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Abstract. In this paper, we introduce variational networks (VNs) for
image reconstruction. VNs are fully learned models based on the frame-
work of incremental proximal gradient methods. They provide a natu-
ral transition between classical variational methods and state-of-the-art
residual neural networks. Due to their incremental nature, VNs are very
efficient, but only approximately minimize the underlying variational
model. Surprisingly, in our numerical experiments on image reconstruc-
tion problems it turns out that giving up exact minimization leads to
a consistent performance increase, in particular in the case of convex
models.

1 Introduction

There has been a long tradition of using variational methods to tackle computer
vision problems including denoising [38], deblurring [28, 45], segmentation [12,
34], tracking [3, 17] and optical flow [22] due to their simplicity, performance and
profound theoretical foundations. In recent years, these approaches have been
outperformed by deep learning methods. Despite the success of deep learning
in computer vision [20, 31], it is unclear whether there exists a theoretical con-
nection between variational methods and deep learning. In this paper, we try to
answer this question by establishing relations between both worlds.

Variational methods are based on minimizing an energy functional. An arche-
type convex variational model (VM) for image restoration is the Rudin-Osher-
Fatemi (ROF) model [38]. In the discrete setting it is defined as

x∗(x0) = arg min
x

F (x) := ‖∇x‖1 +
α

2
‖x− x0‖22 , (1)

where x ∈ Rn represents an image with n pixels, x0 ∈ Rn the noisy obser-
vation and ∇ ∈ R2n×n is a linear operator that computes the discrete hor-
izontal and vertical derivatives. As a motivational example, we analyze the
2 × 2 patch statistics of a set of natural images G and the set of minimizers
S = {x∗(x0) : ∂F (x∗) 3 0, x0 = g + n, g ∈ G, n ∼ N (0, σ2I)}. Figure 1
visualizes these statistics along with those of noisy images. The solution set S
shows a significant difference to the true image statistics especially in the polar
regions, which suggests that the solution set S cannot capture the complexity of
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Fig. 1. Estimated log–probability density of 2 × 2 image patches from the BSDS500
data set [32] on the unit sphere in the zero-mean and contrast-normalized patch space.
The projection onto this sphere is performed in analogy to [27] and its surface is
parametrized by the longitudinal and the lateral angle.

natural images. This originates either from a too simple model or the optimality
condition ∂F (x∗) 3 0 is too restrictive.

A natural idea for improving the ROF model is to increase its flexibility
by introducing additional terms. Chambolle and Lions [11] increased the model
complexity by formulating image reconstruction as a convex infimal convolution
problem. Another convex VM is the total generalized variation [10], which ex-
tends the ROF model by modeling higher order statistics. However, Black and
Anandan [7] demonstrated that incorporating non-convex functions improves re-
sults because the applied non-convex functions suppress outliers as known from
robust statistics. They optimize the non-convex VMs using the graduated non-
convexity method [8], which solves a sequence of VMs starting with a convex
model that gradually becomes non-convex.

The idea of learning higher order statistics to enhance the results of varia-
tional methods for image reconstruction was introduced by Roth and Black [37].
They proposed to learn a prior (regularization) consisting of an ensemble of fil-
ters together with corresponding non-convex potential functions called Fields of
Experts (FoE) using contrastive divergence. Later [25] formulated the learning of
regularization parameters of a VM as a bi-level optimization problem, which was
extended in [13] to learn analysis operators of (non-)convex VMs including the
FoE model. Their results on image denoising indicate that non-convex models
perform best, confirming the findings of Zhu and Mumford [49]. Also Domke [16]
enhanced the performance of the FoE model by discriminatively learning incom-
plete energy minimization schemes that consist just of a few iterations inspired
by [18]. The combination of 1) unrolling a gradient descent scheme for the FoE
model and 2) abandoning energy minimization by parameterizing each step in-
dividually led to the optimized reaction-diffusion processes of Chen et al. [14],
which improved the state-of-the-art on several reconstruction tasks [19, 23, 46].

The neural network community pursues a completely different approach for
increasing the model complexity. Since the early convolutional neural networks [26,
39], advances in network training and the use of more complex, deeper networks
have led to remarkable results in many areas of computer vision, including clas-
sification [20, 24] and restoration [31, 47]. Increasing the model complexity by
stacking more and more layers works just to some extent due to a degrada-
tion problem reported by He et al. [20]. To avoid this problem, they introduced
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Fig. 2. This figure shows an illustration of (a) our proposed variational units (3) and
their combination to a variational network (b) that uses a cyclic scheme.

residual networks that have a simple computational structure which eases the
training of very deep models.

In this work, we introduce variational networks that are developed by mini-
mizing a parametrized energy using proximal incremental methods [5]. The VNs
have the same computational structure as residual networks and thus are easy to
train. Moreover, the concept of VNs enables us to explore theoretical properties
such as the role of convexity in the field of natural image reconstruction. There-
fore, we extend the FoE regularization structure by fully parametrized potential
functions that can be trained either convex or non-convex.

2 Variational Networks

We propose variational networks (VNs) that are motivated by proximal gradient
and proximal incremental methods and yield the same computation structure as
residual networks. The basic structure of VNs evolves naturally by performing
incremental proximal gradient steps [5] to solve problems of the form

min
x

F (x) :=

C∑
c=1

fc(x;θc) + h(x) , (2)

where C defines the number of components, x ∈ Rn represents some data,
i. e., an image, fc : Rn 7→ R are smooth component functions parametrized by
θc and h : Rn 7→ R is a convex, lower semi-continuous (l.s.c.) function. An
incremental proximal gradient step is defined as

xt+1 = proxηth
(
xt − ηt∇fc(t)(xt;θc(t))

)
, (3)

where ηt is the step size of the t-th step. We fix the component selection function
c(t) = mod(t, C)+1 to obtain a cyclic procedure as depicted in Figure 2. We call
the scheme (3) variational unit (VU) in analogy to residual units. The VU is the
basic building block of a VN. The output of the C-th unit xt=C ends the first
cycle. It is also the output of a corresponding residual network [20]. Moreover,
VNs generalize the optimized reaction-diffusion processes [14] as they can be
interpreted as a single cycle of a parametrized incremental scheme.

2.1 Relation to Incremental Gradient Methods

The formulation of VNs is based on incremental proximal methods, which were
proposed by Nedić and Bertsekas [5, 36]. These methods were designed to solve
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large-scale energy minimization problems consisting of smooth and non-smooth
components. Such problems can be cast into the form

min
x∈X

F (x) := f(x) + h(x) =

C∑
c=1

fc(x) + h(x) , (4)

where f aggregates the smooth components fc : Rn 7→ R and h : Rn 7→ R holds
the convex, l.s.c. and non-smooth parts. Problem (19) can be turned into an
unconstrained form by including the indicator function of X in h(x). In analogy
to [5] an incremental proximal gradient step is given by

xt+1 = proxηth
(
xt − ηt∇fc(t)(xt)

)
, (5)

where ∇fc(t)(xt) is the gradient of a single component selected by c(t) and the
proximal map is defined by

proxηh(z) := arg min
x

(
h(x) +

1

2η
‖x− z‖22

)
. (6)

If f consists only of a single component, i. e., f(x) = f1(x), the scheme (22)
simplifies to the proximal gradient method defined as

xt+1 = proxηth (xt − ηt∇f(xt)) . (7)

First assume that all components fc are convex. In this case, Bertsekas [5]
showed that the incremental proximal method (22) converges to a stationary
point in the limit for a diminishing step size, satisfying

∑∞
t=0 ηt =∞, ∑∞t=0 η

2
t <

∞, for both cyclic and random component selection c(t). Moreover, he proved
approximate convergence for a constant step size (ηt = η > 0). The assumptions
of the proofs are fulfilled if all components fc are Lipschitz continuous on X .

If the components fc are non-convex, one can still show approximate con-
vergence of (22) in the limit using the inexact non-convex proximal splitting
algorithm of Sra [43]. In addition to the requirements of Sra, i. e., all fc have
a Lipschitz continuous gradient on X , we assume that the components fc are
Lipschitz on X , just as in the convex case. Then (22) approximately converges
to a stationary point for a constant step size ηt = η > 0. The proof can be found
in the supplemental material.

2.2 Relation to Residual Networks

Deep residual networks were proposed by [20] to alleviate a degradation problem
arising in deep neural network training, indicated by increasing training and
test error despite growing model complexity. Residual networks circumvent this
problem by stacking many simple residual units, which are characterized by

xt+1 = p(xt + gt(xt)) , (8)
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Fig. 3. Visualization of the structural correspondence between (a) multi-residual
units [33] and (b) variational units for image reconstruction (13). Note the data term
gradient in (b) can be interpreted as a second residual mapping in the data domain.
The multi-residual unit is turned into a residual unit [20] by omitting the dashed path.

where xt,xt+1 ∈ Rn are the input and output of the t-th layer, p : Rn 7→ Rn

is a point-wise scalar function (e. g., ReLU) and gt : Rn 7→ Rn are residual
functions. Typically, these residual functions are defined as

gt(xt) =

Nr∑
i=1

K2
t,ia(K1

t,ixt) , (9)

where the matrices K1
t,i,K

2
t,i ∈ Rn×n model convolutions and Nr defines the

number of convolution kernels. The function a : Rn 7→ Rn is often set to the
ReLU activation. The resulting networks can be efficiently trained for more than
1000 layers. The combination of the individual residual units forms a powerful
ensemble of networks [44], yielding state-of-the-art results on challenging com-
petitions, e. g., ImageNet [24] and MS COCO [29].

By comparing the structure of variational units (3) and residual units (8),
we see that the proximal map in (3) corresponds to p(x) = ReLU(x) in (8) if h
is the indicator function of the positive orthant. If we assume ηt = 1, then gt
corresponds to−∇fc(t)(xt). This is either true for t ≤ C or if a residual net shares
parameters in a periodic fashion [1]. To emphasize this structural resemblance,
Fig. 3 visualizes a residual and a variational unit. The residual function (9)
corresponds to a gradient if K2

t,i = K1>
t,i . If this relation is approximate (K2

t,i u
K1>
t,i ), gt can still be interpreted as a gradient with error. Consequently, this

type of networks fits into the VN formulation and both networks have the same
computational structure. Hence, VNs combine the practical benefits of residual
networks, i. e., avoid the degradation problem, and the rich theory of incremental
methods, including convergence and convex optimization theory.

3 Variational Networks for Image Reconstruction

We formulate image reconstruction as a variational energy minimization problem
with a fully trainable regularization as well as data term and cast this problem
into the VN formulation.
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3.1 Problem Formulation and Parametrization

A variational model for image reconstruction in the form of (2) is given by

min
x∈Xn

F (x) :=

C∑
c=1

fc(x;θc) = Rc(x;θc) +Dc(x;θc) , (10)

where x ∈ Xn represents an image, constrained on X = {x ∈ R : 0 ≤ x ≤ m}
with m > 0. The vector θc holds the parameters for each component. The
regularization term Rc(x;θc) models prior knowledge, whereas, the data term
Dc(x;θc) models the data fidelity. The specific form of the FoE regularization
term variant is given by

Rc(x;θc) =

Nr∑
i=1

n∑
j=1

φci ((Kc
ix)j) , (11)

where φci (x) : Y 7→ R are potential functions defined on Y = {y ∈ R : |y| ≤ m},
their associated matrices Kc

i ∈ Rn×n model convolutions of the image x with
kernels kci and Nr defines the number of regularization functions. Some learned
kernel-function pairs are depicted in Fig. 4. The convolution of a sk × sk kernel
kci can also be expressed as matrix-vector multiplication Xkci with the matrix

X ∈ Rn×s2k and the vector kci ∈ Rs2k .
We parametrize the data term also with kernel-function pairs to incorporate

higher-order statistics in the data domain, motivated by [42]. It is defined as

Dc(x;θc) =

Nd∑
i=1

n∑
j=1

ψci

((
K̄c
i (Ax− x0)

)
j

)
, (12)

where x0 ∈ Xn describes the degraded observation and A ∈ Rn×n models a
linear operator. As before, the matrices K̄c

i ∈ Rn×n model convolutions with
kernels k̄ci , ψ

c
i (y) : Y 7→ R are the corresponding potential functions and Nd

specifies the number of kernel-function pairs.
We define the VUs for image reconstruction akin to (3) as

xt+1 = projXn(xt − ηt∇fc(t)(xt;θc(t))) (13)

where the proximal operator of (3) simplifies to the projection onto Xn. The
gradient for a selected component fc(x;θc) is given by

∇fc(xt;θc) =

Nr∑
i=1

Kc>
i φ′ci (Kc

ixt) +A>
Nd∑
i=1

K̄c>
i ψ′ci

(
K̄c
i (Axt − x0)

)
. (14)

Since we learn the influence functions φ′ci (y) and ψ′ci (y), we can fix the step size
ηt = 1 as it is reflected in the scale of both influence functions. Due to the above
parametrization, all the component functions fc of the according VN are smooth,
Lipschitz continuous functions with bounded and Lipschitz continuous gradient
as long as the functions φ′ci (y) and ψ′ci (y) fulfill these constraints. The proofs are
in the supplemental material. Note that the runtime and memory requirements
of the VNs resemble those of [14], since the basic operations are identical.
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Fig. 4. Sample kernel-function pairs (kci , φ
c
i (y)) of the trained VNs. The left three pairs

are convex samples, whereas the right three were extracted from non-convex VNs.

3.2 Training

To train the VNs for image reconstruction we parametrize the influence functions
φ′ci (y) and ψ′ci (y) in analogy to [14, 41] with radial basis functions

φ′ci (y) =

Nw∑
j=1

exp

(
− (y − µj)2

2σ2

)
wcij , (15)

where wcij are the individual basis weights that correspond to a single radial
basis (µj , σ) and Nw defines the number of basis functions. To shorten notation
we group the coefficients into wc

i = (wci1, . . . , w
c
iNw

)>. The functions ψ′ci (x) are
parametized in the same way by w̄c

i . We group the parameters of a single com-
ponent c into the vector θc = (kc1,w

c
1, . . . ,k

c
Nr
,wc

Nr
, k̄c1, w̄

c
1, . . . , k̄

c
Nd
, w̄c

Nd
). The

parameters of all components are gathered into θ = (θi, i = 1 . . . C). We define
the training cost for Ns input-target pairs (xs0,x

s
gt) as

min
θ∈T

L(θ) :=
1

Ns

Ns∑
s=1

‖xsT (θ)− xsgt‖1 , (16)

where xsT is the output after T steps (13). We use the `1-norm because of its ro-
bustness [48]. In addition, we constrain the parameters θ to be in an admissible
set T . This set ensures that the kernels kci and k̄ci have zero-mean and `2-norm
one, to avoid a scaling problem as outlined in [14]. T also allows us to incorpo-
rate constraints on the functions φci (y) and ψci (x) such as convexity by defining
suitable conditions for wc

i and w̄c
i as shown in the supplemental material. Note

if all φci (y) and ψci (x) are convex, the entire energy (10) becomes convex [9].
We optimize the non-convex training problem (16) with the inertial incremen-

tal proximal method (IIPG) defined in Algorithm 1 in the supplemental material.
It is an incremental proximal method that uses preconditioning for acceleration
and is capable of handling the constraints incorporated in the admissible set T .

4 Experiments

We conduct three groups of experiments to show the versatility of VNs and to
explore the role of convexity. Table 1 defines all used VN types and outlines
their relation to the previously discussed methods. We conduct all experiments
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Table 1. Overview of the VN types. The subscript N defines the number of used
kernel-function pairs Nr = N . The superscript specifies the number of components C
and the step t for which the VN was optimized.

Type Corresponding scheme

VN1,t
N proximal gradient method (20) (energy minimization)

VNC,t
N proximal incremental method (22) (approximate energy minimization)

VNt,t
N single cycle proximal incremental method (22) (reaction diffusion)

for denoising and non-blind delurring. In the case of denoising, the degraded
input x0 is a noisy observation and the linear operator A in (12) simplifies to
an identity operation. For non-blind deblurring, the input is a blurry and noisy
observation and the linear operator A models a convolution with a known blur
kernel. The denoising VNs (N-VN) use just a single data term Nd = 1 and an
identity kernel k̄11, while the deblurring VNs (B-VN) apply Nd = Nr kernel-
function pairs. To train VNs for both problems, we use 400 training patches of
size 180× 180 extracted from the BSDS500 train and test sets [32]. We generate
the noisy training inputs by adding white Gaussian noise with σ = 25 to the
clean images. To generate the blurry training data, we extract 11 × 11 motion
blur kernels from [40], convolve them with the clean training patches and add 1%
white Gaussian noise. The test sets are generated in the same way for denoising
and non-blind deblurring. We use 68 images from the BSDS500 [32] validation
set and the motion blur kernels from [28] to ensure that neither the images nor
the blur kernels are used during training. Finally, it is important to point out
that all found schemes are local optima of the non-convex training problem (16).

4.1 Energy Minimization with VNs

In the first experiment, we set up VNs to perform energy minimization follow-
ing the proximal gradient method (20) by fixing the number of components to
C = 1, i. e., F (x) = f1(x). For both denoising and non-blind deblurring, we
train convex and non-convex VNs up to t = 100 steps. The resulting PSNR
scores and the `2-norm of the gradients ‖∇F (xt)‖2 are depicted in green color
in Fig. 5 and 6. As expected, the decreasing gradient-norm with increasing steps
t indicates that the methods actually minimize the underlying energy (10).

The PSNR curves for denoising (Fig. 5) differ for convex and non-convex
N-VN1,t

24 . The performance of the non-convex VNs increases initially and slowly
declines with increasing t, while the convex N-VN1,t

24 yield the best results after
a single step. This indicates that a convex regularization of the form (11) is not
a good prior for natural images because by approaching a minimizer (increasing
t) the results become worse. Surprisingly, the highly parametrized convex N-
VN1,t

24 performs marginally better than the ROF model for t > 10, consistent
with [25]. In the case of non-blind deblurring the PSNR curves (Fig. 6) are
similar for convex and non-convex B-VN1,t

24 . Both VNs require more steps to
yield satisfactory results since deblurring is a harder problem than denoising.
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Nevertheless, the non-convex B-VN1,t
24 outperform the convex ones by a large

margin (1dB).

4.2 Approximate Incremental Minimization with VNs

In a second experiment, we evaluate the performance of VNs that follow an
incremental approximate energy minimization scheme (22). We use C = 6 com-
ponents and Nr = 4 kernel-function pairs. Thus, the number of parameters is
approximately the same as in the previous experiment. The resulting PSNR
scores as well as the gradient norm for the trained convex and non-convex VN6,t

4

are depicted in red color in Fig. 5 for denoising and Fig. 6 for non-blind deblur-
ring.

In contrast to the previous experiment, the PSNR curves for denoising and
deblurring are rather flat for both convex and non-convex VN6,t

4 . So, they man-
age to generate good results after just a few steps and maintain the quality
with increasing t. However, the results after 100 steps are far from approaching
a stationary point, as indicated by the rather slowly decreasing gradient-norm
‖∇F‖2. This effect is very strong for the convex N-VN6,t

4 because these VNs learn
a sequence of components that alternate between strong blurring and detail re-
covery from the data term, leading to large gradients. In terms of PSNR scores
this behavior yields superior results compared to the first experiment. The de-
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Table 2. Average PSNR scores on the test set for the VN types. The reported PSNR
scores are computed using the best performing depth t of each VN type.

ROF[38]
convex non-convex

BM3D[15] TRD5
5×5[14]

VN1,t
24 VN6,t

4 VNt,t
24 VN1,t

24 VN6,t
4 VNt,t

24

denoising 27.39 27.69 28.51 28.76 28.56 28.60 28.87 28.56 28.78
non-blind deblurring 28.35 29.26 29.66 30.16 30.31 30.56 30.76 - -

creasing PSNR of the convex B-VN6,t
4 with increasing depth may originate from

local optima of the learning problem.

4.3 VNs in a Reaction Diffusion Setup

In the final experiment, we investigate the performance of VNs in a residual
network or trainable reaction-diffusion setting [14], i. e., each step (13) has its
own parameter set θt (C = t). Hence, the number of parameters increases linearly
with the depth of the VNt,t

24 . These VN types can still be interpreted as an
incremental proximal methods that apply each component just once.

The increasing model complexity with increasing t leads to a steady increase
of the performance for the VNt,t

24 on both reconstruction tasks, depicted in Fig. 5
and 6. The gradient-norm increases also along with the depth t due to the ad-
ditional components. Consequently, these VNs do not minimize a corresponding
energy. However, they yield the best performance on the image reconstruction
tasks as shown in Table 2. In contrast to Chen et al. [14], our findings on image
denoising suggest that the shape of the learned potential functions (Fig. 4) is
of little importance since the convex and non-convex N-VNt,t

24 perform almost
equally well, as shown in Table 2. The convex N-VNs rather require the flexibil-
ity of incremental schemes in order to yield satisfactory results. Still, convexity
seems to be a limiting factor for non-blind deblurring since all convex VNs per-
form worse than the non-convex ones.

5 Conclusion

In this work, we explored links between variational energy minimization methods
and deep learning approaches by introducing variational networks (VNs). The
VNs consist of stacked parametrized incremental proximal steps that have the
same favorable computational structure as residual units. We demonstrated that
the versatile VN formulation can be used to learn proximal gradient schemes, in-
cremental proximal schemes as well as residual networks and optimized reaction-
diffusion processes. Moreover, our parametrization of the VNs for image recon-
struction allows us to learn corresponding convex energies.

We used this novel possibility to evaluate the limitations of convexity in the
context of natural image reconstruction. Our findings on denoising and non-
blind deblurring show that our convex formulations yield inferior results than
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non-convex formulations. Additionally, the incremental VN types require just a
few steps to yield reasonable results even for the challenging task of non-blind
deblurring. In the future we would like to further investigate the role of convexity
by learning different classes of convex models and analyze the stability of VNs.
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Supplemental Material

Incremental Methods

In this part we briefly survey incremental gradient methods [4, 6] and incremental
proximal methods [5, 43] to ease understanding of the main paper and the proofs.

Incremental Gradient Methods

Incremental gradient methods [4, 6] were developed to minimize problems of the
form

min
x∈X

F (x) :=

C∑
c=1

fc(x) , (17)

where the individual component functions fc : Rn 7→ R are real-valued functions
and X ⊆ Rn is a closed convex set. In empirical risk minimization or neural net-
work training, the number of components C is typically very large. The basic
idea is to operate on a single component function fc(x) at each minimization
step in order to speed up the optimization procedure. This has implications for
the type of optimization algorithms that can be used, and enables a parallel im-
plementation which is very important for today’s large-scale learning problems.

The most widespread incremental gradient method [21, 30] has the form

xt+1 = projX
(
xt − ηt∇fc(t)(xt)

)
, (18)

where projX (·) is the projection onto a set X , ηt defines the step size at itera-
tion t and c(t) selects the component for the t-th iteration. The basic differences



14 Erich Kobler, Teresa Klatzer, Kerstin Hammernik and Thomas Pock

between variants of (18) are the selection of the step size ηt and how the com-
ponents are distributed to each iteration c(t), which can be either random or
deterministic (e. g., repeated cycle). The convergence of all these variants has
been proven under various conditions, e. g., [30] showed convergence for cyclic
order and a diminishing step size.

Incremental Proximal Methods

We are especially interested in the incremental subgradient and proximal meth-
ods, which were proposed by Nedić and Bertsekas [5, 36, 35]. The intuition be-
hind incremental proximal methods (IPM) is that the components fc(x) of Prob-
lem (17) can be partitioned in smooth and non-smooth functions to obtain

min
x∈X

F (x) = f(x) + h(x) =
C∑
c=1

fc(x) + h(x) , (19)

where f aggregates the smooth components fc and h : Rn 7→ R is lower semi-
continuous (possibly non-smooth) and convex. Problem (19) can be turned into
its unconstrained form by setting h(x) to the indicator function of X . A simple
approach to minimize (19) is to use a proximal gradient scheme such as

xt+1 = proxηth (xt − ηt∇f(xt)) , (20)

where ∇f(xt) is the gradient of the smooth components, ηt defines the step size
and the proximal map is defined by

proxηh(z) = arg min
x

h(x) +
1

2η
‖x− z‖22 . (21)

Analogous to [5] the incremental proximal gradient step is given by

xt+1 = proxηth
(
xt − ηt∇fc(t)(xt)

)
, (22)

where ∇fc(t)(xt) is the gradient of a single component selected by c(t).

Convex Incremental Problems We first study the convergence properties of
the convex version of Problem (19). For this, all its functions fc and h must be
convex. In this case, convergence follows in analogy to [5, 43]. We require that
the functions fc are Lipschitz continuous on X . That is, for c = 1 . . . C and all
x,y ∈ X there exists a constant L such that

|fc(x)− fc(y)| ≤ L ‖x− y‖ (23)

holds. Then, the incremental proximal method (22) converges to an approximate
stationary point in the case of constant step sizes ηt ≥ η > 0. Note that the
formulation of [5] allows multiple functions hc in the partitioning (19). Without
loss of generality, we can subsume all non-smooth and convex parts into a single
function h and set hc = h/C, to end up with the same algorithm as in their
original formulation.
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Table 3. Summary of convergence properties for the proximal gradient method (20)
and IPM (22) for solving Problem (19). A (X) indicates whether a method converges in
the limit to a global minimum in the case of convex functions or to a stationary point
in the case of non-convex functions. However, (ε–X) denotes approximate convergence.
IPM converges exactly for diminishing step sizes [5, 43], i. e.,

∑∞
t=0 ηt =∞,

∑∞
t=0 η

2
t <

∞. The right column indicates the type of the corresponding VN.

Method Step Size Convex Non-Convex Type

xt+1 = proxηth (xt − ηt∇F (xt)) 0 < ηt ≤ η X X VN1,t
N

xt+1 = proxηth
(
xt − ηt∇fc(t)(xt)

) 0 < ηt ≤ η ε–X ε–X VNC,t
N

diminishing X X -

Non-convex Incremental Problems If we allow the component functions
to be non-convex, Problem (17) becomes non-convex and possibly non-smooth,
since h can still be non-smooth. We show convergence of (22) to an approximate
stationary point in analogy to the NIPS framework of Sra [43], which considers
problems of the form

min
x∈Xn

f(x) + h(x) , (24)

where f : Xn 7→ R is continuously differentiable and h : Xn 7→ R is lower
semi-continuous and convex (possibly non-smooth). NIPS requires that f has a
Lipschitz continuous gradient, i.e. ∃L∇f > 0 :

‖∇f(x)−∇f(y)‖ ≤ L∇f ‖x− y‖ ∀x,y ∈ Xn . (25)

The iterative scheme of NIPS is defined as

xt+1 = proxηth (xt − ηt∇f(xt) + ηte(xt)) , (26)

where e(xt) models an error in the gradient estimate ∇f(xt). The iterative
scheme assumes that for ηt ≥ η > 0 the computational error is uniformly
bounded, that is

η ‖e(x)‖ ≤ ε ∀x ∈ Xn. (27)

Based on this assumption, [43] showed that (26) converges to an approximate
stationary point.

If we apply the NIPS framework (26) to minimize (19) and rearrange the
summands, we get

xt+1 = proxηth

xt − ηt∇fc(t)(xt)− ηt C∑
j=1
j 6=c(t)

∇fj(xt)

 . (28)

Thus, the gradient error of (22) is given by the gradients of the components that
are not selected. If we assume that all components are Lipschitz continuous with
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parameter L, as in the convex case, its upper bound is given by

‖et(xt)‖ =

∥∥∥∥∥∥∥∥
C∑
j=1
j 6=c(t)

∇fj(xt)

∥∥∥∥∥∥∥∥ ≤
C∑
j=1
j 6=c(t)

L = (C − 1)L . (29)

In the non-convex case, NIPS ensures approximate convergence to a stationary
point.

In both the convex and the non-convex case, (22) converges to an approximate
stationary point for 0 < ηt ≤ η if all components are Lipschitz continuous (and
also their gradients in the non-convex case). Table 3 summarizes the convergence
analysis and outlines their relation to VNs.

Lipschitz Continuity of the VNs for Image Reconstruction

In order to apply the theoretical properties of incremental methods to the VNs
for image reconstruction, we need to show that the components as well as the
gradients of

fc(x;θc) = Rc(x;θc) +Dc(x;θc) (30)

are Lipschitz continuous in X. The regularization term

Rc(x;θc) =

Nk∑
i=1

n∑
j=1

φci ((K
c
ix)j) (31)

is continuously differentiable iff the potential functions φci (y) are differentiable.
Since we parametrize the gradient of the potential functions during learning by

φc′i (y) =

Nw∑
j=1

exp

(
− (y − µj)2

2σ2

)
wcij , (32)

its maximal value is bounded if the weights wcij are bounded, which is ensured
during training. Consequently, its Lipschitz constant is given by this bound.
The same analysis can be applied to show that the gradient φc′i (y) is Lipschitz
continuous. Additionally, the Lipschitz continuity of the learned data term and
its gradient can be shown in the same fashion.

Training and Projecting onto the Admissible Set T

As described in the paper, we constrain the parameters θ to lie in an admissible
set T . To solve the training problem we propose the inertial incremental proximal
method (IIPG) defined in Algorithm 1, where δT (θ) is the indicator function of
T .
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Algorithm 1: Inertial incremental proximal gradient (IIPG) algorithm.

Input: Training set S, step size α and number of epochs NE and minibatches
NB

Partition S into NB minibatches S =
⋃NB
b=1 Bb

Choose initial parameters θ0

θ1 ← θ0;
l← 1;
for e← 1 to NE do

for b← 1 to NB do
Perform over-relaxation
θ̃ ← θl + e−1

e+2
(θl − θl−1);

Compute gradient on Bb
gl ← ∂L(θ̃)/∂θ;

Compute preconditioning P l by (34) and (35)
Perform proximal gradient descent step

θl+1 ← proxαP
l

δ(T )(θ̃ − αP lgl);
l← l + 1;

For image reconstruction, we introduce the following constraints on the pa-
rameters. We enforce that the convolution kernels kci and k̄ci have zero-mean and
are normalized, i. e.,

kci , k̄
c
i ∈ K =

{
k ∈ Rh2

: 1>k = 0, ‖k‖2 = 1
}
, (33)

in order to ensure that the domain Yn of the convolution result (Kc
ix) is bounded

and symmetric around zero. The proximal map for the kernels in Algorithm 1
simplifies to the projection on K which can be simply computed by subtracting
the mean and re-normalization.

To speed up Algorithm 1, we use a diagonal block-wise preconditioning ma-
trix P l given by

P l = diag
(
P lk1

1
, P lw1

1
, . . . , P lkC

Nk

, P lwC
Nk

, P lλC

)
, (34)

where the diagonal matrices P lp for the individual parameters are defined by

P lp =

∥∥∥∥∂L(θ)

∂p

∥∥∥∥−1
2

I , (35)

where p ∈ {kci ,wc
i , λ

c} and I is the corresponding identity matrix.

Enforcing convexity of the potential functions Our goal is to investigate the
limitations of convexity due to its property that each local minimum is a global
minimum. Therefore, we need to learn convex potential functions ρci (y). Their
domain is a closed bounded subset of Y ⊂ R because the input images are
bounded (x ∈ X := {x ∈ R : 0 ≤ x ≤ m}) and the kernel have norm one. Thus,
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Y = {y ∈ R : |y| ≤ m} is a convex set. Since the potential functions are scalar,
a sufficient condition for convexity is

φc′′i (y) ≥ 0 ∀y ∈ Y . (36)

Hence, we need to ensure that φc′′i is positive over Y. Its is given by

φc′′i (y) = −
Nw∑
j=1

(y − µj)
σ2

exp

(
− (y − µj)2

2σ2

)
wcij , (37)

which can be shortened in matrix vector notation to

φc′′i (y) = Φc′′i (y)wc
i , (38)

where the matrix Φc′′i (y) ∈ Rn×Nw holds coefficients for each radial base. Since
we cannot test the convexity condition (36) for all elements in Y, we define
control points yp ∈ YNp . In practice it turned out that Np = 2Nw + 1 yields
enough control points to ensure convexity of φci (y) on Y due to the overlap of
the individual radial basis functions. Consequently, the weights wc

i of a influence
function φci (y) have to lie in the set

wc
i ∈ W =

{
w ∈ RNw : Aw ≤ 0

}
(39)

with A = −Φc′′(yp). We can easily incorporate this constraint in the proximal
map of Algorithm 1 for wc

i

wc,l
i = proxηP

l

δ(W)(z) = arg min
Aw≤0

1

2
‖w − z‖22 (40)

with z = wc,l−1
i − αP l

w1
1
∂L/∂wc

i . We add Lagrange multipliers τ ∈ RNc to

transform (40) into the saddle point problem

min
w

max
τ≥0

1

2
‖w − z‖22 + τ>Aw . (41)

Its closed form solution is
w = z −A>τ . (42)

By plugging this into (41) and rearranging terms, we get the quadratic problem

min
τ

1

2

∥∥A>τ − z∥∥2
2

s.t. τ ≥ 0 , (43)

which can be efficiently solved by FISTA [2]. The proximal gradient step of
wi (42) can be performed with the minimizer of (43). Note that the quadratic
problem (43) must be solved in every iteration of Algorithm 1. However, the
problem can be easily parallelized for all potential functions, which helps to
keep the overhead for convex functions minimal.
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Table 4. Average PSNR scores and gradient norm ‖∇F‖2 on the test set for VN1,t
24 .

The reported PSNR scores are computed by performing t iterations on the energy
learned for the VN1,100

24 .

convex non-convex

VN1,1000
24 VN1,8000

24 VN6,996
4 VN1,7998

4 VN1,1000
24 VN1,8000

24 VN6,996
4 VN1,7998

4

denoising 21.84 / 3.40 18.57 / 0.45 28.45 / 29,593 28.45 / 29,591 25.32 / 1.155 25.13 / 0.02 28.37 / 1,499 28.36 / 1,501
non-blind deblurring 28.43 / 0.98 25.24 / 0.45 28.52 / 889.11 25.20 / 888.46 29.19 / 1.52 25.41 / 1.22 29.27 / 1,290 25.05 / 1,285

Training details

For all experiments, we partitioned the 400 training patches into mini-batches
of size 20 and performed 150 epochs of the IIPGD algorithm 1 with step size
0.05. After every 50-th epoch, we reduced the step size by a factor of 0.5.

All the influence functions are parametrized by Nw = 31 radial basis func-
tions in contrast to the 63 used by [14].

Minimizing the VN energy till approximate convergence

Since the VNs in an incremental setting learn a corresponding energy, an interest-
ing experiment is to continue the minimization scheme. Therefore, we continued
the minimization scheme of trained VNs for up to 8000 steps and evaluated the
performance. The corresponding PSNR sores and gradient norms are depicted in
Tab 4. In the case of direct energy minimization C = 1 the PSNR values decrease
continuously for the convex and non-convex VNs on both tasks along with the
gradient norm. This effect was expected since the networks were trained for just
100 steps. However, in the incremental setting C = 6, the denoising VNs main-
tain the PSNR performance. Also the the gradient norm remains stable, which
indicates that the incremental denoising VNs tend towards a fixed point. The
PSNR score of the non-blind deblurring VNs decreases with increasing t, while
the gradient norm remains on a constant level. The PSNR decrease is mainly
due to border handling artifacts.

Qualitative results

The Fig. 7 and 8 depict qualitative results of the different learned VN types. In
general the non-convex models yield better results than the convex ones.
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(a) noisy (b) target

(c) convex VN1,6
24 (d) non-convex VN1,6

24

(e) convex VN6,12
24 (f) non-convex VN6,48

24

(g) convex VN100,100
24 (h) non-convex VN100,100

24

Fig. 7. Qualitative results of the various VN types for image denoising. Note the convex
VNs generate artifacts in smooth regions, whereas, the non-convex avoid those.
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(a) noisy and blurry (b) target

(c) convex VN1,100
24 (d) non-convex VN1,100

24

(e) convex VN6,18
24 (f) non-convex VN6,18

24

(g) convex VN100,100
24 (h) non-convex VN100,100

24

Fig. 8. Qualitative results of the various VN types for non-blind image deblurring.
Note the convex VNs results seem to be a bit more noisy than the non-convex results.


