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Learning Image Descriptors with Boosting
Tomasz Trzcinski, Mario Christoudias, and Vincent Lepetit

Abstract—We propose a novel and general framework to learn compact but highly discriminative floating-point and binary local
feature descriptors. By leveraging the boosting-trick we first show how to efficiently train a compact floating-point descriptor that
is very robust to illumination and viewpoint changes. We then present the main contribution of this paper — a binary extension
of the framework that demonstrates the real advantage of our approach and allows us to compress the descriptor even further.
Each bit of the resulting binary descriptor, which we call BinBoost, is computed with a boosted binary hash function, and we show
how to efficiently optimize the hash functions so that they are complementary, which is key to compactness and robustness. As
we do not put any constraints on the weak learner configuration underlying each hash function, our general framework allows
us to optimize the sampling patterns of recently proposed hand-crafted descriptors and significantly improve their performance.
Moreover, our boosting scheme can easily adapt to new applications and generalize to other types of image data, such as faces,
while providing state-of-the-art results at a fraction of the matching time and memory footprint.

Index Terms—Learning feature descriptors, binary embedding, boosting.
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1 INTRODUCTION

R EPRESENTING salient image patches in a way that is
invariant to illumination and viewpoint changes re-

mains a significant challenge in Computer Vision, as it lies
at the core of many popular applications including visual
search, 3D reconstruction and panorama stitching. To model
the non-linear nature of these unwanted transformations,
well-known local feature descriptors, such as SIFT [1] or
SURF [2], typically apply a set of hand-crafted filters and
aggregate or pool their responses within pre-defined regions
of the image patch. The extent, location and shape of these
regions defines the pooling configuration of the descriptor
and recent work shows that optimizing this configuration
can result in fairly large performance improvements [3],
[4], [5], [6]. Although significant progress has been made,
these approaches, however, are either built on top of hand-
crafted representations [3], [5] or still require significant
parameter tuning, as in [4] that relies on a non-analytical
objective that is difficult to optimize.

Learning an invariant feature representation can be seen
as finding an appropriate similarity measure which remains
invariant to unwanted image transformations. Although
several learning methods have been proposed in the liter-
ature [3], [7], [8], they have largely focused on finding a
linear feature mapping in either the original input or a ker-
nelized feature space. As a result, modeling non-linearities
requires choosing an appropriate kernel function that maps
the input features to a high-dimensional feature space where
the transformations are assumed to be linear. However,
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selecting the right kernel, which is a crucial element of the
algorithm, is often non-intuitive and generally constitutes a
complex and challenging problem.

In this paper, we propose a novel supervised learning
framework that finds low-dimensional but highly discrim-
inative descriptors. With our approach, image patch ap-
pearance is modeled using local non-linear filters that are
selected with boosting. We build upon [3] that also relies
on boosting to compute a descriptor, and show how we
can use it as a way to efficiently select features, from
which we compute a compact representation. Analogous
to the kernel-trick, our approach can be seen as applying
a boosting-trick [9] to obtain a non-linear mapping of the
input to a high-dimensional feature space. Unlike kernel
methods, boosting allows for the definition of intuitive non-
linear feature mappings that can share a close connection
with existing, prevalent keypoint descriptors. Our learning
approach is not limited to any pre-defined sampling pattern
and provides a more general framework than previous
training-based methods [4], [6], [10]. It also scales linearly
with the number of training examples, making it more
amenable to large scale problems, and results in highly
accurate descriptor matching.

Nevertheless, as image databases grow in size, modern
solutions to local feature-based image indexing and match-
ing must not only be accurate but also highly efficient to
remain viable. Binary descriptors are of particular interest
as they require far less storage capacity and offer much
faster matching times than conventional floating-point de-
scriptors [11], [5], [12], [13], [10], [14], or even quantized
descriptors [4]. In addition, they can be used directly
in hash table techniques for efficient Nearest Neighbor
search [15], [16], and their similarity can be computed very
quickly on modern CPUs based on the Hamming distance.

However, as our experiments show, state-of-the-art binary
descriptors often perform worse than their floating-point
competitors: some are built on top of existing representa-
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tions such as SIFT or GIST by relying on training data [11],
[5], and are therefore limited by the performance of the
intermediate representation. Others start from raw image
intensity patches, but focus on computation speed and rely
on fast-to-compute image features [12], [10], [13], [14],
which limit their accuracy.

To address these shortcomings, we extend our learning
framework to the binary case and we train a highly dis-
criminative yet compact binary descriptor. This extension
demonstrates the real advantage of our approach as it en-
ables us to not only compress the descriptor, but also signif-
icantly decrease the processing cost and memory footprint.
For each dimension of the resulting binary representation,
we learn a hash function of the same form as an AdaBoost
strong classifier, that is the sign of a linear combination of
non-linear weak learners. The resulting binary descriptor,
which we refer to as BinBoost, significantly outperforms
its binary competitors and exhibits a similar accuracy to
state-of-the-art floating-point or quantized descriptors at a
fraction of the storage and matching cost. Furthermore it is
more complex to optimize, and we show how to efficiently
optimize our hash functions using boosting.

This paper extends our previous work [17], [18] in
the following way. First, we show in Section 3 that our
method provides a general descriptor learning framework
that encompasses previously published approaches and the
state-of-the-art intensity-based [12], [10], [13], [14] and
gradient-based descriptors [1], [2], [5]. Our results show
that the ability to effectively optimize over the descriptor
filter configuration leads to a significant performance boost
at no additional computational cost compared with the
original hand-designed representation. We experiment with
additional weak learner families from the ones previously
used and we show that our learning method performs
well independently of the underlying weak learner type.
Finally, we provide an exhaustive experimental evaluation
of our methods on several challenging datasets, including
the Mikolajczyk dataset [19] and UKBench [20]. We also
illustrate how our method is not restricted to local feature
descriptors and can be successfully extended to new ap-
plication domains and other types of image data, and we
demonstrate this on a face recognition problem.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss related work. In Section 3 we describe our
method: we first show how to efficiently construct our set of
weak learners, from which we compute a compact floating-
point representation. We then explain how to extend this
approach to build a binary local feature descriptor. In
Section 4 we discuss different weak learner types and in
Section 5 we describe the experimental setup of our method
and its parameters. Section 6 presents the comparison of our
descriptors against the state-of-the-art methods. Finally, in
Section 7, we show how our framework can be used to
learn representations of other types of data, namely face
images.

2 RELATED WORK

Many recent techniques form binary descriptors based
on simple pixel intensity comparisons [12], [13], [10].
Huffman coding [21] and product quantization [22] have
also been explored to compress histogram of oriented
gradient descriptors. Similarly, [23] develops a binary edge
descriptor based on a histogram of normalized gradients.
Although more efficient, these hand-designed descriptors
are generally not compact and not as accurate as their
floating point equivalents.

For this reason, machine learning has been applied to
improve both the efficiency and accuracy of image descrip-
tor matching. Unsupervised hashing methods learn compact
binary descriptors whose Hamming distance is correlated
with the similarity in the original input space [11], [24],
[25], [26], [27]. Semantic hashing [25] trains a multi-
layer neural network to learn compact representative binary
codes. Spectral hashing [26] minimizes the expected Ham-
ming distance between similar training examples, and was
recently extended to optimize over example affinities [27].
Similarly, [24], [28] find codes whose Hamming distances
well approximate the original Euclidean ones. In [29], [11],
iterative and sequential optimization strategies that find
projections with minimal quantization error are explored.
While these approaches have proven highly effective for
finding compact binary codes, they rely on pre-defined
distance or similarity measures and in many cases are
limited to the accuracy of the original input space.

Supervised learning approaches can learn feature spaces
tailored to specific tasks [8], [30], [5], [29]. They exploit
labeled example pairs or triplets that encode the desired
proximity relationships of the learned metric. In [8], a
Mahalanobis distance metric is learned and optimized with
respect to labeled distance constraints. Linear Discriminant
Analysis is applied in [11], [5], [14] to learn discriminative
feature embeddings. Semi-supervised sequential learning
algorithms are proposed in [30], [29] for finding discrimina-
tive projections. Similar to these approaches, most methods
define a linear transformation of the data in either the
original or a kernelized feature space and rely on a pre-
specified kernel function to capture non-linearities. While
they are well-suited for image categorization and indexing
tasks for which task-specific kernels have been proposed,
such as in [31], they are less applicable to local descriptor
matching where the appropriate choice of kernel function
is less well understood.

Recent descriptor learning methods have emphasized the
importance of learning not only the optimal weighting,
but also the optimal shape or pooling configuration of the
underlying representation [4], [6]. In [4], they optimize
over different feature selection and pooling strategies of
gradient-based features, however, the criterion considered—
the area below the ROC—is not analytical making it
difficult to optimize. Following [4], a convex optimization
strategy was developed in [6]. To make learning tractable,
however, a limited set of pooling configurations was con-
sidered and restricted to circular, symmetrically arranged
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pooling regions centered about the patch. As shown in
our experiments, our binary descriptor achieves a similar
accuracy to these methods at a fraction of the matching
cost.

Jointly optimizing over descriptor weighting and shape
poses a difficult problem due to the potentially large num-
ber of pooling configurations one might encounter. This
is especially true for learning generic shapes where the
number of pooling regions can easily be in the millions,
even for small patch sizes. Fortunately, this is a problem
for which AdaBoost [32] and other boosting methods [33],
[34] are particularly well-suited. Although greedy, boosting
is an effective method for constructing a highly accu-
rate predictor from a large (potentially infinite) collection
of constituent parts. The resulting boosting-trick like the
kernel-trick, maps the input to a high-dimensional feature
space, however, the mapping it defines is explicit, with
the learned embedding assumed to be sparse [9], [35].
As a result and unlike kernel methods, boosting appears
to be an efficient way to find a non-linear transformation
of the input that is naturally parameterized over both the
descriptor shape and weighting.

In this paper, we introduce a family of boosted descrip-
tors that are trained with boosting for discriminative power
and compactness. Our work is inspired by Boosted Similar-
ity Sensitive Coding (SSC) [3] which is the first application
of boosting to learn an image similarity measure and was
later extended in [36] to be used with a Hamming distance.
Boosted SSC, however, only considers linear projections of
the input and generally results in fairly high dimensional
descriptions. Our methods, on the other hand, rely on more
complex weak learners and produce descriptors, both binary
and floating-point, of a much lower dimensionality.

We also propose a sequential learning method similar
to [29], [30] except, unlike these methods, our boosting
approach learns both the optimal shape and weighting of
the features associated with each bit. Our descriptor can
also be seen as a two layer neural network [25], since
each coordinate of the descriptor is computed from a
linear combination of pooled image features. As shown
in our experiments, this results in highly accurate and
compact descriptors whose final performance rivals that of
the leading binary and floating point descriptors.

3 METHOD

In this section we describe methods for learning local
feature descriptors with boosting. We first formulate our
problem by defining the exponential loss objective function
we use to learn a similarity embedding between image
patches. We then present different similarity measures
which, when plugged into our boosting framework, can be
used to train floating-point and binary descriptors.

3.1 Problem formulation
Given an image intensity patch x, we look for a descriptor
C(x) = [C1(x), . . . , CD(x)] which maps the patch to a
D-dimensional vector. This descriptor can be learned by
minimizing the exponential loss with respect to a desired

similarity function f (C(x), C(y)) = fC(x,y) defined
over image patch pairs:

L =

N∑
i=1

exp(−lifC(xi,yi)) (1)

where xi,yi ∈ Rp are training intensity patches and li ∈
{−1, 1} is a label indicating whether it is a similar (+1)
or dissimilar (−1) pair. Minimizing Equation (1) finds an
embedding which maximizes the similarity between pairs
of similar patches, while minimizing it for pairs of different
patches.

This formulation allows for numerous similarity func-
tions fC . We consider similarity functions of the form

fC(x,y) = C(x)T AC(y) (2)

where A ∈ RD×D is a symmetric matrix. This defines
a general class of symmetric similarity measures that can
be factorized to compute a feature descriptor independently
over each input and used to define a wide variety of image
descriptors. In what follows, we consider different choices
of A and C(·) ordering them in increasing complexity.

3.2 Boosted Similarity Sensitive Coding (SSC)

The Boosted SSC method proposed in [3] considers a
similarity function defined by a simply weighted sum of
thresholded response functions {hd(·)}Dd=1:

fSSC(x,y) =

D∑
d=1

αdhd(x)hd(y) . (3)

This function is the weighted Hamming distance between x
and y and corresponds to Equation (2) where A is restricted
to be a diagonal matrix. The importance of each dimension
d given by the αd’s and the resulting D-dimensional de-
scriptor is a floating-point vector C(x) = [

√
αdhd(x)]Dd=1,

where α is constrained to be positive.
Substituting fSSC for fC in Equation (1) gives

LSSC =

N∑
i=1

exp

(
−li

D∑
d=1

αdhd(xi)hd(yi)

)
. (4)

In practice the space of h’s is prohibitively large, possibly
infinite, making the explicit optimization of LSSC difficult,
however, this constitutes a problem for which boosting
is particularly well suited [32]. Although boosting is a
greedy optimization scheme, it is an effective method for
constructing a highly accurate predictor from a collection
of weak predictors h. Due to its greedy nature, however,
the weak learners found using Boosted SSC often remain
highly redundant and hence inefficient. In what follows, we
modify the similarity function fC(x,y) so that it becomes
better suited for learning low-dimensional, discriminative
embeddings with boosting.
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3.3 FPBoost
To mitigate the potentially redundant embeddings found
by boosting we propose an alternative similarity measure
fFP that models the correlation between weak response
functions:

fFP (x,y) =
∑
k,k′

αk,k′hk(x)hk′(y) = h(x)TAh(y), (5)

where h(x) = [h1(x), · · · , hK(x)] and A is a K × K
matrix of coefficients αk,k′ . This similarity measure is
a generalization of Equation (3). In particular, fFP is
equivalent to the Boosted SSC similarity measure in the
restricted case of a diagonal A.

Substituting the above expression into Equation (1) gives

LFP =

N∑
i=1

exp

−li∑
k,k′

αk,k′hk(xi)hk′(yi)

 . (6)

We optimize LFP using a two step learning strategy. We
first apply AdaBoost to find good weak learners {hk}Kk=1

by minimizing Equation (4) on the training samples as
in [3]. Then we apply stochastic gradient descent to find an
optimal weighting over the selected features that minimizes
Equation (6). To guarantee that the similarity function fFP
remains symmetric, we restrict the coefficients αk,k′ of A
to be symmetric. This optimization strategy is sub-optimal
but we found it to work well in practice.

The similarity function of Equation (5) defines an im-
plicit feature mapping over example pairs. In order to
compute the feature descriptors independently over each
input, we need to factorize A. As we constrain A to be
symmetric, we can factorize it into the following form:

A = BWBT =

K∑
k=1

wkbkb
T
k (7)

where W = diag([w1, · · · , wK ]), wk ∈ {−1, 1}, B =
[b1, · · · ,bk], b ∈ RK .

Equation (5) can then be re-expressed as

fFP (x,y) =

D∑
d=1

wd

(
K∑
k=1

bd,khk(x)

)(
K∑
k=1

bd,khk(y)

)
.

(8)
For D < K (i.e., the effective rank of A is D < K)
the factorization represents a smoothed version of A dis-
carding the low-energy dimensions that typically correlate
with noise, and in practice leading to further performance
improvements. The factorization of Equation (8) defines
a signed inner product between the embedded feature
vectors and provides increased efficiency with respect to the
original similarity measure1. Moreover, it is easy to show
that the signed inner product is equivalent to the Euclidean
distance under the assumption that the descriptors have
comparable magnitudes. As shown in Fig. 1, this is the

1Matching two sets of descriptors each of size N is O(N2K2) under
the original measure and O(NKD + N2D) provided the factorization,
resulting in significant savings for reasonably sized N and K, and D �
K.
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Fig. 1. Histogram of the L2 norms of 75k FPBoost
descriptors extracted from the images of Mikolajczyk
dataset [19]. The L2 norms are upper-bounded by√∑D

d=1 |bd|21 which equals 4 in this case. A signif-
icant portion of the descriptors have a comparable
magnitude and, hence, we can use Euclidean distance
in place of the equivalent inner product to measure
descriptor similarity.

case in practice and, hence, we can leverage the existing
methods for fast approximate nearest neighbor search which
rely on Euclidean distances.

The final embedding C(x) = BTh(x) results in a
D-dimensional floating-point descriptor based on K weak
learners that we call FPBoostK-D. The projection ma-
trix B defines a discriminative dimensionality reduction
optimized with respect to the exponential loss objective
of Equation (6). As seen in our experiments, in the case
of redundant weak learners this results in a considerable
feature compression, and therefore offering a more compact
description than the original input patch. Although compact
and highly discriminant, the descriptors learned using FP-
boost are real-valued and, hence, can be slow to match and
costly to store. Next, we consider a modification to FPboost
that as we show can be used to learn a highly accurate and
efficient binary descriptor.

3.4 BinBoost

To learn a binary descriptor we propose a modified sim-
ilarity measure that extends fFP to operate within a D-
dimensional Hamming space:

fB(x,y) =

D∑
d=1

sgn
(
bTd hd(x)

)
sgn
(
bTd hd(y)

)
=

D∑
d=1

Cd(x)Cd(y) (9)

where Cd(x) = sgn
(
bTd hd(x)

)
and hd(x) =

[hd,1(x) . . . hd,K(x)]T are K weak learners weighted by
the vector bd = [bd,1 . . . bd,K ]T . The resulting binary de-
scriptor, which we call BinBoostK-D, is a D-dimensional
binary vector built using K weak learners by applying
C(x) = {Cd(x)}Dd=1.

Substituting fB for fC in Equation (1) gives
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LB =

N∑
n=1

exp

(
−γ ln

D∑
d=1

Cd(x)Cd(y)

)
. (10)

This optimization problem is closely related to Equa-
tion (4), but instead of weighting the dimensions with
different αd values we use a constant weighting factor γ.
This enables us to compute the similarity more efficiently
as it is now equivalent to the Hamming distance. More
importantly, the {Cd(·)} functions are much more complex
than the weak learners hd as they are thresholded linear
combinations of weak learner responses. The resulting op-
timization is discontinuous and non-convex and in practice
the space of all possible weak learners h is discrete and
prohibitively large. In what follows we develop a greedy
optimization algorithm to solve this difficult problem and
jointly optimize over the weak classifiers of each bit, hd
and their associated weights bd.

We first proceed as in regular AdaBoost. We optimize the
{Cd(·)} functions iteratively, and at iteration d, the Cd(·)
function that minimizes Equation (10) is also the one that
maximizes the weighted correlation of its output and the
data labels [37]. Using this fact, at iteration d, the optimal
bd and hd can be taken as

arg max
bd,hd

N∑
n=1

lnWd(n)Cd(x)Cd(y) , (11)

where

Wd(n) = exp

(
−γln

d−1∑
d′=1

Cd′(x)Cd′(y))

)
(12)

is a weighting that is very similar to the one used in
regular Adaboost. This means that pairs that are incorrectly
classified by the previous iterations are assigned a higher
weight, whereas the weight of those correctly classified is
decreased.

The sign function in Cd(·) is non-differentiable, and
Equation (11) is thus still hard to solve. We therefore apply
the spectral relaxation trick [30], [29] and approximate the
sign function using its signed magnitude, sgn(x) ≈ x. This
yields:

arg max
bd,hd

N∑
n=1

lnWd(n)Cd(x)Cd(y)

≈ arg max
bd,hd

N∑
n=1

lnWd(n)
(
bTd hd(xn)

) (
bTd hd(yn)

)
= arg max

bd,hd

N∑
n=1

lnWd(n)hd(xn)Tbdb
T
d hd(yn)

= arg max
bd,hd

bTd

(
N∑
n=1

lnWd(n)hd(xn)hd(yn)T

)
bd .

(13)

As for Equation (6), we first select a vector hd(x) of
suitable weak classifiers by minimizing Equation (4) using
the algorithm of [3] on the training samples, this time
initially weighted by the Wd(n) weights. The vector bd

(a) Intensity-based (b) Gradient-based

Fig. 2. Overview of the intensity and gradient-based
weak learners. To compute the responses of intensity-
based weak learners, we compare the image intensity
values after Gaussian smoothing at two locations i
and j. Using boosting, we optimize both the locations
and Gaussian kernel sizes, S. The gradient-based
learners consider the orientations of gradients normal-
ized within a given region. Boosting allows us to find
the pooling configuration of the gradient regions and
optimize the values of the corresponding thresholds.

is defined only up to a scale factor, and we then solve for
it by looking for

arg max
bd

bTdMbd, s.t. ‖bd‖2 = 1 (14)

where
M =

N∑
n=1

lnWd(n)hd(xn)hd(yn)T . (15)

Eq. (14) defines a standard eigenvalue problem and the
optimal weights bd can therefore be found in closed-
form as the eigenvector of M associated with its largest
eigenvalue.

Although not globally optimal, this solution returns a
useful approximation to the solution to Eq. (11). Moreover,
thanks to our boosting scheme even a sub-optimal selection
of Cd(·) allows for an effective minimization.

We still have to explain how we choose the γ pa-
rameter. Note that its value is needed for the first time
at the end of the first iteration, and we set this pa-
rameter after finding C1 using the formula from regular
Adaboost. We use the rule γ = ν · 1

2 log 1+r1
1−r1 where

r1 =
∑N
n=1 W1(n) ln C1(xn)C1(yn) and ν is a shrinkage

parameter used to regularize our optimization as described
in [38]. In practice, we use ν = 0.4.

4 WEAK LEARNERS

The employed weak learner family encodes specific design
choices and desired descriptor properties. In this section
we present two weak learner types inspired from existing,
prevalent keypoint descriptors. The simpler, yet less dis-
criminative weak learners are based on pixel intensities.
The more complex and computationally expensive weak
learners rely on gradient images. Below we provide a
detailed description of each along with their parameters.
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4.1 Intensity-based learners

The intensity-based weak learners rely on BRIEF-like com-
parisons of pre-smoothed image intensities. More precisely,
we define the output of our weak learner as:

h(x̂S ; i, j, S) =

{
1 if x̂S(i) ≤ x̂S(j)

−1 otherwise
(16)

where x̂S(i) is the pixel intensity of x pre-smoothed with a
Gaussian kernel of size S ∈ {3, 5, 7, . . . , 15} at position i.

The above formulation allows us to optimize the selec-
tion of the sampling points as it was done, e.g. in [10],
except we minimize a loss function with boosting rather
than the responses’ corellation with a stochastic algorithm.

Inspired by the sampling scheme of BRISK [13] and
FREAK [39], we also optimize the value of the Gaussian
kernel size S which defines the amount of smoothing
applied to the image before comparing the intensity values,
in addition to the positions i and j. This adds an addi-
tional degree of freedom to our optimization framework
and, therefore, encompasses the formulation of many re-
cently proposed binary feature descriptors, such as BRISK,
FREAK and ORB.

4.2 Gradient-based learners

The gradient-based weak learners consider the orientations
of intensity gradients over image regions [40]. They are
parameterized by a rectangular region R over the image
patch x, an orientation e, and a threshold T , and are defined
as

h(x;R, e, T ) =

{
1 if φR,e(x) ≤ T
−1 otherwise

, (17)

with

φR,e(x) =
∑
m∈R

ξe(x,m) /
∑

e′∈Φ,m∈R
ξe′(x,m) , (18)

and
ξe(x,m) = max(0, cos(e− o(x,m)) , (19)

where o(x,m) is the orientation of the image gradient in x
at location m. The orientation e is quantized to take values
in Φ = {0, 2π

q ,
4π
q , · · · , (q−1) 2π

q } with q is the number of
quantization bins. As noted in [40] this representation can
be computed efficiently using integral images.

5 EXPERIMENTAL SETUP

In this section, we first describe our evaluation framework.
We then present a set of initial experiments which validate
our approach and allow us to select the correct parameters
for our descriptors. Our approach improves over the state-
of-the-art mostly with the binary version of our boosted
descriptors, and we focus here on this version. Nevertheless
the optimized parameters remain valid also for the floating-
point descriptor.

5.1 Evaluation framework
We evaluate the performance of our methods using three
publicly available datasets: Liberty, Notre Dame, and
Yosemite [4]. Each of them contains over 400k scale- and
rotation-normalized 64 × 64 patches. These patches are
sampled around interest points detected using Difference
of Gaussians and the correspondences between patches
are found using a multi-view stereo algorithm. The result-
ing datasets exhibit substantial perspective distortion and
changing lighting conditions. The ground truth available
for each of these datasets describes 100k, 200k and 500k
pairs of patches, where 50% correspond to match pairs,
and 50% to non-match pairs. In our experiments, we use
sub-sampled patches of size 32 × 32 and the descriptors
are trained on each of the 200k datasets and we use the
held-out 100k dataset for testing. We report the results of
the evaluation in terms of ROC curves and 95% error rate
which is the percent of incorrect matches obtained when
95% of the true matches are found, as in [4].

5.2 Weak learner types
To analyze the impact of the weak learner type on descriptor
performances, we train a BinBoost1-256 descriptor where
each bit corresponds to one weak learner. For our gradient-
based descriptor we use q = 8 orientation bins, as this is
equal to the number of bins proposed for SIFT.

First, we compared the sampling patterns employed in
the state-of-the-art binary intensity-based descriptors, such
as BRIEF, BRISK and ORB, with the pooling learned with
our framework when using intensity-based weak learners.
Fig. 3 shows the visualization of intensity tests and heat
maps of the spatial weighting employed by each descriptor.
For BRIEF, intensity tests are from an isotropic Gaussian
distribution with the origin of the coordinate system located
at the patch center [12]. By contrast, the sampling pattern
of BRISK is deterministic. The intensity tests of ORB are
selected to increase the variance of the responses, while
reducing their correlation. This results in a pronounced
vertical trend which can also be seen in the case of
BinBoost. Nevertheless, the heat maps show that the tests
for BinBoost-Intensity are more dense around the center of
the patch, similar to BRIEF, while the ones used in ORB
present a more uniform distribution.

To evaluate the influence of the weak learner type on
performance, in Fig. 4 we compared the results obtained
with BinBoost-Intensity and BinBoost-Gradient with those
of Boosted SSC, BRIEF, ORB, BRISK, D-Brief [14] and
SIFT. The performance of Boosted SSC remains inferior to
the other descriptors as the weak learners proposed in [3]
rely on thresholding single pixel intensity values and do
not provide enough discriminative power. Our experiments
show that even though BinBoost-Intensity with variable
Gaussian kernel size performs the best out of all the
intensity-based descriptors, it is only slightly better than
BinBoost-Intensity with filter size equal to 3. As shown
in Fig. 5, our learning framework does not find a clear
correlation between the size of the smoothing kernel and
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BRIEF BRISK ORB BinBoost-Intensity
S = 3 variable S

Fig. 3. Visualization of the intensity tests (first row) and spatial weight heat maps (second row) employed by
BRIEF, ORB, BRISK and our BinBoost1-256 descriptor trained with intensity-based weak learners on rectified
patches from the Liberty dataset. BRIEF picks its intensity tests from an isotropic Gaussian distribution around
the center of the patch, while the sampling pattern of BRISK is deterministic. The intensity tests of ORB are
selected to increase the variance of the responses, while reducing their correlation. This results in a pronounced
vertical trend which can also be seen in the case of BinBoost. Nevertheless, the heat maps show that the tests
for BinBoost-Intensity are — similarly to BRIEF — more dense around the center of the patch while the ones
used in ORB present a more uniform distribution.
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Fig. 4. Performance of BinBoost1-256 with different weak learner types compared with the state-of-the-art binary
descriptors and SIFT as a baseline. Out of all descriptors based on intensity tests, BinBoost-Intensity performs
the best. This shows that our framework is able to effectively optimize over the other state-of-the-art binary
descriptors and boost their performances at no additional computational cost. Nevertheless, the performance
of BinBoost-Intensity cannot match that of floating-point SIFT which is outperformed when using the more
discriminative gradient-based weak learners (BinBoost-Gradient).

the distance to the patch center, contrary to the sampling
pattern of BRISK. Interestingly, even though the optimized
sampling scheme of ORB resembles this of BinBoost-
Intensity, our framework improves the results over BRIEF
much more than ORB. This may be explained when looking
at the spatial weighting employed by BinBoost and ORB,
where we can see that certain parts of the patch are much
more densely sampled in the case of BinBoost, whereas the
sampling scheme of ORB is rather uniform.

Nevertheless, BinBoost-Intensity cannot match the per-
formance of SIFT as the discriminative power of the
underlying weak learners is not sufficient. When using

gradient-based weak learners, we are able to outperform
128-dimensional floating-point SIFT with only 256 bits.
Since the performance of gradient-based weak learners
remains superior to the intensity-based learners, we use
only the former to compute our BinBoost descriptor.

5.3 Numerical parameters
Our boosting framework defines a generic optimization
strategy that unlike many previous approaches, such as
[4], does not require fine tuning of multiple parameters.
BinBoost has only three main parameters that provide a
clear trade-off between the performance and complexity of
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Fig. 6. Influence of (a) the number of orientation bins q and (b) the number of weak learners K on the descriptor
performance for dimensionalities D = 8, 16, 32, 64 bits. The performances are optimal with q = 8 orientation bins,
which is also the number used in SIFT. Increasing the number of weak learners K from K = 128 to K = 256
provides only a minor improvement—at greatly increased computational cost—and, hence, we choose for our
final descriptor K = 128.

Fig. 5. Visualization of the first ten intensity-based
weak learners with variable kernel size S trained on
the Liberty dataset. When optimizing on both the pixel
positions and the sizes of the Gaussian kernels, our
boosting framework does not yield a clear pattern, in
particular there is no clear correlation between the size
of the smoothing kernel and the distance to the patch
center, contrary to the sampling pattern proposed for
BRISK. It nevertheless outperforms BRISK in our ex-
periments.

the final descriptor: the number of orientation bins used
by the weak learners, the number of weak learners, and
the final dimensionality of the descriptor. We study below
the influence of each of them on the performance of our
descriptor.

Number of orientation bins q defines the granularity of
the gradient-based weak learners. Fig. 6(a) shows the results
obtained for different values of q and D. For most values of
D, the performance is optimal for q = 8 as finer orientation
quantization does not improve the performance and we keep
q = 8 in the remaining experiments. Interestingly, this is
also the number of orientation bins used in SIFT.
Number of weak learners K determines how many
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Fig. 7. Performance for different dimensionalities D.
With D = 64 bits, BinBoost reaches its optimal perfor-
mance as increasing the dimensionality further does
not seem to improve the results. In bold red we mark
the dimensionality for which BinBoost starts outper-
forming SIFT. Best viewed in color.

gradient-based features are evaluated per dimension and
in Fig. 6(b) we show the 95% error rates for different
values of K. Increasing the value of K results in increased
computational cost and since performance seems to saturate
after K = 128, we keep this value for our final descriptor.
Dimensionality D is the number of bits of our final
descriptor. Fig. 7 shows that with D = 64 bits, our
descriptor reaches its optimal performance as increasing
the dimensionality further does not seem to improve the
results.

Using these parameters we trained our compact BinBoost
descriptor on the Notre Dame dataset. A visualization of
the learned weighting and pooling configuration is shown in
Fig. 8 for the first 8 bits of the descriptor. The weak learners
of similar orientations tend to cluster about different regions
for each bit thus illustrating the complementary nature of
the learned hash functions.
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Fig. 8. Visualization of the selected weak learners
for the first 8 bits learned on 200k pairs of 32 × 32
patches from the Notre Dame dataset (best viewed on
screen). For each pixel of the figure we show the av-
erage orientation weighted by the weights of the weak
learners bd. For different bits, the weak learners cluster
about different regions and orientations illustrating their
complementary nature.
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Fig. 9. 95% error rates for binary descriptors of differ-
ent dimensionality. For reference, we plot the results
obtained with SIFT. BinBoost outperforms the state-
of-the-art binary descriptors and the improvement is
especially visible for lower dimensionality.

6 RESULTS

In this section we provide an extensive comparison of
our method against the state-of-the-art descriptors on the
Brown [4] and Mikolajczyk [19] datasets. We also show the
performance our descriptor for performing visual search on
the UKBench dataset [20].

We compare our approach against SIFT [1], SURF [2],
the binary LDAHash descriptor [5], Boosted SSC [3], the
binary ITQ descriptor applied to SIFT [11], and the fast
binary BRIEF [12], ORB [10] and BRISK [13] descriptors.

6.1 Implementation
For SIFT, we use the publicly available implementation of
A. Vedaldi [41]. For SURF, LDAHash, BRIEF, BRISK,
ORB and ITQ we use the implementation available from
their authors. For the other methods, we use our own
implementation or we report the results from the literature.
For Boosted SSC, we use 128 dimensions as this obtained
the best performance. When matching the descriptors we
use a fast POPCOUNT-based implementation for comput-
ing Hamming distances between binary descriptors and
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Fig. 10. Descriptor performances as a function of
their memory footprint. For floating-point descriptors
we assume 1 byte per dimension as this quantization
was reported as sufficient for SIFT [41]. Our BinBoost
descriptor offers a significantly lower memory footprint
than the floating-point descriptors while providing com-
petitive performances.
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Fig. 11. Descriptor performances as a function of their
matching times. The reported times were computed
from 100k test pairs (i.e. 100k distance computations
were performed) on a Macbook Pro with an Intel i7
2.66 GHz CPU using the POPCOUNT instruction and
averaged over 100 runs. To make the comparison
fair, we optimized the matching strategy for floating-
point descriptors by representing them with unsigned
characters. The advantage of binary descriptors, out of
which BinBoost performs the best in terms of 95% error
rate, is clear.

matched floating-point descriptors using their Euclidean
distance.

6.2 Brown datasets
We first compare our method using the Liberty, Notre
Dame and Yosemite datasets [4] according to the evalu-
ation protocol described in Sec. 5.1. Fig. 12 shows the
ROC curves for BinBoost and the state-of-the-art methods.
Table 1 summarizes the 95% error rates. Both show that
BinBoost significantly outperforms the baselines. It per-
forms almost twice as well as SIFT in terms of 95% error
rate, while requiring only 64 bits (8 bytes) instead of 128
bytes for SIFT. Moreover, since BinBoost can be efficiently
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Fig. 12. Comparison of our BinBoost descriptor to the state-of-the-art binary (left) and floating-point (right)
descriptors. In parentheses: the number of floating-point (f) or binary (b) dimensions and the 95% error rate.
Our BinBoost descriptor significantly outperforms its binary competitors across all false positive rates. It also
outperforms SIFT and provides similar performances to the recent floating-point descriptors, even though it is
much faster to match and has a lower memory footprint.

Binary Floating-point

Train Test BinBoost128-64 BinBoost1-64 ITQ-SIFT [11] LDAHash [5] BRIEF BRISK SURF SIFT FPBoost512-64 Brown [4] Simonyan [6]
8 bytes 8 bytes 8 bytes 16 bytes 32 bytes 64 bytes 64 bytes 128 bytes 64 bytes 29 bytes 29 bytes

Yosemite Notre Dame 14.54 26.80 30.56 51.58 54.57 74.88 45.51 28.09 14.80 11.98 9.67
Liberty 16.90 29.60 31.07 14.68 - -

Yosemite Liberty 21.67 33.54 37.31 49.66 59.15 79.36 54.01 36.27 22.39 18.27 17.44
Notre Dame 20.49 31.90 36.95 17.90 16.85 14.51
Notre Dame Yosemite 18.97 30.58 34.34 52.95 54.96 73.21 43.58 29.15 15.85 13.55 12.54

Liberty 22.88 38.13 34.43 20.85 - -

TABLE 1

95% error rates for different training and testing configurations and the corresponding results for BinBoost with
64 and 8 bits and its competitors. For the descriptors that do not depend on the training data, we write one result
per testing dataset, for others we give the results for two different training datasets. Below the descriptor names
we write the number of bytes used to encode them. For the floating point descriptors (SIFT, SURF, FPBoost,
Brown et al. [4], Simonyan et al. [6]) we assume 1 byte per dimension, as this quantization was reported as
sufficient for SIFT [41]. BinBoost significantly outperforms its binary competitors, while requiring less memory.
For reference, we also give the results of the floating-point descriptors: BinBoost performs similarly to the best
floating-point descriptors even though it is shorter and binary which enables a significant speedup in matching
time as shown in Fig. 11.

implemented using integral images, the computation time
of our descriptor is comparable with that of SIFT using
Vedaldi’s implementation—approximately 1ms per descrip-
tor on a Macbook Pro with an Intel i7 2.66 GHz CPU. The
performance improvement of BinBoost with respect to the
recent binary descriptors, such as LDAHash or BRIEF, is
even greater, BinBoost achieving a 95% error rate that is
almost a factor of 3 lower than that obtained with these
methods.

Since the dimensionality of the other binary descriptors
can be varied depending on the required performance
quality, Fig. 9 compares the 95% error rates of these
descriptors for different numbers of bits used. BinBoost
clearly outperforms them across all dimensions at the lower
end of the spectrum. However, the biggest improvement can
be seen for lower dimensionality.

Moreover, our BinBoost descriptor remains competitive
to the best descriptors of [4] and [6], even though the

memory footprint of their descriptors is almost 4 times
greater as shown in Fig. 10. The real advantage of Bin-
Boost, however, is that it allows for extremely fast similarity
computation using the Hamming distance2, whereas the
descriptors of [4] and [6] are floating-point and cannot
benefit from the same optimization, even when quantized
very coarsely. As presented in Fig. 11, this results in a
speedup of over 2 orders of magnitude in terms of similarity
search.

To verify the performance of our descriptor, we also
compare it to several binarization techniques applied to
FPBoost. Results are displayed in Fig. 13. Binarizing the
FPBoost coordinates by thresholding them at an optimal
threshold found as in [5] results in large binarization errors
significantly decreasing the accuracy of the resulting binary

2On modern CPUs this can be implemented as a bitwise XOR operation
on the descriptors followed by a POPCOUNT instruction which counts the
number of bits set to 1.
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Fig. 13. Performance of our BinBoost descriptor
compared with different binarization methods applied
on FPBoost. Binarizing the discriminative projections
found with FPBoost either by simple thresholding or
with Iterative Quantization (ITQ) results in large bina-
rization errors significantly reducing its accuracy. On
the other hand, the sequential projection learning of
S3PLH requires a fairly large number of bits to recover
the original performance of FPBoost. In contrast, by
jointly optimizing over the feature weighting and pool-
ing strategy of each bit, our BinBoost approach results
in a highly compact and accurate binary descriptor
whose performance is similar with FPBoost but at a
fraction of the storage cost.

representation. This error can be reduced using Iterative
Quantization [11], however, the orthogonality constraints
used in this approach largely limit the extent to which
it can be minimized. In contrast, sequential projection
learning (S3PLH) [29] can find non-orthogonal projections
that more faithfully mitigate binarization error, however, it
requires a fairly large number of bits to recover FPBoost’s
original performance. Unlike these methods, by effectively
combining multiple weak learners within each hash func-
tion, our algorithm results in a more accurate predictor with
far fewer bits.

6.3 Mikolajczyk dataset

We tested the generalization performance of our descriptor
when trained on the Brown datasets and evaluated on the
significantly different Mikolajczyk dataset [19]. We report
results using the Notre Dame dataset, however, similar
results were found for all the Brown datasets. We followed
the evaluation protocol of [19] that compares descriptors
using a single keypoint detector, and used the OpenCV
SURF Hessian-based detector. For each image pair we
detect 1000 keypoints per image and match them using
exhaustive search. We then filter outliers using a distance
ratio threshold of 0.8 as in [1]. We evaluate each descriptor
in terms of the recognition rate which is the number of
correctly matched keypoints.

Fig. 14 shows the results obtained for the bark,
boat, graf, trees, ubc and wall sequences. In
all the sequences BinBoost1-256 and FPBoost512-64

outperform the other descriptors. The performance of
BinBoost128-64, however, does not perform as well as
when evaluated on the Brown datasets, which indicates
that there is an inherent efficiency tradeoff when train-
ing on a different condition. Nonetheless, the extended
BinBoost128-128 and BinBoost128-256 descriptors outper-
form the other methods while being shorter or of the same
length.

6.4 Visual Search on UKBench
We further evaluate our approach for performing visual
search using the University of Kentucky Benchmark (UK-
Bench) dataset [20] that contains over 10k images of 2600
objects, each object being depicted in 4 images taken from
different viewpoints. As in other approaches, we first build
a database of the almost one million descriptors extracted
from all the dataset images. For each query image, we then
search for the nearest neighbors in the database using their
associated keypoint descriptors to vote for the most similar
images in the database. Finally, we sort the database images
according to the number of votes they receive and retrieve
those associated with the highest number of votes. As with
our previous experiments, we consider descriptors trained
using the Notre Dame dataset with similar results seen for
the other Brown datasets. In our evaluation we randomly
selected 500 query images from the dataset and use the
remaining 10k images to create a database. We ran the
experiment three times and report the average results along
with the standard deviation values.

Table 2 summarizes the results we obtained for different
descriptors. To evaluate the performance we report mean
average precision (mAP) and percentage of correct number
of images retrieved at the top of the list (Correct@1). Out
of all the evaluated descriptors BinBoost128-256 performs
the best followed by BinBoost1-256. FPBoost performs
slightly worse than BinBoost, while still outperforming
SIFT and other intensity-based binary descriptors. Overall,
the boosted keypoints descriptors provide the best perfor-
mance of all the tested descriptors, even though they were
trained on a significantly different dataset.

7 FACE DESCRIPTORS

In this section we evaluate our method for matching face
images. While this constitues a rather different problem
than modeling the appearance of local keypoints, as we
show our method is generic and can be easily adapted to
new application domains. For our evaluation we used a
dataset of face images [42] that consists of faces imaged
under different viewpoints. From this dataset we created
two sets of 100k and 200k pairs of images. Similarly to
the Liberty, Notre Dame and Yosemite datasets, each set
is balanced and contains an equal number of image pairs
belonging to the same person as those of different people.
We used the 200k dataset to train our descriptors and the
100k set to test them.

Fig. 15 compares the learned spatial weightings obtained
with the Brown and Faces datasets. When we train our
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Descriptor mAP ± σ Correct@1 ± σ
BRISK 0.402 ± 0.006 61.830 ± 0.884
ORB 0.418 ± 0.005 64.902 ± 1.931
SIFT 0.455 ± 0.008 68.235 ± 2.183

BRIEF 0.457 ± 0.014 68.562 ± 0.493
FPBoost512-64 0.476 ± 0.006 70.000 ± 1.709

BinBoost128-128 0.493 ± 0.017 72.222 ± 2.747
BinBoost1-256 0.533 ± 0.010 76.144 ± 2.467

BinBoost128-256 0.556 ± 0.008 79.216 ± 1.870

TABLE 2

Results of visual search on the UKBench dataset [20]:
mean average precision (mAP) and percentage of cor-
rectly retrieved images at the first position (Correct@1)
are reported. Average results are shown across three
random train and test splits along with the stan-
dard deviation. BinBoost128-256 outperforms the other
descriptors, even though it is trained on the Notre
Dame dataset. The other learned descriptors, namely
BinBoost1-256 and FPBoost512-64, achieve worse re-
sults, though their performance is still better than SIFT
and the other intensity-based descriptors.

BinBoost descriptor on the images extracted around interest
points, the weak learners clearly concentrate around the
center of the patch. In fact, the obtained weighting closely
resembles the Gaussian weighting employed by SIFT. In
contrast, for face images the weak learners concentrate
about the lower and upper image regions that correspond
to the location of the eyes and mouth, and as also observed
in [43] constitute discriminative facial features. This further
demonstrates the flexibility of our approach and its ability
to adapt to new types of image data.

Fig. 16 shows the qualitative results obtained using
BinBoost1-256. BinBoost remains largely invariant to the
significant viewpoint and intensity changes present in this
dataset, while still being able to discriminate between
different people. Most of the mis-classifications are due to
occlusions and extreme viewpoint variation such as side
views.

In Fig. 17 we plot the quantitative results of
BinBoost1-256, FPBoost256-64 and BinBoost128-64 de-
scriptors compared with LBP, a widely used face descrip-
tor [43]. Our boosted descriptors result in a significant
improvement over the baseline. Furthermore, compared
with LBP our FPBoost descriptor achieves a reduction
in 95% error rate by more than a factor of 2. Similar
to [44], [45] this demonstrates the potential advantages
of exploiting image data to learn a face descriptor. More
importantly, it illustrates the flexibility of our approach
beyond local keypoint descriptors.

8 CONCLUSION

In this paper we presented an efficient framework to train
highly discriminative and compact local feature descriptors
that leverages the boosting-trick to simultaneously optimize

true positives true negatives false positives false negatives

Fig. 16. Matching results on the Faces dataset us-
ing our 256-bit BinBoost1-256 at the 95% error rate,
i.e. when 95% of the positive image pairs are cor-
rectly classified. BinBoost remains robust to significant
viewpoint changes and motion blur. The mis-classified
examples are mostly due to occlusion and extreme
variations in viewpoint such as side views.
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Fig. 17. The performance of our boosted descriptors
on the Faces dataset compared with the commonly
used LBP face descriptor [43]. BinBoost1-256 signif-
icantly outperforms LBP. Similarly to the results ob-
tained for local feature descriptors, we can see that
BinBoost128-64 performs equally to BinBoost1-256, but
with only 64 bits per descriptor. FPBoost performs even
better with the 95% error rate reduced by more than
twice compared with the LBP baseline.

both the weighting and sampling strategy of a set of non-
linear feature responses. We first showed how boosting can
be used to result in an accurate yet compact floating-point
descriptor. We then considered a binary extension of our
approach that shares a similar accuracy but operates at a
fraction of the matching and storage cost. We explored the
use of both intensity- and gradient-based features within
our learning framework and performed an evaluation across
a variety of descriptor matching tasks. In each task, our
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approach achieved a signficant improvement over the state-
of-the-art descriptors, such as BRIEF and BRISK, in both
accuracy and efficiency by optimizing their sampling pat-
terns. Finally, we showed that our method can be easily
generalized to new applicaiton domains, such as faces.
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