

Learned Collaborative Stereo Refinement

Patrick Knöbelreiter and Thomas Pock

Institute for Computer Graphics and Vision Graz University of Technology

October 8th, 2019

Stereo

- Input: Two images from a calibrated camera pair
- **Task:** For each pixel in the left image find the corresponding pixel in the right image

Left/Right Input [Middlebury 2014]

Disparity Map

P. Knöbelreiter and T. Pock

Stereo

- Input: Two images from a calibrated camera pair
- **Task:** For each pixel in the left image find the corresponding pixel in the right image

Left/Right Input [Middlebury 2014]

Disparity Map

P. Knöbelreiter and T. Pock

Stereo Pipeline [Scharstein and Szeliski]

Reference Image [Middlebury]

P. Knöbelreiter and T. Pock

Stereo Pipeline [Scharstein and Szeliski]

Reference Image [Middlebury]

CNN-CRF [CVPR'17]

P. Knöbelreiter and T. Pock

Stereo Pipeline [Scharstein and Szeliski]

Reference Image [Middlebury]

CNN-CRF [CVPR'17]

Refined Result (ours)

P. Knöbelreiter and T. Pock

Disparity Refinement

Reference Image

CNN-CRF Result

Refined Result (ours)

P. Knöbelreiter and T. Pock

Learned Collaborative Stereo Refinement

Disparity Refinement

- Reduce discretization artifacts
- Handle slanted surfaces correctly
- Get sub-pixel accuracy

Reference Image

CNN-CRF Result

Refined Result (ours)

P. Knöbelreiter and T. Pock

Learned Collaborative Stereo Refinement

Disparity Refinement

- Reduce discretization artifacts
- Handle slanted surfaces correctly
- Get sub-pixel accuracy
- Reduce artifacts in occlusions

Reference Image

CNN-CRF Result

Refined Result (ours)

P. Knöbelreiter and T. Pock

Learned Collaborative Stereo Refinement

Disparity Refinement

- Reduce discretization artifacts
- Handle slanted surfaces correctly
- Get sub-pixel accuracy
- Reduce artifacts in occlusions

Reference Image

Refined Result (ours)

P. Knöbelreiter and T. Pock

Learned Collaborative Stereo Refinement

3 / 16

How can we do this?

Related Work - Stereo Refinement

Optimization based

- Variational Methods
- ► Total Variation (TV) [Ranftl *et al.*, Kuschk *et al.*]
- Higher order variant of TV [Ranftl et al.]
- Learned Reaction Diffusion [Chen et al.]
- The Fast Bilateral Solver [Barron and Poole]

Related Work - Stereo Refinement

Optimization based

- Variational Methods
- ► Total Variation (TV) [Ranftl *et al.*, Kuschk *et al.*]
- Higher order variant of TV [Ranftl et al.]
- ► Learned Reaction Diffusion [Chen et al.]
- The Fast Bilateral Solver [Barron and Poole]

Learning based

- Cascade Residual Learning [Pang et al.]
 Apply the same network twice
- StereoNet [Khamis et al.] Disparity refinement with residual blocks
- Learning for disparity estimation through feature consistency [Liang *et al.*]
- Detect, Replace, Refine [Gidaris and Komodakis]

Related Work - Stereo Refinement

Optimization based

- Variational Methods
- ► Total Variation (TV) [Ranftl *et al.*, Kuschk *et al.*]
- Higher order variant of TV [Ranftl et al.]
- ► Learned Reaction Diffusion [Chen et al.]
- The Fast Bilateral Solver [Barron and Poole]

Learning based

- Cascade Residual Learning [Pang et al.]
 Apply the same network twice
- StereoNet [Khamis et al.] Disparity refinement with residual blocks
- Learning for disparity estimation through feature consistency [Liang *et al.*]
- Detect, Replace, Refine [Gidaris and Komodakis]

Combine the structure of optimization and the power of deep learning

P. Knöbelreiter and T. Pock

Model Overview

P. Knöbelreiter and T. Pock

Collaborative Stereo Refinement

Optimization Problem

$$\min_{\mathbf{u}} \underbrace{\mathcal{R}(\mathbf{u})}_{Regularizer} + \underbrace{\mathcal{D}(\mathbf{u})}_{Data Term}, \quad \mathbf{u} = (\mathbf{u}^{rgb}, u^d, u^c) : \Omega \to \mathbb{R}^5, \quad \Omega \subset \mathbb{N}^2_+$$

Regularizer

▶ Variant of Field of Experts (FoE) [Roth *et al.*]

$$\mathcal{R}(\mathbf{u};\theta) = \sum_{l=1}^{L} \sum_{k=1}^{K} \sum_{x \in \Omega} \phi_{k}^{l} \left(\left(K_{k}^{l} A^{l} \mathbf{u} \right)(x) \right)$$

Data Term

$$\mathcal{D}(\mathbf{u};\theta) = \frac{\lambda}{2} \|\mathbf{u}^{rgb} - \mathbf{f}^0\|^2 + \mu \|u^c - c\|_1 + \nu \|u^d - \check{d}\|_{u^c,1}$$

P. Knöbelreiter and T. Pock

Collaborative Stereo Refinement

Variational Network

 Unrolling the iterates of the Proximal Gradient Method yields the Variational Network:

$$\mathbf{u}_{t+1} = \operatorname{prox}_{\alpha_t \mathcal{D}(\cdot, \theta_t)} (\mathbf{u}_t - \alpha_t \nabla \mathcal{R}(\mathbf{u}_t, \theta_t)),$$

with

$$0 \le t \le T - 1$$

 $(I) \xrightarrow{Residual Connection} (K_0) \xrightarrow{P_0} (K_0^T) \xrightarrow{F_1} (K_0^T) \xrightarrow$

and

$$\nabla \mathcal{R}(\mathbf{u}) = \sum_{l=1}^{L} \sum_{k=1}^{K} (K_k^l A^l)^T \rho_k^l (K_k^l A^l \mathbf{u})$$

P. Knöbelreiter and T. Pock

Learned Collaborative Stereo Refinement

Learning

Datasets

- Middlebury 2014: Indoor, high-resolution, dense ground-truth
- Kitti 2015: Outdoor, sparse ground-truth

Training

Truncated Huber loss

$$\min_{\theta \in \Theta} \sum_{s=1}^{S} \sum_{i=1}^{MN} \min\left(|u_{s,T}^{d}(x,\theta) - d_{s}^{*}(x)|_{\delta}, \tau \right)$$

$$|r|_{\delta} = egin{cases} rac{r^2}{2\delta} & ext{if } |r| \leq \delta \ |r| - rac{\delta}{2} & ext{else} \end{cases}$$

 \blacktriangleright Adam optimizer with learning rate 10^{-3}

[Kitti 2015]

[Middlebury 2014]

P. Knöbelreiter and T. Pock

Learned Collaborative Stereo Refinement

Ablation Study

- ▶ Refine the winner-takes-all (WTA) result of a UNet [Long et al.]
- \blacktriangleright VN_4^{7,5} is a variational refinement network with 7 steps, 4 levels and 5 \times 5 filters
- bad3 = percentage of pixels with an error \leq 3px

M	odel	WTA	FBF	$ VN_4^{7,5}$	$VN_4^{7,5}$	$VN_4^{7,5}$	$VN_4^{7,5}$	$VN_4^{7,5}$	$VN_4^{7,5} \ VN_3^{5,7}$	$VN_{2}^{8,7}$	$VN_4^{14,3}$	$VN_{5}^{11,3}$
C II OC JC	onf ng cclp pint		\checkmark \checkmark	√	\checkmark	√ √	\checkmark	\checkmark \checkmark	$ \begin{array}{c c} \checkmark & \checkmark \\ \checkmark \\$	\checkmark	$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array}$	√ √ √
bad3]	occ noc	8.24 6.78	7.48 6.08	5.42 4.68	5.12 3.98	4.43 3.90	3.77 3.07	3.46 2.72	3.373.432.552.58	3.62 2.97	4.37 3.71	4.25 3.49

Table: Ablation Study on the Kitti 2015 dataset

P. Knöbelreiter and T. Pock

Kitti 2015 Example

Confidence

Disparity

Kitti 2015 Example

Experiments - Qualitative Results

Middlebury

Disparity

Confidence

Color

P. Knöbelreiter and T. Pock

Learned Collaborative Stereo Refinement

Public Benchmarks

	Mathad	Kitti 2015			Middlebury 2014							
	Method	noc	all	ØR	bad0.5	bad1	bad2	bad4	avg	rms	time	ØR
Training Set	PSMNet [Chang et al.] PDS [Tulyakov et al.]		1.83 -	- -	90.0 54.2	78.1 26.1	58.5 11.4	32.2 5.10	9.60 1.98	21.7 9.10	2.62 10	44 8
	MC-CNN [Zbontar and LeCun] CNN-CRF [Knöbelreiter <i>et al.</i>]		- 4.04	- -	42.1 56.1	20.5 25.1	11.7 10.8	7.94 6.12	3.87 2.30	16.5 9.89	1.26 3.53	9 10
	CNN-CRF + VN (ours)	1.90	2.04	-	41.8	17.1	7.05	2.96	1.21	5.80	4.06	2
Test Set	PSMNet [Chang et al.] PDS [Tulyakov et al.]	2.14 2.36	2.32 2.58	17 19	81.1 58.9	63.9 21.1	42.1 14.2	23.5 6.98	6.68 3.27	19.4 15.7	2.62 10.3	33 9
	MC-CNN [Zbontar and LeCun] CNN-CRF [Knöbelreiter <i>et al.</i>]	3.33 4.84	3.89 5.50	32 36	41.3 60.9	18.0 31.9	9.47 12.5	6.7 6.61	4.37 3.02	22.4 14.4	1.26 3.53	6 8
	CNN-CRF + VN (ours)	4.45	4.85	33	56.2	30.0	14.2	7.71	2.49	10.8	4.06	6

P. Knöbelreiter and T. Pock

Visualization of the Refinement Process

Init

Example from the Middlebury dataset

P. Knöbelreiter and T. Pock

Learned Collaborative Stereo Refinement

Visualization of the Refinement Process

Example from the Middlebury dataset

P. Knöbelreiter and T. Pock

Learned Collaborative Stereo Refinement

Visualization of the Refinement Process

Example from the Middlebury dataset

P. Knöbelreiter and T. Pock

Example from the Middlebury dataset

P. Knöbelreiter and T. Pock

Visualization of the Refinement Process

Example from the Middlebury dataset

P. Knöbelreiter and T. Pock

Learned Collaborative Stereo Refinement

Visualization of the Refinement Process

Example from the Middlebury dataset

P. Knöbelreiter and T. Pock

Learned Collaborative Stereo Refinement

Visualization of the Refinement Process

Example from the Middlebury dataset

P. Knöbelreiter and T. Pock

Visualization of the Refinement Process

Example from the Middlebury dataset

P. Knöbelreiter and T. Pock

Learned Collaborative Stereo Refinement

Visualizing the Model

- Learned filters contain structure
- Activation functions converge to smooth functions
- Both are thus easily interpretable

(b) Activation/Potential Function

(a) Filters

P. Knöbelreiter and T. Pock

Conclusion

- Stereo refinement module
 - exploiting color, confidence and disparity map
 - operating on multiple spatial resolutions
 - that arises naturally from the iterates of a PGM
- Interpretable steps, filters and activation functions
- Can be used on top of existing stereo methods
- ▶ Good and bad is often a question of the used metric

Conclusion

- Stereo refinement module
 - exploiting color, confidence and disparity map
 - operating on multiple spatial resolutions
 - that arises naturally from the iterates of a PGM
- Interpretable steps, filters and activation functions
- Can be used on top of existing stereo methods
- ▶ Good and bad is often a question of the used metric

Thank you for your attention!

Experiments - Benchmark Results

CNN-CRF

P. Knöbelreiter and T. Pock

Learned Collaborative Stereo Refinement

Experiments - Benchmark Results

CNN-CRF

P. Knöbelreiter and T. Pock