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Learning Separable Filters
Amos Sironi∗, Bugra Tekin∗, Roberto Rigamonti, Vincent Lepetit and Pascal Fua, IEEE Fellow

Abstract—Learning filters to produce sparse image representations in terms of overcomplete dictionaries has emerged as a powerful
way to create image features for many different purposes. Unfortunately, these filters are usually both numerous and non-separable,
making their use computationally expensive.
In this paper, we show that such filters can be computed as linear combinations of a smaller number of separable ones, thus greatly
reducing the computational complexity at no cost in terms of performance. This makes filter learning approaches practical even for large
images or 3D volumes, and we show that we significantly outperform state-of-the-art methods on the curvilinear structure extraction
task, in terms of both accuracy and speed. Moreover, our approach is general and can be used on generic convolutional filter banks to
reduce the complexity of the feature extraction step.

Index Terms—Convolutional sparse coding, filter learning, features extraction, separable convolution, segmentation of linear struc-
tures, image denoising, convolutional neural networks, tensor decomposition.
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1 INTRODUCTION

I T has been shown that representing images as sparse
linear combinations of learned filters [31] yields effective

approaches to image denoising and object recognition, which
outperform those that rely on hand-crafted features [45].
Among these, convolutional formulations have emerged as
particularly appropriate to handle whole images, as opposed
to independent patches [19], [26], [35], [46]. Unfortunately,
because the filters are both numerous and not separable, they
tend to be computationally demanding, which has slowed
down their acceptance. Their computational cost is even more
damaging when dealing with large 3D image stacks, such as
those routinely acquired for biomedical purposes.

In this paper, we show that we can preserve the performance
of these convolutional approaches while drastically reducing
their cost by learning and using separable filters that approx-
imate the non-separable ones. Fig. 1 depicts this behavior in
the case of filters designed to classify whether or not a pixel
belongs to a blood vessel in retinal scans. Using the learned
separable filters is much faster than using either the original
non-separable ones or a state-of-the-art implementation of the
FFT for all practical filter sizes. We will demonstrate that this
is consistently true over a wide range of images.

As we will see, such a result could be achieved by enforcing
the separability constraint as part of a convolutional, `1-based
learning framework to directly learn a set of separable filters.
However, we have found that an even better result could be
obtained by first learning a set of non-separable filters, such as

• A. Sironi, B. Tekin, R. Rigamonti and P. Fua are with the Computer
Vision Laboratory, IC Faculty, École Polytechnique Fédérale de Lausanne
(EPFL), Lausanne CH-1015, Switzerland.
E-mail: firstname.lastname@epfl.ch

• V. Lepetit is with the Institute for Computer Graphics and Vision, Graz
University of Technology, Graz 8010, Austria.
E-mail: lepetit@icg.tugraz.at

This work was supported in part by EU ERC project MicroNano.
∗ indicates equal contribution.

5 10 15 20 25
0

2

4

6

8

10

12

14

Filters Size

T
im
e
(s
)

Spatial Convolution
FFT Convolution
OurMethod

2 4 6 8 10 12 14 16
0

10

20

30

40

50

Filters Size

T
im
e
(s
)

(a) (b)

2D images 3D image stacks

Fig. 1: Convolutional filter bank (a) learned for the extraction of
curvilinear structures in retinal scan images, along with its separable
approximation (b). The full-rank filters of (a) can be approximated
very precisely as linear combinations of the far fewer separable filters
of (b). This allows us to use this property to considerably speed up
extraction of learned image features compared with convolutions with
the original non-separable filters, even when Fast Fourier Transform
is used for both the 2D and the 3D case, as it is shown by the figures
in the bottom row.

those of Fig. 1(a), and then a second smaller set of separable
filters, such as those of Fig. 1(b), whose linear combinations
can be used to represent the original ones. This makes the
approach very efficient because it only requires convolutions
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with a small set of separable filters, which greatly reduces the
run-time computational requirements at no loss in accuracy.
It also makes the approach very general because it can be
applied to any non-separable filter bank, no matter how it has
been learned or designed.

We first introduced this idea in [36], where the separa-
ble filters are learned by minimizing an objective function
that includes low-rank constraints. This approach delivers
the desired run-time accuracy and efficiency but at a high-
computational cost during the learning phase. Moreover, the
low-rank constraints, being soft constraints, do not guarantee
that the resulting filters have rank one. In this situation,
separability can be imposed after the fact by truncating the
singular values of the filters. Here, we introduce a second
approach that explicitly treats the separable filters as products
of 1D components, which we learn by tensor decomposition.
Our experiments show that this second approach is faster at
learning time and more accurate.

In the remainder of the paper, we first discuss related work.
We then introduce our approach to separable approximation,
first in 2D and then in 3D. Finally, we test our methods on
different applications—pixel and voxel classification as well
as image denoising and neural networks—and show that the
speed-up is systematically significant at no loss in accuracy.

2 RELATED WORK

Automatic feature learning has long been an important
area in Machine Learning and Computer Vision. Neural
networks [23], Restricted Boltzmann Machines [18], Auto-
Encoders [6], Linear Discriminant Analysis [7], and many
other techniques have been used to learn features in ei-
ther supervised or unsupervised ways. Recently, creating an
overcomplete dictionary of features—sparse combinations of
which can be used to represent images—has emerged as a
powerful tool for object recognition [10], [19], [45] and image
denoising [13], [27], among others.

However, for most such approaches, run-time feature extrac-
tion can be very time-consuming because it involves convolv-
ing the image with many non-separable non-sparse filters. It
was proposed several years ago to split convolution operations
into convergent sums of matrix-valued stages [42]. This prin-
ciple was exploited in [33] to avoid coarse discretization of
the scale and orientation spaces, yielding steerable separable
2D edge-detection kernels. This approach is powerful but
restricted to kernels that are decomposable in the suggested
manner, which precludes the potentially arbitrary ones that
can be found in a learned dictionary or a handcrafted one
to suit particular needs. After more than a decade in which
the separability property has been either taken for granted or
neglected, there is evidence of renewed interest [28], [34].
The scope of those papers is, however, limited in that they
are restricted to specific frameworks, while our approach is
completely generic. Nonetheless, they prove a growing need
for fast feature extraction methods.

Among other recent feature-learning publications, very few
have revisited the run-time efficiency issue. The majority of
those advocate exploiting the parallel capabilities of modern

hardware [14], [30]. However, programming an FPGA unit
as in [14] is cumbersome. Exploiting the Graphics Processing
Unit as in [30] is an attractive alternative, but the time required
for memory transfers between the CPU and the GPU is often
prohibitive in practice.

An interesting recent attempt at reducing computational
complexity is the approach of [38], which involves learning
a filter bank by composing a few atoms from an handcrafted
separable dictionary. Our own approach is in the same spirit
but is much more general as we also learn the atoms. As
shown in the results section, this results in a smaller number
of separable filters that are tuned for the task at hand.

[17] learns separable dictionaries in the case of classical
sparse coding, i.e., not in a convolution-based approach. The
authors show that using separable items as compared to
unstructured ones, it is possible to deal with larger images.
However the dimensions of the images used are smaller
than those typically handled by convolutional sparse coding
approaches. Moreover, we will show that directly learning
separable filters yields results worse than those of their
unstructured counterpart. Here we overcome this limitation
by introducing separability at a later stage of the learning
process. We first learn a set of non-separable filters and
then approximate them as linear combinations of a small
set of separable ones, which are specific for the particular
application.

Finally, the authors of [9] propose a way to reduce the
time it takes to learn non-separable filters. This makes their
approach complementary to ours as it could be used to speed
up the first step of our algorithm.

3 LEARNING 2D SEPARABLE FILTERS

Most dictionary learning algorithms operate on image
patches [10], [27], [31], but convolutional approaches [19],
[26], [35], [46] have been recently introduced as a more natural
way to process arbitrarily-sized images. They generalize the
concept of feature vector to that of feature map, a term bor-
rowed from the Convolutional Neural Network literature [24].
In our work, we consider the convolutional extension of
Olshausen and Field’s objective function proposed in [35].

Formally, J filters {f j}1≤j≤J are computed as

argmin
{fj},{mj

i}

∑
i

∥∥∥∥∥xi −
J∑
j=1

f j ∗mj
i

∥∥∥∥∥
2

2

+ λ1

J∑
j=1

∥∥∥mj
i

∥∥∥
1

 , (1)

where

• xi is an input image;
• * denotes the convolution product operator;
• {mj

i}1≤j≤J is the set of feature maps extracted during
learning;

• λ1 is a regularization parameter.

A standard way to solve Eq. (1) is to alternatively optimize
over the mj

i representations and the f j filters. Stochastic
gradient descent is used for the latter, while the former is
achieved by first taking a step in the direction opposite to
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the `2-penalized term gradient and then applying the soft-
thresholding operation1 on the mj

i s.
While this formulation achieves state-of-the-art results [37],

the required run-time convolutions are costly because the
resulting filters are not separable. Quantitatively, if xi ∈
Rn1×n2 and f j ∈ Rd1×d2 , extracting the feature maps requires
O (n1 · n2 · d1 · d2) multiplications and additions. By contrast,
if the filters were separable, the computational cost would drop
to a more manageable O (n1 · n2 · (d1 + d2)). This cost reduc-
tion becomes even more desirable in biomedical applications
that require processing large 3D image stacks.

Our goal is therefore to make our filters separable without
compromising their descriptive power. One way to do this
would be to explicitly write the f j filters as products of 1D
filters and to minimize the objective function of Eq. (1) in
terms of their coefficients. Unfortunately, this would involve a
quartic objective function in terms of the unknowns in addition
to the `1 norm of the feature maps and, therefore, a very
difficult optimization problem.

In the remainder of this section, we introduce two different
solutions to overcoming this problem. The first involves a
slight modification of the objective function of Eq. (1) to
make the learned filters separable by lowering their rank. The
second exploits the fact that arbitrary filters of rank R can be
expressed as linear combinations of R separable filters [33].
This second solution is more general than the first as it can
be applied to any filter bank. It involves approximating the f j

filters of Eq. (1) with linear combinations of separable filters,
and we give two methods two obtain these filters. We will
show in the Results section that the resulting separable filters,
unlike those obtained using the first solution, retain the full
discriminative power of the full-rank ones.

3.1 Penalizing High-Rank Filters
A straightforward approach to finding low-rank filters is to
add a penalty term to the objective function of Eq. (1) and to
solve

argmin
{sj},{mj

i}

∑
i

∥∥∥∥∥xi −
J∑
j=1

sj ∗mj
i

∥∥∥∥∥
2

2

+ Γim,s

 , (2)

with Γim,s = λ1

J∑
j=1

∥∥∥mj
i

∥∥∥
1

+ λ∗

J∑
j=1

∥∥∥sj∥∥∥
∗
, (3)

where the sjs are the learned linear filters, ‖ · ‖∗ is the
nuclear norm, and λ∗ is an additional regularization parameter.
The nuclear norm of a matrix is the sum of its singular values
and is a convex relaxation of the rank [15]. Thus, forcing the
nuclear norm to be small amounts to lowering the rank of the
filters. Experimentally, for sufficiently high values of λ∗, the
sj filters become effectively rank 1 and they can be written as
products of 1D filters.

Solving Eq. (2), which has the nuclear norm of the filters as
an additional term compared to Eq. (1), requires minimal extra
effort. After taking a step in the direction opposite of that of

1. Soft-thresholding is the proximal operator for the `1 penalty term [3]; its
expression is proxλ(x) = sgn(x)max(|x| − λ, 0). Proximal operators allow
to extend gradient descent techniques to some nonsmooth problems.

the gradient of the filters, as described in the previous section,
we just have to apply the proximal operator of the nuclear
norm to the filters. This amounts to performing a Singular
Value Decomposition (SVD) s = UDV> on each filter s,
soft-thresholding the values of the diagonal matrix D to obtain
a new matrix D̂, and replacing s by UD̂V>. At convergence,
to make sure we obtain separable filters, we apply a similar
SVD-based operation but set to 0 all the singular values but
the largest one. In practice, the second largest singular value
is already almost zero even before clipping.

Choosing appropriate values for the optimization parame-
ters, the gradient step size, λ1, and λ∗, is challenging because
they express contrasting needs. We have found it effective
to start with a low value of λ∗, solve the system, and then
progressively increase it until the filter ranks are close to one.

3.2 Linear Combinations of Separable Filters
We will show in the Results section that the separable filters
obtained using the method discussed above give less accurate
classification results than the non-separable ones. This is prob-
ably because the additional constraints imposed on the filters
make the problem too hard to solve optimally, as observed
in [17] when learning separable dictionaries for denoising
purposes.

We therefore introduce a second approach that exploits the
fact that a filter f j of rank R can always be written as

f j =

R∑
k=1

wk
j s

j,k , (4)

where the sj,k filters are separable, or equivalently of rank
one, and the wk

j are scalar weights.
In the 2D case, such a representation could be obtained by

SVD decomposition of each one of the J f j filters of Eq. (1)
independently. However, this would yield a different bank of
filters for each f j and would be inefficient at run-time. To
avoid this, we impose that each f j be written as

f j =

K∑
k=1

wk
j s

k , (5)

where the separable filters sk are shared among all the non-
separable ones and only the coefficients wk

j ’s change. In
this way, convolving the image with all the f j’s at run-
time amounts to convolving it with the separable sk filters
and then linearly combining the results, without any further
convolutions.

3.2.1 Minimizing the Nuclear Norm
A most direct way to learn the separable filters sk and scalar
coefficients wk

j of Eq. 5 would be to solve

argmin
{mj

i}
{sk},{wj

k
}

∑
i

∥∥∥∥∥xi −
J∑
j=1

(
K∑
k=1

wkj s
k

)
∗mj

i

∥∥∥∥∥
2

2

+ Γim,s

 , (6)

where Γi
m,s is defined in Eq. (3) and includes the nuclear

norm. This is a reformulation of Eq. (2) with wk
j = 1 if j =
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Fig. 2: Tensor decomposition for learning separable filters. Left: A bank of two-dimensional filters is stacked together to form a 3-dimensional
tensor, Right: The tensor is decomposed in the sum of K rank-one tensors. Thus, the original filters are approximated by the weighted sum
of the separable filters sk = ak ◦ bk.

k and 0 otherwise. Unfortunately, this objective function is
difficult to optimize because its first term contains products
of three unknowns, in addition to the second term involving
the `1 norm of the feature maps and the nuclear norm of the
filters.

A standard way to handle this difficulty is to introduce aux-
iliary unknowns, making the formulation linear by introducing
additional parameters. Parameter tuning is, however, already
difficult in the formulation of Eq. (1), and this would therefore
only worsen the situation. We tried instead a simpler approach,
which has yielded better results by decoupling the computation
of the non-separable filters from that of the separable ones. We
first learn a set of non-separable filters {f j}j by optimizing
the original objective function of Eq. (1). We then look for
separable filters whose linear combinations approximate the
f j filters by solving

argmin
{sk},{wj

k
}

∑
j

∥∥∥∥∥f j −
K∑
k=1

wkj s
k

∥∥∥∥∥
2

2

+ λ∗

K∑
k=1

∥∥∥sk∥∥∥
∗
. (7)

Even though this may seem suboptimal when compared to the
global optimization scheme of Eq. (6), it gives superior results
in practice because the optimization process is split into two
easier tasks and depends on just two parameters, easing their
scheduling.

To solve Eq. (7), we alternately optimize on the filters
sk and on the weights wk

j using gradient descent. At each
iteration, after moving in the gradient direction, we apply
the proximal operator of the nuclear norm to the filters, as
described in Section 3.1 to minimize the criterion of Eq. (2).

3.3 Tensor Decomposition

The method described in the previous section produces a small
set of separable filters that approximate the original ones.
However, it requires introducing an additional regularization
parameter λ∗ that can be difficult to tune. Moreover, we
have experimentally found that its convergence rate is slow,
especially when trying to approximate high-rank filters. We
therefore introduce here an alternative approach to finding the
separable filters sk and weights wk

j of Eq. (5), that relies on
tensor decomposition.

Low rank tensor decomposition techniques have been used
in many Computer Vision applications [20], [5], [4], [40] to
obtain a speed up for a particular application. In this section,
we show how tensor decomposition can be used in a general
framework to obtain the decomposition of Eq. (4) for an arbi-
trary filter bank and speed up convolutions. As we will show
in Section 5, not only this approach is faster than optimizing
Eq. (7), but also returns more accurate approximations.

We start by stacking the J filters f j ∈ Rd1×d2 into a 3-
dimensional tensor F ∈ Rd1×d2×J , where the j-th slice of F
corresponds to the j-th filter f j , as shown in Fig. 2.

Writing the slices of F as linear combinations of rank-
one matrices is equivalent to writing the tensor F as a linear
combination of rank-one tensors

F =

K∑
k=1

ak ◦ bk ◦wk , (8)

where ak is a vector of length d1, bk a vector of length d2
and wk a vector of length J . The symbol ◦ corresponds to
the tensor product, that for vectors is also referred to as outer
product. Such a decomposition is called Canonical Polyadic
Decomposition (CPD) [21] of the tensor F and the right-hand
side of Eq. (8) is called Kruskal form of the tensor. We will
refer to K as the rank of the Kruskal tensor.

If tensor F can be written in the form of Eq. (8), we obtain

f j =

K∑
k=1

wk
j s

k, ∀j,

where the separable filters are given by the ak and bk

components of the CPD, that is, sk = ak◦bk. The coefficients
wk

j necessary to reconstruct the filter j are given by the j-th
component of the wk vectors, as shown in Fig. 2.

In general, for a given K, we have no guarantee that the
decomposition of Eq. (8) exists. Thus, we will compute the
best approximation of this form by optimizing

min
{ak,bk,wk}k

∥∥∥∥∥F −
K∑

k=1

ak ◦ bk ◦wk

∥∥∥∥∥
2

2

. (9)
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(a) (b) (c) (d)

Fig. 3: Examples of 3D filter banks learned on the OPF dataset [2]. (a) A 3D test image stack. (b) Response of the classifier trained on
the separable filter bank output (d). (c) Non-separable filter bank learned by optimizing Eq. (1). (d) The separable filter bank learned by
optimizing Eq. (7).

To this end, we use the CP-OPT algorithm of [1], implemented
in the MATLAB tensor toolbox, in which Eq. (9) is solved
by conjugate gradient descent. Details about the optimization
procedure are given in the Appendix.

The rank K of the decomposition is the only parameter of
the method. It determines the number of separable filters used
to approximate the original filter bank.

In Section 5 we will show that the two strategies based
on the linear combination of separable filters, presented in
Section 3.2, yields the best results and that they are really
close in terms of accuracy and efficiency. In Section 5.6 we
will show that the Tensor Decomposition approach of Eq. (9)
has faster convergence and gives a better approximation of the
original filter bank, compared to the approach of Eq. (7) and
therefore should be preferred in practice.

4 LEARNING N -D SEPARABLE FILTERS

The computational complexity of feature extraction becomes
even more daunting when handling multidimensional data,
such as the 3D volume in Fig. 3. Fortunately, our approach to
learning separable filters generalizes naturally to any dimen-
sion.

As will be shown in the Results section, the formalism of
Sections 3.2.1 and 3.3 yields the best results in the 2D case
and we therefore rely on it for the proposed extension.

Minimizing the Nuclear Norm: The structure of the opti-
mization scheme of Eq. (7) of Section 3.2.1 is unchanged.
It simply involves a CPD of the filters instead of the SVD
decomposition used for the 2D filters, during the optimization
procedure.

Tensor Decomposition: Similarly, the generalization of the
method of Section 3.3 to N -D filters is straightforward. Let
{f j}Jj=1 be a set of filters, with f j ∈ Rd1×···×dN ∀j. Let F
be the (N + 1)-D tensor formed by stacking the f j’s along
the (N + 1)-th dimension, that is Fi1,i2,...,iN ,j = f ji1,i2,...,iN .
Applying CPD of rank K to F , yields

F ≈
K∑

k=1

ak,1 ◦ ak,2 ◦ · · ·ak,N ◦wk.

Therefore, for all j = 1, . . . , J , f j ≈
∑K

k=1 w
k
j s

k, with sk =
ak,1 ◦ ak,2 ◦ · · ·ak,N .

In Section 5.6 we compare the tensor decomposition ap-
proach against the approach of Eq. (7), showing that the first
one converges faster and gives lower approximations errors.

5 RESULTS AND DISCUSSION

In this section, we compare the performance and computa-
tional complexity that results from using either separable filters
or non-separable ones and different strategies for deriving
them.

We first introduce these strategies and provide a theoretical
analysis of their respective computational complexities. We
then test them for three very different purposes:
• classifying pixels and voxels in biomedical images as

belonging to linear structures or not;
• denoising;
• performing handwritten digit recognition and drone de-

tection using convolutional neural networks.
We will show that our separable filters systematically de-
liver a very substantial speed-up at no loss in performance
in line with our theoretical analysis. The code and pa-
rameters for all these experiments are publicly available at
http://cvlab.epfl.ch/software/filter-learning.

5.1 Competing Strategies
In the following, we will refer to the non-separable filters
obtained by minimizing the objective function of Eq. (1) as
NON-SEP and the separable ones learned using the technique
of Section 3.1 as SEP-DIRECT. These essentially constitute
baselines that reflect the current state-of-the-art. To provide
additional baselines, we also compute separable SEP-SVD and
SEP-CPD filters by approximating each NON-SEP filter by the
outer product of its first left singular vector with its first right
singular vector computed using SVD in 2D and by rank-1
CPD in 3D, which is the simplest way to approximate a non-
separable filter by a separable one. For completeness’ sake, we
reimplemented NON-SEP using the Fast Fourier Transform to
perform the convolutions. This approach is known to speed-up
convolutions for large enough filters and we will refer to it as
NON-SEP-FFT.
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SEP-COMB and SEP-TD will denote the separable ones
we advocate in this paper and whose linear combinations can
be used to approximate the non-separable NON-SEP filters as
described in Section 3.2. More specifically, SEP-COMB will
refer to those that have been learned by minimizing the nuclear
norm, as described in Section 3.2.1 and SEP-TD to those
obtained by tensor decomposition, as discussed in Section 3.3.

Finally, although the SEP-COMB and SEP-TD filters can
be used to write the non-separable ones as linear combina-
tions of them, explicitly computing the coefficients of these
combinations is not always necessary. For example, when
the filters’ output is to be fed to a linear classifier for
classification purposes, this classifier can be trained directly on
the separable-filters’ output instead of that of the non-separable
ones. This approach, which we will refer to as SEP-COMB∗

and SEP-TD∗, further simplifies the run-time computations
because the linear combinations’ coefficients are then learned
implicitly at training-time.

5.2 Computational Complexity
The different methods described in the previous section are
summarized in Table 1. Here, we provide an analysis of
their computational complexities in terms of the number of
multiplications required to perform the necessary run-time
convolutions.

5.2.1 The 2D Case
Let x ∈ Rn1×n2 be an image we want to convolve with a
filter bank {f j}Jj=1, with f j ∈ Rd1×d2 .

In the NON-SEP case, J convolutions are computed in
the spatial domain and each one requires n1 · n2 · d1 · d2
multiplications, for a total of

NON-SEPnop = J · n1 · n2 · d1 · d2 (10)

multiplications.
In the NON-SEP-FFT case, the convolutions are performed

in the frequency domain, which involves the following steps:
• Padding x and f j with zeros to have the same size m1×
m2, where mi is the closest power of 2 larger than (ni +
di − 1), for i = 1, 2;

• Computing real-to-complex FFT on the padded image
and the J filters;

• Multiplying the resulting discrete Fourier transform
(DFT) of the image by that of each filter;

• Computing complex-to-real Inverse FFT (IFFT) on the
results.

To decrease the total computational cost of the convolutions,
we can precompute the FFT of the filters, at the cost of using
more memory.

Assuming that each FFT and IFFT requires c · m1 · m2 ·
log2 (m1 ·m2) complex multiplications where c depends on
the specific FFT algorithm being used and that each complex
multiplication requires 3 real multiplications, this yields a total
of

NON-SEP-FFTnop = 3 · c ·m1 ·m2 · log2(m1 ·m2)

+ 3 · J ·m1 ·m2

+ 3 · J · c ·m1 ·m2 log2(m1 ·m2) (11)
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Fig. 4: Number of operations per pixel to compute convolutions, as
a function of the filters size. (a) An image of 488 × 488 pixels is
convolved with a filter bank of J = 121 non-separable filters and
K = 25 separable ones. (b) A volume of 114 × 114 × 50 voxels
is convolved with a filter bank of J = 121 non-separable filters and
K = 25 separable ones. The theoretical values are very similar to
the experimental time shown in Fig. 1 and they show that the number
of operations needed to compute the convolutions with our approach
is smaller than both spatial convolution and FFT based convolution.

multiplications. In practice, the value used for the constant c
is 2.

When the filters are separable, the cost of a spatial convolu-
tion reduces to n1 ·n2 ·(d1+d2). If the filter bank is composed
of K filters, this represents

SEP*nop = K · (n1 · n2 · (d1 + d2)) (12)

multiplications. This is the total cost for SEP-COMB∗ and
SEP-TD∗. In the cases of SEP-COMB and SEP-TD, one must
account for the additional cost of linearly combining the results
to approximate the J non-separable filters. This requires n1 ·
n2 ·K · J more multiplications, for a total of

SEPnop = K · n1 · n2 · (J + d1 + d2) (13)

multiplications.
In Fig. 4(a), we plot the values of NON-SEPnop,

NON-SEP-FFTnop, SEP*nop, and SEPnop, normalized by the
number of pixels in the image, as a function of the size
d = d1 = d2 of the filters between [3, 25]. A 2D test image
of size 488× 488 is considered and convolved with J = 121
non-separable filters and K = 25 separable ones. Notice that
the size of the image is chosen so that the size considered
to compute the FFT is a power of 2 for the maximum value
of the filters d = 25. In this way the zero-padding required is
minimal, which is at the advantage of the FFT based approach.

Note that these theoretical curves are very similar to those
observed experimentally, shown in Fig. 1.

Our code relies on the MATLAB conv2 function for spatial
2D convolutions and on the fftw library for the frequency
domain convolutions. Observe that these functions can be run
in parallel to further reduce the cost of the convolutions, as
shown in Fig. 5.

5.2.2 The N -D Case
The generalization to any dimension is straightforward. If
x ∈ Rni×,...,×nN is an N -dimensional image and f j ∈
Rd1×,...,×dN an N -dimensional filter, the cost of a non-
separable convolution becomes

∏N
i=1 n1 · di. The cost of a
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TABLE 1: Summary of the different methods used for our experiments, as described in Section 5.3.

Method Name Filter Bank Run Time Computations
NON-SEP Non-separable filters learned from Eq. (1) Spatial convolutions
NON-SEP-FFT Non-separable filters learned from Eq. (1) FFT convolutions
SEP-SVD Approximation of NON-SEP by truncated SVD in 2D Separable convolutions
SEP-CPD Approximation of NON-SEP by rank-one CPD in 3D Separable convolutions
SEP-DIRECT Separable filters learned from Eq. (2) Separable convolutions
SEP-COMB Separable filters learned from Eq. (7) Separable convolutions + linear combinations
SEP-TD Separable filters learned from Eq. (9) Separable convolutions + linear combinations
SEP-COMB* and SEP-TD* As SEP-COMB and SEP-TD Separable convolutions
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Fig. 5: Time needed to compute convolutions using a multi-thread
MATLAB implementation, as a function of the filters size. (a) An
image of 488×488 pixels is convolved with a filter bank of J = 121
non-separable filters and K = 25 separable ones. (b) A volume
of 114 × 114 × 50 voxels is convolved with a filter bank of J =
121 non-separable filters and K = 25 separable ones. Using parallel
computation the time needed to compute the convolution is further
reduced and our methods are still the most efficient ones. The times
are averaged over 5 repetitions.

separable convolution is
(∏N

i=1 ni

)
·
(∑N

i=1 di

)
and the cost

of a FFT is c · m · log2(m), where m is the product of the
closest larger powers of 2 of ni + di − 1.

Figs. 4(b) and 5(b) illustrate that using separable filters
is even more advantageous for the 3D case. Here the size of
the filters is between 3 and 15 and a 114× 114× 50 volume
is considered. Again the size of the volume is taken at the
advantage of the FFT based approach.

5.3 Detection of Curvilinear Structures
Biomedical image processing is a particularly promising field
of application for Computer Vision techniques as it involves
large numbers of 2D images and 3D image stacks of ever
growing size, while imposing strict requirements on the quality
and the efficiency of the processing techniques. Here, we
demonstrate the power of our separable filters for the purpose
of identifying curvilinear structures, a long-standing Computer
Vision problem that still remains wide-open when the image
data is noisy.

Over the years, models of increasing complexity and ef-
fectiveness have been proposed, and attention has recently
turned to Machine Learning techniques. In [16], [39] a Support
Vector Machine classifier is applied to the responses of ad hoc
filters. In particular, [39] considers the Hessian’s eigenvalues
while [16] relies on steerable filters. In [37], we showed that
convolving images with non-separable filter banks learned

by solving the problem of Eq. (1) and training an SVM on
the output of those filters outperforms these other methods.
Unfortunately, this requires many such non-separable filters,
making it an impractical approach for large images or image
stacks, whose usage is becoming standard practice in medical
imaging. We show that our approach solves this issue.

5.3.1 Pixel Classification

In the 2D case we considered the two biomedical datasets of
Fig. 6:

• The DRIVE dataset [41] is a set of 40 retinal scans
captured for the diagnosis of various diseases. The dataset
is split into 20 training images and 20 test images, with
two different ground truth sets traced by two different
human experts for the test images.

• The BF2D dataset is composed of minimum intensity
projections of bright-field micrographs of neurons. The
images have a very high resolution but exhibit a low
signal-to-noise ratio, because of irregularities in the stain-
ing process. Furthermore, parts of the dendrites often
appear as point-like structures that can be easily mistaken
for the structured and unstructured noise affecting the
images.

As mentioned above, we showed in [37] that the NON-SEP
approach outperforms other recent approaches [16], [39] that
rely on Machine Learning but is slow. Our goal is therefore
to achieve the same level of performance but much faster. For
completeness, we also compare our results to those obtained
using the Optimally Oriented Flux [22], which we will refer
to as OOF, which is widely acknowledged to be one of the
best techniques for finding curvilinear structures using hand-
designed filters.

In these experiments we replaced the SVM classifiers we
used earlier [37] by Random Forests [8]. They not only
brought a considerable speed improvement, but also resulted
in better performance. Note that we do not need to compute
the linear combination of the filter outputs in the case of SEP-
COMB and SEP-TD, since the Random Forest classifier relies
on linear projections. We will therefore opt for SEP-COMB∗

and SEP-TD∗.
We first learned a filter bank with 121 learned filters of size

21× 21 on the DRIVE dataset and one on the BF2D dataset,
as these parameters provided us with the best results. We have
then learned other filter banks of reduced cardinality, both full-
rank and separable, to assess the impact of the filter bank size
on the final classification performance.
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Fig. 6: Representative images from the 2D medical datasets con-
sidered, together with the corresponding pixel classification results
obtained with our SEP-COMB∗ method.

As there is no universally accepted metric to evaluate pixel
classification performance, we used several to compare our
method to others. In particular, we considered the following:
• Area Under Curve (AUC): represents the area subtended

by the ROC curve. It assumes values in [0, 1], the higher
the better;

• F-measure [44]: assumes values in [0, 1], the higher, the
better;

• Variation of Information (VI) [29]: assumes values in
[0,∞);

• Rand Index (RI) [43]: assumes values in [0, 1], the higher,
the better.

The classification performance is tabulated using these dif-
ferent metrics in Table 2. SEP-COMB∗ and SEP-TD∗ performs
consistently best, closely matching the performance of NON-
SEP but with a significant speed-up. SEP-DIRECT is just as
fast but entails a loss of accuracy. Somewhat surprisingly, SEP-
SVD falls between SEP-DIRECT and SEP-COMB∗ in terms
of accuracy but is much slower than both. Finally, NON-SEP-
FFT yields exactly the same results as NON-SEP as it should
be, but it is much slower than plain 2D convolutions. The
costs of the Fourier Transform are indeed amortized only for

TABLE 2: Analytic measure of the performance of the pixel clas-
sification task over different datasets. For the DRIVE dataset two
ground truth are provided. We use the first one as reference and
compute the analytic measure for the second one. For the other
methods, the VI and RI values are compared on the classification
thresholded at the value found using the F-measure. The values are
averaged over 5 random trials and over the whole dataset images. For
the learning-based approaches, a training set of 50000 positive and
50000 negative samples and a Random Forests classifier have been
used. Approaches that use a separable filter basis have been found
to reduce the computational costs by a factor of 10 in classifications
tasks.

Method AUC F-measure VI RI Time[s]
DRIVE

Human Expert #2 − 0.788 0.380 0.930 −
OOF 0.933 0.695 0.569 0.770 5.70
NON-SEP(121) 0.959 0.782 0.554 0.890 2.22
NON-SEP-FFT(121) 0.959 0.782 0.554 0.890 4.79
SEP-SVD(121) 0.955 0.773 0.563 0.887 1.02
SEP-DIRECT(25) 0.948 0.756 0.602 0.879 0.23
SEP-COMB*(25) 0.959 0.785 0.541 0.894 0.23
SEP-TD*(25) 0.962 0.786 0.572 0.888 0.23

BF2D
OOF 0.958 0.677 0.325 0.891 15.88
NON-SEP(121) 0.983 0.754 0.300 0.945 11.42
NON-SEP-FFT(121) 0.983 0.754 0.300 0.945 23.04
SEP-SVD(121) 0.982 0.749 0.306 0.943 6.67
SEP-DIRECT(25) 0.980 0.750 0.306 0.944 1.44
SEP-COMB*(25) 0.981 0.752 0.301 0.944 1.44
SEP-TD*(25) 0.980 0.749 0.304 0.936 1.44

extremely large image and filter sizes. Hence, it can be inferred
that expressing the learned full-rank filter bank in terms of few
separable filters leads to a significant speed-up at no cost in
terms of accuracy.

The accuracy of OOF is significantly lower than that of
filtering-based approaches.

5.3.2 Voxel Classification
We also evaluated our method on classifying voxels as be-
longing or not to curvilinear structures in 3D volumes of
Olfactory Projection Fibers (OPF) from the DIADEM chal-
lenge [2], which were captured by a confocal microscope.
We first learned the non-separable 3D filter bank made of 49
13× 13× 13 pixel filters depicted by Fig. 11(a) using Eq. (1)
and then the 16 separable filters. Figs. 3(d) and 11(b) show
the separable filters learned using the SEP-COMB and SEP-TD
approaches respectively.

Separable filters are learned as described in Section 4.
As in the 2D case, we then trained classifiers to use these
filters, but we used `1-regularized logistic regressors instead
of Random Forests since they have proved faster without
significant performance loss. For training we used a set of
200000 samples, randomly selected from 4 train images. Since
these classifiers do not require us to compute the linear
combination of the separable filter outputs, we chose again
the SEP-COMB∗ and SEP-TD∗ approach for our experiments.

We use NON-SEP as our baseline. We compare SEP-
COMB∗ and SEP-TD∗ against NON-SEP-FFT, a 3D version
of OOF and SEP-CPD.

The results are essentially the same as in the 2D-case. SEP-
COMB∗ and SEP-TD∗ are 30 times faster than NON-SEP-FFT
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TABLE 3: Analytic measure of the performance of the voxel
classification task over the OPF dataset. The VI and RI values are
compared on the classification thresholded at the value found using
the F-measure. For the learning-based approaches, a training set
of 200000 randomly selected samples and a `1-regularized logistic
regressor classifier have been used. Approaches that use a separable
filter basis have been found to reduce the computational costs by a
factor of 30 in classifications tasks.

Method AUC F-measure VI RI Time[s]
OPF:Image 4

OOF 0.997 0.531 0.012 0.998 193.05
NON-SEP-FFT(49) 0.997 0.571 0.013 0.998 339.01
SEP-CPD(49) 0.997 0.567 0.013 0.998 40.06
SEP-COMB*(16) 0.997 0.570 0.013 0.998 11.08
SEP-TD*(16) 0.997 0.567 0.013 0.998 11.08

for virtually the same accuracy. They are 4 times faster than
SEP-CPD. As before, OOF is even worse in terms of accuracy.

5.4 Denoising
To evaluate how good our approaches are at representing a
set of generic filters in a very different context, we used them
to approximate the 256 denoising filters computed by the K-
SVD algorithm [13], some of which are depicted by Fig. 7(b).
We experimented with different sizes of the approximating
separable filter bank, and reported the results in Table 4.
As can be seen, the 36 separable filters shown in Fig. 7(a)
are already enough to obtain a very accurate approximation,
giving a perfect reconstruction of the original filters up to a
nearly imperceptible smoothing of the filters with many high-
frequency components.

Table 4 reports the denoising scores, measured using the
Peak Signal-to-Noise Ratio (PSNR). [38] also considered
the approximation of filter banks learned with the K-SVD
algorithm by using sparse linear combinations of separable
filters computed from a 1D DCT basis. However, we need
significantly fewer separable filters, only 36 compared to the
100 required by [38].

Interestingly, the basis of separable filters we learn seem
general. We proved that by taking the filters that were learned
to approximate a filter bank of a specific image, and we used
them to reconstruct the filter banks of the other images. In
other words, we kept the same sk filters learned for the Barbara
image, and only optimized on the wk

j weights in Eq. (7) and
Eq. (9). The results are summarized in Table 4.

5.5 Convolutional Neural Networks
In recent years, Convolutional Neural Networks (CNNs) have
become increasingly popular and have been shown to improve
upon the previous state-of-the-art for many challenging tasks.
However, they are computationally intensive and this remains
a barrier to their wide acceptance. In this section, we show
that replacing the non-separable filters they typically use by
separable ones can help alleviate this problem.

Recent works such as [11], [12] have addressed this issue,
albeit in a different way. The authors of [11] focus on
reducing complexity at training time. They show that thanks
to the correlation present in the weights, it is possible to

original

reconstructed
(a) (b)

Fig. 7: Approximating an existing filter bank. (a) The 36 separable
filters learned by SEP-COMB to approximate a bank of 256 filters
learned with the K-SVD algorithm of [13]. (b) Comparison between
some of the original filters learned by K-SVD (top row) and their
approximations reconstructed by our algorithm (bottom row). While
filters with a regular structure are very well approximated, noisy
filters are slightly smoothed by the approximation. Their role in the
denoising process is, however, marginal, and therefore this engenders
no performance penalty.

TABLE 4: Results for the image denoising task. The denoising
results are given in terms of Peak Signal-to-Noise ratio (PSNR) and
measured in decibels. The images are corrupted by additive white
gaussian noise with a standard deviation of 20. The filters learned by
K-SVD algorithm are approximated using different separable filter
learning approaches. In the last part of the experiment, the filters
learned from the Barbara image are used to denoise other images in
order to assess how generic the denoising filters are.

Barbara Boat House Lena Peppers
Noisy image 22.11 22.11 22.13 22.11 22.11
K-SVD(256) 30.87 30.39 33.36 32.40 32.34
SEP-COMB(25) 30.10 30.30 33.04 32.37 32.08
SEP-TD(25) 30.21 30.33 33.18 32.39 32.23
SEP-COMB(36) 30.76 30.38 33.23 32.39 32.27
SEP-TD(36) 30.79 30.39 33.27 32.41 32.10
SEP-COMB(49) 30.86 30.40 33.30 32.40 32.30
SEP-TD(49) 30.87 30.40 33.33 32.40 32.31
SEP-COMB(64) 30.87 30.39 33.35 32.40 32.33
SEP-TD(64) 30.87 30.39 33.35 32.40 32.33
SEP-COMB(36)-Barbara − 30.01 31.76 32.26 31.83
SEP-TD(36)-Barbara − 30.02 31.71 32.27 31.82
SEP-COMB(64)-Barbara − 30.04 31.97 32.27 31.93
SEP-TD(64)-Barbara − 30.05 31.96 32.27 31.93

optimize only a small fraction of the parameters and predict
the remaining ones starting from them, without losing accuracy
at test time.

The approach of [12] is more similar in spirit to ours.
They reduce the complexity of the convolutional layers at test
time by using smaller but non-separable operators, reducing
computation by a 1.6 factor. Using separable filters learned
with our method instead, we will show up to a factor 3 speed
up. Moreover, the three approaches could be combined to
achieve an even greater-speed up. A network could be trained
using the approach of [11], then the decomposition [12] could
be applied to obtain a smaller set of filters, to be turned into
separable ones by using our approach.

In our experiments, we considered the following two
datasets:
• The MNIST dataset [25] is a standard Machine Learning

benchmark that consists of 70000 images of hand-written
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TABLE 5: Handwritten digit recognition on MNIST dataset with
convolutional neural networks. Different kernel sizes are used in
the first and second convolutional layers to evaluate the effect of
kernel size on the classification performance and the execution time.
The classification results and the execution times are reported for
separable and non-separable filters. When separable filters are used in
convolutions, the linear combinations of the convolutions of separable
filters are computed in order to approximate the convolutions with
non-separable filters. By using the separable filters, we can divide the
computational times by 2, at the cost of a negligible accuracy loss.

MNIST

Kernel Size Misclassification Rate Execution Time

1st Layer 2nd Layer SEP NONSEP SEP NONSEP

5 5 5.27% 5.17% 27.33 28.77
5 9 4.84% 4.17% 24.9 44.61
9 9 3.47% 3.17% 21.9 48.54

Fig. 8: Filters used in convolutional neural networks. (a) 12 filters
going out of a node of the second convolutional layer. (b) A set of 4
separable filters obtained after tensor decomposition. (c) Comparison
of the original and the approximated filters.

digits. The training set contains 60000 images and the test
set 10000. A batch size of 50 is used with a learning rate
of 1 for 5 epochs to train the CNN.

• We built a Drone Detection dataset that consists of 40×
40 images in which a drone rotorcraft may or may not
appear. The task is to say whether the drone is present or
not, with a view to automated visual collision avoidance
in swarms of such drones. The training and test datasets
both contain 10950 images. Representative samples are
shown in Fig. 9. Note that they are low-resolution and
subject to motion-blur. A batch size of 10 is used with a
learning rate of 1 for 100 epochs in training.

We consider an architecture consisting of 4 fully connected
hidden layers for the MNIST dataset and 5 fully connected
hidden layers for the Drone Detection dataset. We trained
the networks using different kernel sizes in order to study
the influence on the performance and the execution time. For
our experiments, we used a publicly available Deep Learning
Matlab toolbox [32].

The first layer consists of 6 feature maps connected to the
single input layer via 6 kernels. The second layer is a 2-by-
2 downsampling layer. The third layer consists of 12 feature
maps connected to the 6 downsampling layers via 72 kernels.
The fourth layer is again a 2-by-2 downsampling layer.

For digit classification, the feature maps obtained at the last
layer are concatenated into feature vectors and fed into the last
layer, which has 10 output neurons in order to do multiway
classification between 10 handwritten digit characters.

TABLE 6: Drone detection task with convolutional neural networks.
As for the MNIST dataset, we considered different kernel sizes in
the convolutional layers. Using separable filters the execution time
can be reduced up to a factor of 3 without decreasing accuracy.

Drone Detection

Kernel Size Misclassification Rate Execution Time

1st Layer 2nd Layer 3rd Layer SEP NONSEP SEP NONSEP

5 5 5 0.17% 0.16% 9.72 17.55
5 5 9 0.09% 0.08% 19.69 44.33
5 9 9 0.02% 0.02% 36.35 102.15

Fig. 9: Some training images from the Drone Detection dataset. A
convolutional neural network is trained to classify images containing
a rotorcraft drone. Separable filters can be used to speed up the
execution time of the convolutional layers.

For drone detection, one more convolution layer consisting
of 24 feature maps fully connected to the fourth layer is added.
These feature maps are fed into 2 output neurons in order to
discriminate whether the image contains a drone or not.

To obtain separable kernels, we apply the SEP-TD approach
at each convolution layer. For the MNIST dataset, the 6 kernels
in the first layer are approximated using 3 separable filters.
In the second layer, we group the 12 filters corresponding
to each outgoing feature map together and approximate them
by 4 separable filters independently. For the Drone Detection
dataset, 4 separable filters are used to approximate 6 filters
in the first convolution layer. In the second convolution layer,
12 filters at each outgoing feature map are approximated with
5 filters independently. In the third convolution layer, the 24
filters at each outgoing node of the third convolution layer are
approximated by 9 filters.

The execution times and the misclassification rates are
reported in Tables 5 and 6 for different kernel sizes. Using
separable filters speeds up the convolutional neural network
without loss in accuracy. In particular, for a kernel size of
9, classification becomes two to three times faster. Note that
the purpose of these experiments is not necessarily to achieve
state-of-the-art performance in a given task using CNNs, but
to prove that our approach can be used on an arbitrary CNN
to speed up convolutions without loss in accuracy, which is
what it does.

Fig. 8 shows 12 of the filters in the second convolutional
layer learned on the MNIST dataset and the 4 separable
filters used to approximate them. Fig. 8(c) presents a visual
comparison between the original and the reconstructed filters.

5.6 Comparison between SEP-COMB and SEP-TD

In the previous sections we showed that an arbitrary filter
bank can be approximated by linear combinations of separable
filters. We also proved that such decomposition can be used in
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several Computer Vision tasks to decrease the computational
complexity without substantial changes in accuracy.

In this section we compare SEP-COMB and SEP-TD in
terms of approximation error and learning time. In particu-
lar we will see that SEP-TD has the following advantages
compared to SEP-COMB:
• Parameter reduction: The only parameter of SEP-TD is

the number of separable filters used to approximate the
original one, while SEP-COMB relies on a regularization
parameter.

• Faster convergence: SEP-TD approach converges faster
than SEP-COMB, as can be seen in Fig. 12. The advan-
tage of using SEP-TD rather than SEP-COMB is more
pronounced in the 3D case.

• Lower approximation error: This can be explained by
the fact that in the SEP-TD approach, a non-separable
filter is explicitly written as the sum of the products of
1D filters. This approach provides a better approximation
quality then SEP-COMB, which relies on a soft constraint
to make the filter ranks low, as shown in Fig. 12 and
Fig. 13. The visual quality of the approximation of a non-
separable filter bank by linear combinations of separable
filters obtained with SEP-TD is illustrated in Figs. 10
and 11.

Fig. 10: Convolutional filter banks for classification in 2D. (a)
Learned non-separable filter bank from DRIVE dataset, (b) separable
filter bank learned with the SEP-TD approach, (c) reconstructed filter
bank. The non-separable filters can be approximated accurately using
a smaller set of separable filters.

Fig. 11: Convolutional filter banks for classification in 3D. (a)
Learned non-separable filter bank from OPF dataset, (b) separable
filter bank learned with the SEP-TD approach, (c) reconstructed filter
bank. As in the 2D case, the non-separable filters can be approximated
accurately using a smaller set of separable filters.

6 CONCLUSION

We have proposed a learning-based filtering scheme applied
to the extraction of curvilinear structures, along with two

learning-based strategies for obtaining separable filter banks.
The first one directly learns separable filters by modifying
the regular objective function. The second one learns a basis
of separable filters to approximate an existing filter bank,
and not only gets the same performance of the original,
but also considerably reduces the number of filters, and
thus convolutions, required. We presented two optimization
schemes for this second approach. In the first one the separable
filters are learned by lowering their ranks. In the second one,
which proved to be more efficient and accurate, the filters are
obtained by tensor decomposition.

Our techniques bring to learning approaches one of the most
coveted properties of handcrafted filters, namely separability,
and therefore reduce the computational burden traditionally
associated with them. Moreover, designers of handcrafted filter
banks do not have to restrict themselves to separable filters
anymore: they can freely choose filters for the application at
hand, and approximate them using few separable filters with
our approach.

REFERENCES

[1] E. Acar, D. M. Dunlavy, and T. G. Kolda. A Scalable Optimization
Approach for Fitting Canonical Tensor Decompositions. Journal of
Chemometrics, 2011.

[2] G. Ascoli, K. Svoboda, and Y. Liu. Digital Reconstruction of Axonal
and Dendritic Morphology DIADEM Challenge, 2010.

[3] F. Bach, R. Jenatton, J. Mairal, and G. Obozienski. Optimization with
Sparsity-Inducing Penalties. Technical report, INRIA, 2011.

[4] C. Bauckhage. Tensor-based filter design using kernel ridge regression.
In International Conference on Image Processing, 2007.

[5] C. Bauckhage, T. Käster, and J. K. Tsotsos. Applying ensembles
of multilinear classifiers in the frequency domain. In Conference on
Computer Vision and Pattern Recognition, 2006.

[6] Y. Bengio. Learning Deep Architectures for AI. Now Publishers, 2009.
[7] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[8] L. Breiman. Random Forests. Machine Learning, 2001.
[9] H. Bristow, A. Eriksson, and S. Lucey. Fast Convolutional Sparse

Coding. In Conference on Computer Vision and Pattern Recognition,
2013.

[10] A. Coates and A. Ng. The Importance of Encoding Versus Training with
Sparse Coding and Vector Quantization. In International Conference on
Machine Learning, 2011.

[11] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas. Predicting
parameters in deep learning. In Advances in Neural Information
Processing Systems, pages 2148–2156, 2013.

[12] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting
linear structure within convolutional networks for efficient evaluation.
CoRR, abs/1404.0736, 2014.

[13] M. Elad and M. Aharon. Image Denoising via Sparse and Redundant
Representations over Learned Dictionaries. IEEE Transactions on Image
Processing, 2006.

[14] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Cu-
lurciello. Hardware Accelerated Convolutional Neural Networks for
Synthetic Vision Systems. In International Symposium on Circuits and
Systems, 2010.

[15] M. Fazel, H. Hindi, and S. Boyd. A Rank Minimization Heuristic with
Application to Minimum Order System Approximation. In American
Control Conference, 2001.

[16] G. Gonzalez, F. Fleuret, and P. Fua. Learning Rotational Features for
Filament Detection. In Conference on Computer Vision and Pattern
Recognition, pages 1582–1589, 2009.

[17] S. Hawe, M. Seibert, and M. Kleinsteuber. Separable Dictionary
Learning. In Conference on Computer Vision and Pattern Recognition,
2013.

[18] G. Hinton. Learning to Represent Visual Input. Philosophical Transac-
tions of the Royal Society, 2010.

[19] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu,
and Y. LeCun. Learning Convolutional Feature Hierarchies for Visual
Recognition. In Advances in Neural Information Processing Systems,
2010.



0162-8828 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2014.2343229, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

0 2 4 6 8
10

−5

10
−4

10
−3

10
−2

Time (s)

R
ec

on
st
ru
ct
io
n
E
rr
or

SEP−COMB, λ
*
=0.2

SEP−COMB, λ
*
=0.1

SEP−COMB, λ
*
=0.05

SEP−TD

0 20 40 60 80
10

−5

10
−4

10
−3

Time (s)

R
e
co

n
st
ru

ct
io
n
E
rr
o
r

SEP−COMB, λ
*
=0.05

SEP−COMB, λ
*
=0.01

SEP−COMB, λ
*
=0.002

SEP−TD

(a) (b)

Fig. 12: Comparison of the reconstruction errors of SEP-TD and SEP-COMB as a function of the learning time for approximating (a)
a 2D non-separable filter bank and (b) a 3D non-separable filter bank. The performance of the SEP-COMB approach depends on the
specified regularization parameter λ∗. Small regularization parameters yield a smaller reconstruction error. SEP-TD does not need to satisfy
an additional constraint and yields a smaller reconstruction error compared to SEP-COMB with a faster convergence. In the 3D case, the
difference is even more pronounced.
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