
Fusing Online and Offline Information for Stable 3D Tracking in Real-Time�

Luca Vacchetti Vincent Lepetit Pascal Fua
Computer Vision Laboratory

Swiss Federal Institute of Technology (EPFL)
1015 Lausanne, Switzerland

Email: �Luca.Vacchetti, Vincent.Lepetit, Pascal.Fua�@epfl.ch

Abstract

We propose an efficient online real-time solution for single-
camera 3–D tracking of rigid objects that can handle large
camera displacements, drastic aspect changes, and partial
occlusions. While the offline camera registration problem
can be considered as essentially solved, robust online track-
ing remains an open issue because many real-time algo-
rithms described in the literature still lack robustness and
are prone to drift and jitter.

To solve these problems, we have developed a robust
approach to 3–D feature matching that can handle wide-
baseline matching: our method merges the information
from preceding frames in traditional recursive tracking
fashion with that provided by a very limited number of
keyframes created during an offline stage. This combina-
tion results in a system that does not suffer from the above
difficulties and can deal with drastic aspect changes. We
use Augmented Reality applications to demonstrate its be-
havior because they are particularly demanding in terms of
tracking performance.

1. Introduction
In this paper we propose an efficient online real-time solu-
tion for single-camera 3–D tracking that can handle large
camera displacements, extreme aspect changes and partial
occlusions. While the offline camera registration problem
can be considered as essentially solved, robust online track-
ing remains an open issue. Many of the real-time algorithms
described in the literature still lack robustness, tend to drift,
can lose a partially occluded target object, and are prone
to jitter that makes them unsuitable for applications such
as Augmented Reality. To compute the motion in a given
frame, we use a robust approach to 3–D feature match-
ing that can handle wide-baseline matching. Our method
merges the information from preceding frames in traditional
recursive tracking fashion with that provided by a very lim-
ited number of keyframes. This combination results in a

�This work was supported in part by the Swiss Federal Office for Edu-
cation and Science.

system that does not suffer from any the above difficulties
and can deal with complex aspect changes such as those
shown in Figure 1: We believe this result to be beyond the
current state-of-the-art.

Traditional frame-to-frame recursive approaches to
matching and those that rely on keyframes both have their
strengths and weaknesses. Keyframe-based techniques pre-
vent drift, but cannot provide good precision for every frame
without using a very large set of keyframes. Furthermore,
they typically introduce jitter. Techniques based on chained
transformations eliminate jitter but tend to drift and are sub-
ject to losing track altogether. To combine the strengths of
these approaches, we have therefore developed a robust 3–D
feature-matching technique that uses both preceding frames
and keyframes that may have been seen from relatively dif-
ferent viewpoints.

Our tracker starts with a small user-supplied set of
keyframes. The system then chooses the most appropriate
one using an aspect-based method and, if necessary, can au-
tomatically introduce new keyframes as it runs. It relies on
a 3–D model of the target object or objects, which, in prac-
tice, is not an issue since such models are also necessary for
many of the actual applications that require 3–D tracking.
Furthermore, they can be created using either automated
techniques or commercially available products. Unlike pre-
vious techniques that limit the range of object shapes that
can be handled, we impose no such constraint and put no
restriction on the object’s complexity.

We use Augmented Reality applications such as the one
depicted by Figure 1 to highlight the quality of our results
because they are particularly demanding in terms of track-
ing performance. In the remainder of the paper, we first
discuss related 3–D tracking work. We then introduce our
approach to 3–D feature tracking and to using keyframes.
Finally, we present our detailed results.

2. Related Work
While the real-time tracking is not yet a solved problem, our
understanding for offline camera registration from an image
sequence [1, 2, 3] has progressed to the point where com-

Figure 1: Tracking for augmented reality purposes. First and third rows: Video sequences with overlaid 3–D models whose
pose has been computed online using our method. Second and fourth rows: The 3–D models have been used to augment the
video sequences by adding glasses and a moustache to the subject and by adding a lever, slot-machine wheels and a jackpot
light to the old projector, thus turning it into a slot-machine.

mercial solutions are now available. By matching natural
features such as interest points between images these algo-
rithms obtain high accuracy even without a priori knowl-
edge. For example in [2] the authors consider the image
sequence hierarchically to derive robust correspondences
and to distribute error over the sequence. Speed not be-
ing a critical issue, these algorithms take advantage of time-
consuming but effective techniques such as bundle adjust-
ment.

Many other methods perform the same task for real-time
applications but tend to be less reliable since they can not
rely on batch computations. Those that work without a
priori knowledge are not really practical: for example [4]
assumes that no correspondences errors occur, and [5] as-
sumes that the camera center is moving to check if the cor-
respondences respect the epipolar constraint. Some popu-
lar methods[6] require fiducials for an accurate registration.
Model-based approaches such as [7], [8] are reliable and try
to compute a 3D pose that correctly re-projects the features
of a given 3D model into the 2D image. These features can
be edges, line segments, or points. To find the best fit, they

use least-squares minimization to find a local minimum in
an error function. Unfortunately the optimization procedure
may fall into wrong local minima in some particular cases.
This kind of approach can track an object with acceptable
accuracy, but its behaviour is unpredictable, in particular in
the presence of aspect changes or even when two edges of
the same object become very close to each other. Various
methods derive the camera position by concatenating trans-
formations between adjacent frames: for example [9] tracks
features in the case there is a plane in the scene, making use
of robust pose detection. [10] tracks natural features with no
model, considering as outliers all the regions and points that
do not have the same planar rigid motion. These methods
give good results over short sequences, the tracking is accu-
rate and there is no jitter because the points and/or regions
matching is done with respect to very close frames. Unfor-
tunately, for long sequences these methods suffer from the
error accumulation problem; they cannot deal with severe
aspect changes. Other methods [11] and [12] take into ac-
count reference frames. The first one uses a very limited
number of points for template matching and keeps track of

2

disappearing and appearing points. The second method uses
two reference keyframes for tracking the whole sequence.
In fact [11] states that the results need to be smoothed by
means of Kalman filtering. [12] also uses a Kalman filter
for jittering correction. They propose a solution for only
two offline keyframes but they do not tell how to extend
their method to many keyframes.

To compare these different approaches, we conducted
the following experiment. We used our feature matching
approach to track the projector in the sequence of Figure 1
three different times:

1. using only offline keyframe,
2. using only chained transformations,
3. combining both using our proposed method.

Figure 2 depicts the evolution of one of the camera center
coordinates with respect to the frame index and we have
verified that the behavior for all other camera parameters
is similar. In all three graphs, we superpose the output of
the tracker using one of the three methods mentioned above
with ”ground truth” obtained by manually calibrating the
camera every 5 frames.

The sequence made by using keyframes only of Fig. 2(a)
exhibits jitter while the recursive one of Fig. 2(b) is quickly
corrupted by error accumulation. The method presented in
this paper Fig. 2(c) keeps closer to the ground truth and
avoid drift.

3. Simple Recursive Tracking
In this section, we outline our approach to tracking the
camera-object displacement frame by frame. We assume
the algorithm is applied to a pair of arbitrary frames but we
do not yet make any assumption on how these frames are
chosen. This is the general form of 3D object tracking by
means of natural features and is summarized below.

3.1. Initialization
We use a calibration grid to compute intrinsic parameters
offline. The algorithm starts when the user moves the cam-
era or the object close to a known position that may be
shown on the screen. This does not need to be done pre-
cisely, an approximate position is sufficient. The matching
algorithm receives as input the incoming image and a “boot-
strap” reference frame; if the frames are close enough, the
point matching number increases above a given threshold
and the tracking starts.

3.2. Robust Pose Estimation Through Point
Matching

First, we detect the strongest interest points in the current
source image using the Harris corner detector [13]. Let the

interest points detected at the time � be:

�� � ���
� ����

�
� ��

Given a previous frame, let ���� be the set of 2D points
that we detected in it and���� be the 3D position. Assum-
ing that ���� � is known in the previous frame, but new parts
of the object may have appeared, we want to take into ac-
count the new 2D interest points. So we back-project them
in order to find their 3D coordinates ����, keeping only
the interest points that are on the object surface and dis-
carding all the others. To do so, we first use a “Facet-ID”
image to detect on which face of the 3D model each 2D
point lies. That image is generated by encoding the index �
of each facet �� as a unique color, and projecting the whole
model into the image plane, using a standard OpenGL ren-
dering. Once the facet-ID is known we can use the efficient
algorithm presented in [14] to find the intersection with the
found facet and the line passing through the camera centre
of projection and the 2D point in the image plane. Being
the 3D position ���� in that frame known:

���� � ���
�������

�
����

���� � ���
�������

�
����	

such that:
��
��� �
������������

�
����

where ���� and ���� and ����, the camera rotation and
translation estimated for the previous frame, are expressed
in the object coordinate system.
 is the internal parameters
matrix. We are looking for the �� and �� matrices for the
current frame. We match the 2D points between � ��� and
��, choosing for each point in the set ���� the one in the
set �� that maximizes a correlation measure that is insensi-
tive to illumination changes [15]. As a result, some of the
current image points �� are matched to the previous image
points ����:

��
� � ��

����

Since � �
��� must re-project on ��

� we should have:

��������
�
��� � ��

� �

Therefore also the 3D points belonging to � �
� can be asso-

ciated to the 3D points of � �
���, giving in this way the 3D

coordinates of the unknown points:

� �
� � � �

����

The 3D points are the same for both the images if the 2D
points have been correctly matched. Once all the 2D-3D
correspondences are done, we have enough information to
compute the camera position in the object reference system.
This is done using the algorithm proposed in [16] and the
robust estimator RANSAC to discard outlier matches [15].

3

a.

 1260

 1280

 1300

 1320

 1340

 1360

 90 100 110 120 130 140 150

Ground truth
Keyframes only

b.

 1260

 1280

 1300

 1320

 1340

 1360

 90 100 110 120 130 140 150

Ground truth
Recursive method

c.

 1260

 1280

 1300

 1320

 1340

 1360

 90 100 110 120 130 140 150

Ground truth
Our method

Figure 2: Plots showing a sequence tracked using three different methods. The dots represent the ground truth. The first
plot shows the low precision and jittering resulting from using only offline keyframes, the second one highlights the error
accumulation of the recursive method. The third plot corresponds to our method.

2
2

2

3

3

2

Scene

o

1

1

3

Konline

online

online

K2

K1

K4

4
4

4

1

K3

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Scene

C
K1

K2

Figure 3: Online and Offline Keyframes. a) Tracked cam-
era displacement with four offline keyframes and one online
keyframe. The dotted arrows represent the camera displace-
ment from one frame to the next, and the number shows
which keyframe is being used. K1 to K4 are the camera
positions of the offline keyframes. When the current cam-
era position gets too far from any known offline keyframe,
a new online keyframe denoted Konline is generated. b)
Choosing the best keyframe between �� and ��. � is the
previous camera position.

4. Keyframe Based Tracking

In short, the simple method presented in the previous part
works with very good precision without jittering. However,
the simple recursive approach is too weak from the point
of view of error accumulation, and it is not suitable for a
real-time environment. Thus, one must improve the method
with some additional information. This can be done using
some a priori knowledge, supplied by the keyframes. The
following section explains how to use the keyframes in or-
der to track any sequence with no drift and no limits on the
camera position.

In this section, we explain how to build the keyframe of-
fline set, how to track by matching the reference keyframes,
and which criterion we use to choose the best keyframe for
the match. During the training stage the user creates offline
keyframes, and in the tracking stage the previous informa-
tion is used to track. During the tracking the camera may

move too far away from any known keyframe: In that case
a new “online” keyframe is added to the others and it will
be re-used when the camera position again passes close to
it.

4.1 Creating Keyframes

During the offline stage, the user is asked to choose a set of
images representing the scene from many different points
of view or, at least, the positions that the camera will prob-
ably reach. Usually it is enough to take few pictures all
around the object. While tracking the sequences presented
in this paper we only used 14 keyframes because our object
is rather big and we can only walk around it; for the head
we used only one keyframe. Afterwards the user is asked
to accurately calculate the ���� � for every key frame he
choosed. There are many methods to calculate the ���� �. In
our early test stage we were using a simple Posit implemen-
tation: it is enough to get the 2D position of 3 known points
in every image to calculate the object pose. The user can
even make use of commercial post-production tools, such
as the ones of RealViz���� or 2D3����. The commercial
products can retrieve the object position over the whole se-
quence with good accuracy, since they work offline. When
���� � is known for every keyframe, the user has completed
the offline stage. Then the system performs interest point
detection and back-projects the points that lie on the object
surface. In short, building a keyframe means collecting the
following data for each frame: The deinterlaced bitmap im-
age of the scene, the two sets� and� of 2D and 3D points,
the corresponding surface normals �, which will be used for
wide baseline matching, � and � , and some additional in-
formation for the visibility criterion.

4.2. Visibility Criterion for Keyframe Choice
The first step is to choose the best keyframe. This choice is a
critical task on which the quality of the matching depends.
The keyframe’s aspect must be as close as possible to the

4

current frame. As shown in Figure 3b, simply evaluating the
camera position is not enough. The point C represents the
current camera position, and K1 and K2 are two keyframes.
Just taking the keyframe that minimizes the euclidian dis-
tance means that the closest keyframe is K1. However its
aspect is not as close as K2, which is further away but has a
closer line of sight. To correct this problem, we should eval-
uate the angle between the two lines of sight. However, this
is still not a complete method, because it does not take into
account object non convexities and self occlusions. Instead,
we use an appearance-based method. We use the following
criteria:
�

�����	
�

�Area��	
� ��� ��� ��� Area��	
 �� �� ���� 	

where Area��	 � � is the 2D area of the facet � after projec-
tion by � . We reuse the method we introduced in Subsec-
tion 3.2 for an accelerated OpenGL rendering of the object
model. Every facet is rendered in a different color, repre-
senting the facet index, using the camera R and T estimated
for the previous frame. We histogram this image and com-
pare the result to the keyframe histograms, which have been
created offline during the learning stage. We get the contri-
bution of the area of every single facet in the model as it
is reprojected in the 2D image. Every histogram bar rep-
resents the number of occurrences of every facet’s pixels.
This method has constant complexity, and requires only a
single read of the image. In Figure 5 we show the rendered
images and the correspondent histograms respectively for
C, K2 and K1, the camera positions given in Figure 3.b.

4.3 Wide Baseline Matching

This section presents our method to handle the perspec-
tive distortion on the correlation window. Conventional
methods make use of a square bi-dimensional correlation
window. This technique gives good points matching un-
der the assumption of very small perspective distortion be-
tween two frames. However, to effectively use keyframes,
the ability to match distant frames becomes essential. Con-
sequently we specify a point matching algorithm between
a square 2D window in the current frame and a perspec-
tive distorted window in the keyframe image, that we call
the “re-rendered” image. We skew the 30�30 pixel patches
around each interest point from the keyframe image in or-
der to bring them to a position close to the current one. Each
patch in the keyframe is related to the corresponding image
points in the “re-rendered image” by a planar homography.
Given the patch corresponding plane � having coordinates
� � ��� 	 ��� so that for points on the plane ��� 	 � �
,
the general expression for the homography induced by the
plane is (according to [15]):

� �
��� � ���� ���
��

Figure 4: From the left: The keyframe, the current frame,
the re-rendered key frame with respect to the previous cam-
era position estimate.

for two views defined by their projection matrices � �

�� �
� and � � �
������. The homography equation for
the general case can easily be obtained by changing the ref-
erence system. We get:

� �
�Æ�� Æ����
�
����
�

��

with

Æ� � ���
�
 � Æ� � ����

�
� 	 �� �

�� � ��� �
� � �� ��� �����

where
 �� �� � and
� ��� ��� � are the projection ma-
trices of the key frame and the previous frame.

The resulting image is a re-rendering of the interest
points’ neighbourhood in a more convenient position as
shown in Figure 4. This method allows us to effectively
match views even where there is as much as 60 degrees of
rotation. An alternative solution to the homography would
have been to re-render a 3D representation of the object us-
ing an OpenGL textured 3D object, but we choose the other
way to have a more precise result around the points.

4.4. Combining Online and Offline Informa-
tion for Jittering Correction

There is a trade-off between accurate tracking with no
jittering and a robust tracking with no drift. Tracking
with respect to previous frames offers better precision than
keyframes but involves error accumulation. Tracking with
the keyframes is less precise because usually fewer points
are matched, giving a poor precision as we have seen. This
is due to the distance between the two frames we are trying
to match.

In our approach we therefore attempt to combine the
strengths of both the online and offline information as fol-
lows: first, we match the current frame with the chosen
keyframe and apply RANSAC to the set of points we found,
discarding the outliers and retaining a set of points �

free from error accumulation. Then, we perform a modi-
fied RANSAC estimation over the matches between the cur-
rent frame with the previous one: if an ��	 � � sample tested
by the RANSAC estimator rejects some points in � , this
sample is not considered by this second stage. This way,

5

this stage estimates the values ��	 � � using all the points in
� , which provide reliable but partial information, and the
matches between the previous and the current frames that
provide additional information.

As we will show in the results section, this technique
eliminates jitter without requiring predictive techniques
such as Kalman filtering that are not particularly suitable
for Augmented Reality.

4.5 Offline and Online Keyframes

Assuming we already have a consistent set of keyframes,
we show in this subsection how to employ them to track a
sequence. As shown in Figure 3a, while the camera moves
around the scene, the system switches from one keyframe
to the other, always choosing the one that is is closest to the
images currently being seen. When the current camera po-
sition gets too far from any known offline keyframe, a new
online keyframe denoted Konline is generated. It will be
added to the keyframe set and treated like the other ones.
The criterion we use for deciding to generate an online
keyframe is a test on the matched point number and the ro-
bust pose discarded points number. As it is always based on
previous frames, this method might potentially suffer from
the same drift problem as the recursive method. However,
the drift is not a problem in this case. We accumulate error
only when we create an online keyframe, since we calculate
a new 3D position based on the ���� � that we computed
and not from the real one. However, this error accumulation
does not occur at every frame because the newly generated
keyframe can be reused for tracking many frames. For ex-
ample, in our sequences an online keyframe can be used for
tracking 40 or 50 consecutive frames. Moreover, after some
time the camera will again pass close to a known position,
re-using the keyframes that have been generated online. An
interesting characteristic of this method is that when some
error has been accumulated over a part of the sequence, it
will be reset to zero when an offline frame is used. The on-
line frames can be considered as a kind of “second chance”
method used to recover when there are no offline keyframes,
and it has only to guarantee no complete divergence before
the camera gets close to an offline frame.

5. Experiments and Results
The non optimized version of the tracker runs at near real-
time, at about 4 frames per second using a conventional ma-
chine for 720�568 images and about 15 frames per second
for 320�200 images. Since, for many critical geometric
computations, we used general methods based on openGL
rendering, our method can work with difficult objects at the
same speed as simple ones. The speed depends only on the
number of interest points lying on the object, which can be

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Figure 5: Different aspects for the camera positions C, K2
and K1 in Figure 3.c, and their respective histograms.

Figure 6: Some keyframes for the projector sequences.

decreased or increased simply by changing the corner de-
tection threshold. The tracked object can assume any po-
sition with respect to the camera. For instance, there is no
problem if the camera is inside the object to be tracked, and
we can handle compound objects, or self-occluding parts of
the scene, as long as they do not move with respect to each
other. We set up a variety of demonstrations, to show that
this method can be used for many different categories of
objects. In the example depicted by Figure 1d, the camera
is moving around an old video projector doing a complex
movement with 180 degree rotations. In a second video se-
quence the scene is partially occluded by a human operator,
in order to roughly simulate the behaviour of a camera on
a Head Mounted Display (see figure 8). Not all the videos
are attached to the paper, for example a 360 degree cam-
era displacement around the projector is omitted (see Fig-
ure 9). We use the same 14 offline keyframes for all the
sequences. Some of them are shown in Figure 6. Compared
to some of the online sequences, they have different light
conditions and the camera was farther from the projector. In
the MPEG video corresponding to the Figure 1d for every
frame are shown the current keyframe used for tracking and
its re-rendering (in the top right corner). Some keyframes
are online and some are offline. The model was created by a
designer using Maya, and it took 4 hours of work. There is
a small mistake in the model: the position of one of the two
cylinders on the front face is not very accurate, however it
does not corrupt the result, though some points are refused
by the robust pose estimation.

In the second example depicted by Figure 1, we track a

6

1

Copt

a

aScene

0P P

�
�
�

�
�
�

Scene

0 PP

Copt
�
�
�

�
�
�

1

Figure 7: The reprojection error when a face of the model is
almost parallel to the line of sight (left) and in the opposite
case.

head that is rotating completely. The model has been recon-
structed offline from another short video sequence. Even
though we only have the face model and not the whole head,
have been able to track 180 degree rotations . We ran our
tracker on this sequence giving only one offline key frame.
Figure 1 shows some frames with the face model super-
posed, and the last ones do not show the model but some
virtual objects have been added. Since the occlusions are
evaluated by means of the same face model (missing ears
and the back of the head), not all the occlusions are per-
fect. We believe that the head can be tracked by means of
much less accurate models, as in [17], however our inten-
tion is to demonstrate that we can deal with complex ob-
jects. All the video sequences are available at the address:
http://cvlab.epfl.ch/�vacchetti/research.html

6. Discussion
In this section we discuss the problems arising when the
tracked objects go through aspect changes and we illustrate
how we correct the drift. If there are only partial aspect
changes, and the points are regularly distributed over the
tracked object, the errors may not be accumulated quickly,
and may even cancel each other when moving in opposite
directions. In this way long sequences of over one thousand
frames may be successfully tracked without encountering
much drift. In Figure 7 we analyze a camera rotating around
the scene. We evaluate a small error in the pixel space, e.g.
say that the point �� is assumed to be in the position �� in
the left part of the image. If these pixels represent a face
that is almost parallel to the line of sight, the error � in the
3D position of the point is very large. If the object does not
change its aspect, we are still in a safe state, but if the cam-
era turns and the side is facing the camera (Figure 7b), the
re-projection of 3D position error will be much bigger than
its previous reprojection. If at this point we do ray casting

— for adding new incoming points to our set — many back-
ground points are considered as lying on the object and the
tracking will be corrupted, since the robust pose is fooled by
this wrong information. Our experiments show that, with-
out drift correction, the tracking may fail after less than 180
degree rotation, that may roughly correspond to 100 frames
in our sequences, which is much faster than when there is
only simple camera displacement.

7. Conclusion
In this paper we presented a robust and jitter-free tracker
that combines natural feature matching and the use of
keyframes to handle any kind of camera displacement us-
ing real-time techniques. We use the model information to
track every aspect of the target object, and to keep following
it even when it is occluded or only partially visible, or when
the camera turns around it. A set of keyframes is created
off-line and, if there are too few of them, new keyframes
can be automatically added online. We exploit offline and
online information to prevent the typical jittering and drift
problems. The matching algorithm is designed to match
frames having very different aspects and in the presence of
rotations of up to 60 degrees. We choose the most appropri-
ate keyframe using aspect-based techniques and we exploit
hardware accelerated functions to implement many critical
parts. We can use our tracker for a large set of objects, with
no constraints on the kind of camera motion.

Our plans for future work include offline bundle adjust-
ment after the end of tracking in order to achieve perfect
registration of the online keyframes, automatically creating
new offline keyframes. Further development will be done
to incrementally extend our scene model during tracking,
exploiting the camera displacement information to retrieve
additional points following the same rigid motion of the
model. In this way every time the program runs it improves
its performance.

References

[1] C. Tomasi and T. Kanade, “Shape and Motion from Image
Streams under Orthography: A Factorization Method,” In-
ternational Journal of Computer Vision, vol. 9, no. 2, pp.
137–154, 1992.

[2] A.W. Fitzgibbon and A. Zisserman, “Automatic Camera Re-
covery for Closed or Open Image Sequences,” in European
Conference on Computer Vision, Freiburg, Germany, June
1998, pp. 311–326.

[3] M. Pollefeys, R. Koch, and L. Van Gool, “Self Calibration
and Metric Reconstruction in Spite of Varying and Unknown
Camera Parameters,” in ICCV, 1998, pp. 90–96.

[4] A. Azarbayejani and A. P. Pentland, “Recursive Estimation
of Motion, Structure and Focal Length,” IEEE Transactions

7

Figure 8: Video sequence with occlusions.

on Pattern Analysis and Machine Intelligence, vol. 17, no. 6,
pp. 562–575, 1995.

[5] P. A. Beardsley, A. Zisserman, and D. W. Murray, “Sequen-
tial update of projective and affine structure from motion,”
International Journal of Computer Vision, vol. 23, no. 3, pp.
235–259, 1997.

[6] K. N. Kutulakos and J. R. Vallino, “Calibration-free aug-
mented reality,” IEEE Transactions on Visualization and
Computer Graphics, vol. 4, no. 1, pp. 1–20, /1998.

[7] T. Drummond and R. Cipolla, “Real-time tracking of mul-
tiple articulated structures in multiple views,” in ECCV (2),
2000, pp. 20–36.

[8] E. Marchand, P. Bouthemy, F. Chaumette, and V. Moreau,
“Robust real-time Visual Tracking Using a 2D-3D Model-
Based Approach,” in International Conference on Computer
Vision, Corfu, Greece, September 1999, pp. 262–268.

[9] G. Simon, A. Fitzgibbon, and A. Zisserman, “Markerless
tracking using planar structures in the scene,” in Proc. Inter-
national Symposium on Augmented Reality, October 2000,
pp. 120–128.

[10] U. Neumann and S. You, “Natural feature tracking for aug-
mented reality,” IEEE Transactions on Multimedia, vol. 1,
no. 1, pp. 53–64, 1999.

[11] S. Ravela, B. Draper, J. Lim, and R. Weiss, “Adaptive track-
ing and model registration across distinct aspects,” in IEEE
International Conference on Intelligent Robots and Systems
(IROS), 1995, pp. 174–180.

[12] K.W. Chia, A.D. Cheok, and S.J.D. Prince, “Online 6 dof
augmented reality registration from natural features,” in
Proc. International Symposium on Mixed and Augmented
Reality, 2002.

[13] C.G. Harris and M.J. Stephens, “A combined corner and
edge detector,” in Fourth Alvey Vision Conference, Manch-
ester, 1988.

[14] T. Moeller and B. Trumbore, “Fast, minimum storage ray-
triangle intersection,” in Journal of graphics tools, 2(1):21-
28, 1997.

[15] R. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision, Cambridge University Press, 2000.

[16] D. DeMenthon and L. S. Davis, “Model-based object pose
in 25 lines of code,” in European Conference on Computer
Vision, 1992, pp. 335–343.

[17] M. Cascia, S. Sclaroff, and V. Athitsos, “Fast, reliable head
tracking under varying illumination: An approach based on
registration of texture-mapped 3d models,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 4, April 2000.

Figure 9: Video sequence in which the camera is rotating
around the object doing a 360 degree loop.

8

