with dynamic geometry
may have a continuous, non-negligible bandwidth requirement for
vertex updates. To keep the client simple, we prefer not having to
run any shaders on it that are proprietary to the game, such as
vertex animation shaders.

Instead, we have added geometry compression as an experimental
extension of our system. First, vertices are uniformly quantized,;
above a certain number (> 30) of visible vertices, we compress
the vertices using an octree encoding [Botsch et al. 2002] to about
15 bits per 3D point. We also apply simple lossless compression
(difference encoding per attribute followed by exponential Golomb
coding) to the triangle and texture coordinate messages, as these
messages tend to follow the object scene structure and thus exhibit
a lot of coherence. These measures typically reduce the overall
bandwidth requirements for dynamic geometry by >3X over a naive
uncompressed representation (Table 3). Moreover, compression rates
tend to get better with larger amounts of dynamic geometry, since
more entropy can be detected.

6.6 Game engine integration

In general, integrating SAS into a game engine is similar in ef-
fort and difficulty to integrating a deferred rendering pipeline or
another type of advanced graphics pipeline. Because of the high

Shading Atlas Streaming « 199:15

Table 3. Detailed compression rates achieved on average for selected mes-
sage types. The overall compression rate is about 3x.

Message Type Robot Lab Viking Village
Vertex coordinates 6.68% 5.95%
Vertex id 1.78% 1.70x
Triangles 2.22% 2.20%
Texture coordinates 3.19% 3.09%

demands of VR systems, contemporary game engines, such as Un-
real Engine 2, give developers a choice of forward rendering with
less post-processing to reduce the latency compared to their stan-
dard pipeline. Integrating the SAS pipeline into a game engine with
reduced post-processing is considerably less challenging.

7 CONCLUSIONS

To our knowledge, we have presented the first work that demon-
strates an object-space shading approach for remote rendering with
low perceived latency. While high throughput and low latency are
essential properties of streaming VR applications, other graphics
streaming applications, such as networked games, architectural
preview or scientific visualization, can benefit as well.

Compared to other object space shading methods, SAS requires
neither custom GPU extensions nor generating unique texture co-
ordinates. Moreover, SAS uses only a moderate amount of memory.

If more than one or two views must be generated, such as on
autostereoscopic TV screens, or for future VR headsets with extreme
resolutions, such as 8K displays, enormous network bandwidth is
required when using conventional video streaming. In contrast,
our approach effectively decouples display from image generation
for short periods of time, a property that we believe will become
increasingly important.

This decoupling makes SAS appealing for non-networked appli-
cations as well, where it has the potential to replace existing "split
rendering" pipelines that perform framerate upsampling in order to
achieve sustained framerates.

We have already discussed the many avenues of future work in
the previous section. We are sure that we have only scratched the
surface of the possibilities offered by replacing conventional post-
perspective video streaming with an alternative in object-space. Our
client is designed to be simple and understand only a "fixed function”
set of rendering features that we considered essential. An object-
space representation lends itself to extensions that will make the
client more capable, taking on a larger role in streaming rendering.
Finally, user studies will play an important role in future work
to better understand perceptual characteristics of split-rendering
systems.

ACKNOWLEDGMENTS

The financial support by the Austrian Federal Ministry for Digital
and Economic Affairs and the National Foundation for Research,
Technology and Development is gratefully acknowledged.

2https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

199:16 « Mueller, et al.

REFERENCES

John M. Airey, John H. Rohlf, and Frederick P. Brooks, Jr. 1990. Towards Image Real-
ism with Interactive Update Rates in Complex Virtual Building Environments. In
Proceedings ACM I3D. 41-50.

Tomas Akenine-Méller and Timo Aila. 2005. Conservative and Tiled Rasterization
Using a Modified Triangle Set-Up. Journal of Graphics Tools 10, 3 (Jan 2005), 1-8.

Magnus Andersson, Jon Hasselgren, Robert Toth, and Tomas Akenine-Méailer. 2014.
Adaptive texture space shading for stochastic rendering. Computer Graphics Forum
33, 2 (may 2014), 341-350. hitps://doi.org/10.1111/cgf.12303

Dan Baker. 2016. Object Space Lighting. Talk at Game Developers Con-
ference. (2016). http://www.cogsci.rpi.edu/~destem/gamearch/gdc16/
Object-Space-Lighting-Rev-21.pptx

Paul Bao and Douglas Gourlay. 2004. Remote walkthrough over mobile networks
using 3-D image warping and streaming. IEE Proceedings - Vision, Image and Signal
Processing 151, 4 (Aug 2004), 329-336. https://doi.org/10.1049/ip-vis:20040749

Louis Bavoil and Miguel Sainz. 2009. Multi-layer dual-resolution screen-space ambient
occlusion. In SIGGRAPH 2009: Talks. ACM, 45.

Kevin Boos, David Chu, and Eduardo Cuervo. 2016. FlashBack: Immersive Virtual
Reality on Mobile Devices via Rendering Memoization. In Proc. MobiSys. 291-304.

Mario Botsch, Andreas Wiratanaya, and Leif Kobbelt. 2002. Efficient High Quality
Rendering of Point Sampled Geometry. In Proceedings of the 13th Eurographics
Workshop on Rendering. 53-64.

Huw Bowles, Kenny Mitchell, Robert W. Sumner, Jeremy Moore, and Markus Gross.
2012. Iterative Image Warping. Computer Graphics Forum 31, 2pt1 (2012), 237-246.

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen.
2001. Unstructured Lumigraph Rendering. In Proceedings SSIGGRAPH. 425-432.

Christopher A. Burns, Kayvon Fatahalian, and William R. Mark. 2010. A Lazy Object-
space Shading Architecture with Decoupled Sampling. In Proceedings HPG. 19-28.

Nathan A. Carr and John C. Hart. 2002. Meshed atlases for real-time procedural solid
texturing. ACM Transactions on Graphics 21, 2 (apr 2002), 106-131.

Cem Cebenoyan. 2014. Real Virtual Texturing Taking Advantage of DirectX11.2 Tiled
Resources. Game Developer Conference. (2014).

Matthiaus Chadjas, Christian Eisenacher, Marc Stamminger, and Sylvain Lefebvre. 2010.
Virtual Texture Mapping 101. (2010).

Chun-Fa Chang and Shyh-Haur Ger. 2002. Enhancing 3D Graphics on Mobile Devices by
Image-Based Rendering. Springer Berlin Heidelberg, Berlin, Heidelberg, 1105-1111.

Ka Chen. 2015. Adaptive Virtual Texture Rendering in Far Cry 4. Talk at Game Devel-
opers Conference. (March 2015). http://twvideo01.ubm-us.net/o1/vault/gdc2015/
presentations/Chen_Ka_AdaptiveVirtualTexture.pdf

Kuan-Ta Chen, Yu-Chun Chang, Po-Han Tseng, Chun-Ying Huang, and Chin-Laung
Lei. 2011. Measuring the Latency of Cloud Gaming Systems. In Proceedings of the
19th ACM International Conference on Multimedia (MM ’11). 1269-1272.

Shenchang Eric Chen and Lance Williams. 1993. View interpolation for image synthesis.
In Proceedings SIGGRAPH. 279-288.

Sharon. Choy, Bernard. Wong, Gwendal. Simon, and Catherine. Rosenberg. 2012. The
brewing storm in cloud gaming: A measurement study on cloud to end-user latency.
In Workshop on Network and Systems Support for Games (NetGames). 1-6.

Petrik Clarberg, Robert Toth, Jon Hasselgren, Jim Nilsson, and Tomas Akenine-Maller.
2014. AMFS: Adaptive Multi-Frequency Shading for Future Graphics Processors.
ACM Transactions on Graphics 33, 4 (jul 2014), 1-12.

Petrik Clarberg, Robert Toth, and Jacob Munkberg. 2013. A sort-based deferred shading
architecture for decoupled sampling. ACM Transactions on Graphics 32, 4 (jul 2013).

Daniel Cohen-Or, Yair Mann, and Shachar Fleishman. 1999. Deep Compression for
Streaming Texture Intensive Animations. In Proceedings SIGGRAPH. 261-267.

Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev, David Calabrese,
Hugues Hoppe, Adam Kirk, and Steve Sullivan. 2015. High-quality Streamable
Free-viewpoint Video. ACM Transactions on Graphics 34, 4 (July 2015).

Robert L. Cook, Loren Carpenter, and Edwin Catmull. 1987. The Reyes Image Rendering
Architecture. In Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques (SSGGRAPH °87). ACM, New York, NY, USA, 95-102.

Cyril Crassin, David Luebke, Michael Mara, Morgan McGuire, Brent Oster, Peter Shirley,
Peter-Pike Sloan, and Chris Wyman. 2015. CloudLight: A System for Amortizing
Indirect Lighting in Real-Time Rendering. Journal of Computer Graphics Techniques
(JCGT) 4, 4 (15 October 2015), 1-27. http://jcgt.org/published/0004/04/01/

Eduardo Cuervo, Alec Wolmany, Landon P. Coxz, Kiron Lebeck, Ali Razeenz, Stefan
Saroiuy, and Madanlal Musuvathi. 2015. Kahawai: High-Quality Mobile Gaming
Using GPU Offload. In Proceedings MobiSys. 121-135.

Piotr Didyk, Tobias Ritschel, Elmar Eisemann, Karol Myszkowski, and Hans-Peter Seidel.
2010. Adaptive Image-space Stereo View Synthesis. In 15th International Workshop
on Vision, Modeling and Visualization Workshop. Siegen, Germany, 299-306.

Karl. E. Hillesland and J. C. Yang. 2016. Texel Shading. In Proceedings of the 37th Annual
Conference of the European Association for Computer Graphics: Short Papers. 73-76.

Martin Kraus and Thomas Ertl. 2002. Adaptive Texture Maps. In Proceedings ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware. 7-15.

Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes Kopf, Yury Degtyarev, Sergey
Grizan, Alec Wolman, and Jason Flinn. 2015. Outatime - Using speculation to enable

ACM Transactions on Graphics, Vol. 37, No. 6, Article 199. Publication date: November 2018.

low-latency continuous interaction for mobile cloud gaming. In Proceedings of the
13th Annual International Conference on Mobile Systems, Applications, and Services.

Sylvain Lefebvre, Jerome Darbon, and Fabrice Neyret. 2004. Unified Texture Manage-
ment for Arbitrary Meshes. INRIA Research report 5210. (2004).

Marc Levoy. 1995. Polygon-assisted JPEG and MPEG Compression of Synthetic Images.
In Proceedings SIGGRAPH. 21-28.

Gabor Liktor and Carsten Dachsbacher. 2012. Decoupled deferred shading for hardware
rasterization. In Proceedings ACM I3D. 143-150.

Yair Mann and Daniel Cohen-Or. 1997. Selective Pixel Transmission for Navigating in
Remote Virtual Environments. Computer Graphics Forum 16 (1997), C201-C206.
Marc Manzano, José A. Hernandez, Manuel Uruena, and Eusebi Calle. 2012. An empirical
study of Cloud Gaming. In 2012 11th Annual Workshop on Network and Systems

Support for Games (NetGames). 1-2.

William R. Mark, Leonard McMillan, and Gary Bishop. 1997. Post-rendering 3D warping.
In Proceedings of the 1997 Symposium on Interactive 3D Graphics.

Colt McAnlis. 2009. Halo Wars: The Terrain of Next-Gen. Talk at Game Developers
Conference. (2009).

Martin Mittring. 2007. Finding next gen: Cryengine 2. In ACM SIGGRAPH 2007 courses.
ACM, 97-121.

Martin Mittring. 2008. Advanced Virtual Texture Topics. In Advances in Real-Time
Rendering in 3D Graphics and Games Course SIGGRAPH 2008. 23-51. http://portal.
acm.org/citation.cfm?id=1404435.1404438

Yuval Noimark and Daniel Cohen-Or. 2003. Streaming Scenes to MPEG-4 Video-Enabled
Devices. IEEE Computer Graphics and Applications 23 (01 2003), 58—-64.

OculusVR. 2018. Rendering to the Oculus Rift. (2018). https://developer.oculus.com/
documentation/pcsdk/latest/concepts/dg-render/ Visited on March 30, 2018.

Dawid Pajak, Robert Herzog, Elmar Eisemann, Karol Myszkowski, and Hans-Peter
Seidel. 2011. Scalable Remote Rendering with Depth and Motion-flow Augmented
Streaming. Computer Graphics Forum 30, 2 (2011), 415-424.

Jonathan Ragan-Kelley, Jaakko Lehtinen, Jiawen Chen, Michael Doggett, and Frédo
Durand. 2011. Decoupled sampling for graphics pipelines. ACM Transactions on
Graphics 30, 3 (may 2011), 1-17. https://doi.org/10.1145/1966394.1966396

Bernhard Reinert, Johannes Kopf, Tobias Ritschel, Eduardo Cuervo, David Chu, and
Hans-Peter Seidel. 2016. Proxy-guided Image-based Rendering for Mobile Devices.
Computer Graphics Forum 35, 7 (oct 2016), 353-362. https://doi.org/10.1111/cgf.13032

Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. 1998. Layered Depth
Images. In Proceedings SIGGRAPH. 231-242.

Bin Sheng, Wei-Liang Meng, Han-Qiu Sun, and En-Hua Wu. 2011. MCGIM-Based
Model Streaming for Realtime Progressive Rendering. Journal of Computer Science
and Technology 26, 1 (jan 2011), 166-175. https://doi.org/10.1007/s11390-011-9423-8

Shu Shi and Cheng-Hsin Hsu. 2015. A Survey of Interactive Remote Rendering Systems.
ACM Comput. Surv. 47, 4, Article 57 (May 2015).

Shu Shi, Klara Nahrstedt, and Roy Campbell. 2012. A Real-time Remote Rendering
System for Interactive Mobile Graphics. ACM Trans. Multimedia Comput. Commun.
Appl. 8, 3s, Article 46 (Oct. 2012), 20 pages. https://doi.org/10.1145/2348816.2348825

Markus Steinberger, Michael Kenzel, Bernhard Kainz, and Dieter Schmalstieg. 2012.
ScatterAlloc: Massively parallel dynamic memory allocation for the GPU. In 2012
Innovative Parallel Computing (InPar). 1-10.

Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones. 1998. The Clipmap:
A Virtual Mipmap. In Proceedings SIGGRAPH. 151-158.

Eyal Teler and Dani Lischinski. 2001. Streaming of Complex 3D Scenes for Remote
Walkthroughs. Computer Graphics Forum 20, 3 (2001), 17-25.

J. M. P. van Waveren. 2009. id Tech 5 Challenges - From Texture Virtualization to
Massive Parallelization. In SIGGRAPH 2009 Course: Beyond Programmable Shading.

Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero P Simoncelli. 2004.
Image quality assessment: from error visibility to structural similarity. IEEE Trans-
actions on Image Processing 13 (apr 2004), 600-612. Issue 4.

Lei Yang, Yu-Chiu Tse, Pedro V. Sander, Jason Lawrence, Diego Nehab, Hugues Hoppe,
and Clara L. Wilkins. 2011. Image-based bidirectional scene reprojection. In Pro-
ceedings of the 2011 SIGGRAPH Asia Conference. Article 150.

IImi Yoon and Ulrich Neumann. 2000. Web-Based Remote Rendering with IBRAC
(Image-Based Rendering Acceleration and Compression). Computer Graphics Forum
19, 3 (2000), 321-330. https://doi.org/10.1111/1467-8659.00424

Cem Yuksel. 2017. Mesh Color Textures. In Proceedings of High Performance Graphics
(HPG ’17). Article 17, 11 pages.

https://doi.org/10.1111/cgf.12303
http://www.cogsci.rpi.edu/~destem/gamearch/gdc16/Object-Space-Lighting-Rev-21.pptx
http://www.cogsci.rpi.edu/~destem/gamearch/gdc16/Object-Space-Lighting-Rev-21.pptx
https://doi.org/10.1049/ip-vis:20040749
http://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Chen_Ka_AdaptiveVirtualTexture.pdf
http://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Chen_Ka_AdaptiveVirtualTexture.pdf
http://jcgt.org/published/0004/04/01/
http://portal.acm.org/citation.cfm?id=1404435.1404438
http://portal.acm.org/citation.cfm?id=1404435.1404438
https://developer.oculus.com/documentation/pcsdk/latest/concepts/dg-render/
https://developer.oculus.com/documentation/pcsdk/latest/concepts/dg-render/
https://doi.org/10.1145/1966394.1966396
https://doi.org/10.1111/cgf.13032
https://doi.org/10.1007/s11390-011-9423-8
https://doi.org/10.1145/2348816.2348825
https://doi.org/10.1111/1467-8659.00424

	Abstract
	1 Introduction
	2 Related work
	2.1 Image-based rendering
	2.2 Remote rendering
	2.3 Object-space shading
	2.4 Virtualized textures

	3 System overview
	3.1 Visibility stage
	3.2 Shading stage
	3.3 Encoding stage
	3.4 Networking stage
	3.5 Decoding stage
	3.6 Display stage

	4 Shading atlas
	4.1 Patches and blocks
	4.2 Parallel memory allocation
	4.3 Level selection

	5 Results
	5.1 PVS correctness
	5.2 Visibility algorithm vs memory requirements
	5.3 Memory management speed
	5.4 Fragmentation vs allocation strategy
	5.5 Rendering amortization from framerate upsampling
	5.6 Image quality vs network latency
	5.7 Image quality vs upsampling rate
	5.8 Rate distortion
	5.9 End to end performance

	6 Limitations and extensions
	6.1 View-dependent rendering
	6.2 Transparent geometry
	6.3 Postprocessing effects
	6.4 Geometric scene complexity
	6.5 Dynamic geometry
	6.6 Game engine integration

	7 Conclusions
	Acknowledgments
	References

