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Joint Demosaicing and Denoising

In summary,
e Demosaicing is the process of filling missing pixels to produce full color images

e Depends on Color Filter Array (CFA) pattern

¢ Noise is always present (sensor noise)

How to solve these problems all in one? J
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Related Work ﬁIU
How this problem has been solved

o Older works: interpolation based, post-processing to get rid of artifacts, exploit edge
information and color channel correlations
e Spatially adaptive interpolation (LPA) [Paliy et al., 2007]
o Contour stencils for edge-adaptive interpolation (CS) [Getreuer, 2009]
e And many more!
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Simple Model Assumptions May Fail Ty

Main problems:
e Edge blur
e Zippering
e False color
e Aliasing

e How to deal with noise?
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Simple Model Assumptions May Fail Ty

Main problems:
e Edge blur
e Zippering
e False color
e Aliasing

e How to deal with noise?

And even learning approaches have problems...
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Variational Image Reconstruction ﬁIU

e In a variational reconstruction approach, we seek to find image u given the observation
m such that

uec argumin {R(u) +AD(u,m)}
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e In our model, we assume parametrized functions to serve as regularizer
N HW

u € argmin ZZ/) k*u)p)—l—)\fHAu—mHz
u i=1p=1

e and in a second extension, freely tunable functions for the data term
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Combining Successful Ideas Ty

Gray image restoration model: Nonlinear Reaction-Diffusion [Chen et al., 2015]

Extend the model with a trainable color image prior (SEM)
Extend the model with an adaptive data term (SEM+D)

We have now a variational model of the form:

N HW HW
u € argmin ZZ/}; Z (kei*u)p —I—/\Z\U(Au—m)p
! i=1p=1  \ce{rg,b} p=1

Using the above equation we formalize a sequence of S gradient steps

N
ui= gt =Y R xar | Y (kx| = XNATY(A T = m)
i=1 ce{r.g.b}
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Sequential Energy Minimization Model (SEM)
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Setup for Training ﬁIU

e Data set: 200 training, 200 test, 100 validation images

e Training loss: MSE on linear space images

e Evaluation criteria: PSNR and SSIM on linear space and sRGB images
e Optimization algorithm: LBFGS-B [Byrd et al., 1995]

o Filter sizes

e Bayer CFA: 5 x 5 x 3 (74 filters)
o Fujifilm Xtrans CFA: 7 x 7 x 3 (50 filters)

e Filter initialization: Orthonormal DCT basis
e Activation functions: initialized with Student-t function

~

Initial image: Bilinear interpolation (Bayer), Linear interpolation (Fujifilm Xtrans)
Intel Core i7 CPU with Nvidia GeForce GTX 980 Ti graphics card
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Inspecting the Model - Learned Data Term
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Results Bayer CFA

PSNR  PSNR
Method =}, RGB)  (sRGB)
LPA 37.00  30.86
cs 3720 3141
JMCDM 3744 3135
RTF 3777 3177
FlexiSP 3828 3176
SEM16  38.93  32.03
SEM{D8 30.32  33.02

Mean PSNR (test set)
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Results
Fujifilm Xtrans CFA

PSNR for different methods

PSNR  PSNR !
Method i \RGB) (sRGB) _ |
RTF 3694 3056 o 0
SEMS  38.45  31.96 sl "
SEM16 39.60 33.09 36 .
Mean PSNR (test set) - , E
28 X £+
o S S
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Visual Comparisons with Competing Methods
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Visual Comparisons SEM+D8 vs. SEM16
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