

イロト 不得 とくほと くほとう

= 900

Self-Supervised Learning for Stereo Reconstruction on Aerial Images

Patrick Knöbelreiter, Christoph Vogel, Thomas Pock

Institute for Computer Graphics and Vision Graz University of Technology

Center for Vision, Automation & Control, AIT Austrian Institute of Technology GmbH

July 20, 2018

Introduction

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の�?

Introduction

3D point cloud

[Vaihingen Dataset]

► Compute a dense 3D point cloud from high resolution overlapping images

Aerial 3D - Approaches

	Lidar	Dense image matching
Flight height ¹	500 m	1800 m
Density ¹	6.7 pt/m²	39.1 pt/m²
Reliability	high	medium - high

LiDAR (Light detection and Ranging)

Dense image matching

¹Vaihingen Dataset

Dense Image Matching

- Efficient algorithms exist
 - Plane Sweep Stereo [Collins]
 - Semi-global Matching (SGM) [Hirschmüller]
- ▶ Recent developments in deep learning lead to considerable performance improvements
 - ▶ MC-CNN: Learned matching + Post-processing [Zbontar *et al.*]
 - ► Content CNN: Learned features + Post-processing [Luo et al.]
 - ► CNN-CRF: Principled End-to-End Approach without Post-processing [Knöbelreiter et al.]

Utilize a modern deep learning based approach without the need of huge amount labeled of training data

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

▶ We are going to use the CNN-CRF approach in a self-supervised learning setting

Preliminaries

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の�?

Central Assumption

"If we are highly confident about our prediction, we assume that it is correct."

Central Assumption

"If we are highly confident about our prediction, we assume that it is correct."

Predict on unlabeled data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Central Assumption

"If we are highly confident about our prediction, we assume that it is correct."

Central Assumption

"If we are highly confident about our prediction, we assume that it is correct."

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Central Assumption

"If we are highly confident about our prediction, we assume that it is correct."

Central Assumption

"If we are highly confident about our prediction, we assume that it is correct."

Central Assumption

"If we are highly confident about our prediction, we assume that it is correct."

▶ Key: We need a good criterion to distinguish between good and bad predictions

シック・ 川 ・ 山・ ・ 山・ ・ 白・

Self-Supervised Learning - Algorithm

```
Input: (Pre-trained) learner f^{(0)}, unlabeled data X_u = \{x_u^{(i)}\}_{i=1}^M
Result: Learner f^{(N)}
X_{l} = \{\}
Y_{l} = \{\}
for n \leftarrow 1 to N do
     // 1. Predict on unlabeled data
     Y_p = \{\}
    for i \leftarrow 1 to M do
    y_{\rho}^{(i)} = f(x_{u}^{(i)})Y_{\rho} = Y_{\rho} \cup y_{\rho}^{(i)}
     end
    // 2. Filter predictions
    (X_f, Y_f) = \{(x_u^{(i)}, y_p^{(i)}) : c(y_p^{(i)}) > \tau\}_{i=1}^M
     // 3. Add reliable predictions to training set
     X_l = X_l \cup X_f
     Y_l = Y_l \cup Y_f
     // 4. Train model on labeled data
     f^{n+1} \leftarrow \text{train } f^n \text{ on } (X_l, Y_l)
end
```

► Input: Two images from a calibrated camera pair ⇒ Epipolar lines correspond to image rows

► Input: Two images from a calibrated camera pair ⇒ Epipolar lines correspond to image rows

- ► Input: Two images from a calibrated camera pair
 - \Rightarrow Epipolar lines correspond to image rows
- **Taks**: For each pixel in the left image find the corresponding pixel in the right image

- ► Input: Two images from a calibrated camera pair
 - \Rightarrow Epipolar lines correspond to image rows
- **Taks**: For each pixel in the left image find the corresponding pixel in the right image

- ► Input: Two images from a calibrated camera pair
 - \Rightarrow Epipolar lines correspond to image rows
- **Taks**: For each pixel in the left image find the corresponding pixel in the right image

- ► Input: Two images from a calibrated camera pair
 - \Rightarrow Epipolar lines correspond to image rows
- **Taks**: For each pixel in the left image find the corresponding pixel in the right image

- ► Input: Two images from a calibrated camera pair
 - \Rightarrow Epipolar lines correspond to image rows
- **Taks**: For each pixel in the left image find the corresponding pixel in the right image

- ► Input: Two images from a calibrated camera pair
 - \Rightarrow Epipolar lines correspond to image rows
- **Taks**: For each pixel in the left image find the corresponding pixel in the right image

- ► Input: Two images from a calibrated camera pair
 - \Rightarrow Epipolar lines correspond to image rows
- **Taks**: For each pixel in the left image find the corresponding pixel in the right image

- ► Input: Two images from a calibrated camera pair
 - \Rightarrow Epipolar lines correspond to image rows
- **Taks**: For each pixel in the left image find the corresponding pixel in the right image

- ► Input: Two images from a calibrated camera pair
 - \Rightarrow Epipolar lines correspond to image rows
- **Taks**: For each pixel in the left image find the corresponding pixel in the right image

- ► Input: Two images from a calibrated camera pair
 - \Rightarrow Epipolar lines correspond to image rows
- **Taks**: For each pixel in the left image find the corresponding pixel in the right image

- ► Input: Two images from a calibrated camera pair
 - \Rightarrow Epipolar lines correspond to image rows
- **Taks**: For each pixel in the left image find the corresponding pixel in the right image

- ► Input: Two images from a calibrated camera pair
 - \Rightarrow Epipolar lines correspond to image rows
- **Taks**: For each pixel in the left image find the corresponding pixel in the right image

- ► Input: Two images from a calibrated camera pair
 - \Rightarrow Epipolar lines correspond to image rows
- **Taks**: For each pixel in the left image find the corresponding pixel in the right image

 Minimize total energy consisting of data term and smoothness term

$$\min_{x \in \mathcal{L}} E(x) := \underbrace{\sum_{i \in \mathcal{V}} f_i(x_i)}_{\text{Data term}} + \underbrace{\sum_{i \sim j \in \mathcal{E}} f_{ij}(x_i, x_j)}_{\text{Smoothness term}}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のんの

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- ▶ Recall the Self-Supervised Learning Circle
- ► Transform the general circle to stereo

- ▶ Recall the Self-Supervised Learning Circle
- Transform the general circle to stereo

- ▶ Recall the Self-Supervised Learning Circle
- Transform the general circle to stereo

- ▶ Recall the Self-Supervised Learning Circle
- ► Transform the general circle to stereo

- ▶ Recall the Self-Supervised Learning Circle
- ► Transform the general circle to stereo

- ▶ Recall the Self-Supervised Learning Circle
- Transform the general circle to stereo

▶ Note: The process can be repeated

- ► Use CNN-CRF pre-trained on Middlebury
- Predict on Vaihingen dataset
- Note: We expect some outliers due to a completely different domain

 ${\sf Left}/{\sf right\ input}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Unfiltered CNN-CRF Prediction

- Perform (conservative) left-right consistency check
- ► A pixel x survives the left-right consistency check if

 $|d_l(x) + d_r(x + d_l(x))| < \epsilon$

Occluded pixels and wrong matches are filtered out

Unfiltered

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つく()

Filtered

- Perform (conservative) left-right consistency check
- ► A pixel x survives the left-right consistency check if

 $|d_l(x) + d_r(x + d_l(x))| < \epsilon$

Unfiltered

Mask

- Train unary term of CNN-CRF model
- Use the filtered disparity maps as ground-truth
- Maximum-likelihood training

$$\min_{\theta} L(f(\theta), f^*) := -\sum_{i \in \Omega} \log f_{i,d^*}(\theta)$$

- Adam Optimizer
 - ► Learn-rate is 10⁻⁴
 - ► 100 epochs
- Two rounds of self-learning

- ISPRS Vaihingen dataset
 - \blacktriangleright 20 aerial images with resolution 7680 \times 13824
 - 250 million reconstructed points
 - 3D laser data is reference data
- Compare the predicted height with the laser height

Mapped laser reference data

Predicted height

イロト 不得 とくほと くほとう

3

Recall: Percentage of points reconstructed with our approach relative to the points reconstructed by the laser

$$\mathsf{Rec} = rac{|\mathcal{P}_L \cap \mathcal{P}_S|}{|\mathcal{P}_L|}$$

 \Rightarrow can be interpreted as completeness ratio

Recall: Percentage of points reconstructed with our approach relative to the points reconstructed by the laser

$$\mathsf{Rec} = rac{|\mathcal{P}_L \cap \mathcal{P}_S|}{|\mathcal{P}_L|}$$

 \Rightarrow can be interpreted as completeness ratio

• Accuracy: Percentage of points within a defined 3D distance d between P_S and P_L

$$\begin{aligned} \mathsf{Acc}_d(\mathcal{P}_L, \mathcal{P}_S) &= \quad \frac{\sum_{i=1}^{|\mathcal{P}_L \cap \mathcal{P}_S|} \delta_d(\mathcal{P}_L(i), \mathcal{P}_S(i))}{|\mathcal{P}_L \cap \mathcal{P}_S|} \\ \delta_d(x, y) &= \quad \begin{cases} 1 & \text{if } \operatorname{dist}(x, y) \leq d \\ 0 & \text{else} \end{cases} \end{aligned}$$

Model	Recall [%]	Accuracy [%]		
		0.3m	0.5m	1m
SGM	76.0	52.5	69.8	86.7
Pt-Net	87.7	62.9	76.4	87.1
Training 1	92.1	65.2	78.6	88.9
Training 2	92.4	64.5	78.7	89.3

- ▶ One disparity corresponds to a 3D distance of 0.55 to 0.72 meters
- Each training iteration increases recall and overall accuracy
- Increase in recall of 16.4 percent points
- ▶ Increase of accuracy between 2.6 and 12.7 percent points
- ▶ Note: The 3D laser reference data contains a small amount of outliers

Conclusion

- Practical approach bridging the gap between learning based approaches and classical energy based models
- Self-supervised learning
 - ▶ enables deep learning for stereo without labeled ground truth

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- improves accuracy
- leads to significantly denser reconstructions

Conclusion

- Practical approach bridging the gap between learning based approaches and classical energy based models
- Self-supervised learning
 - enables deep learning for stereo without labeled ground truth
 - improves accuracy
 - leads to significantly denser reconstructions

Thank you for your attention!

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()