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Abstract
We study from a theoretical standpoint the ambigui-

ties that occur when tracking a generic deformable sur-
face under monocular perspective projection given 3–D to
2–D correspondences. We show that, additionally to the
known scale ambiguity, a set of potential ambiguities can
be clearly identified.

From this, we deduce a minimal set of constraints re-
quired to disambiguate the problem and incorporate them
into a working algorithm that runs on real noisy data.

1. Introduction
Without a strong model, 3–D shape recovery of non-

rigid surfaces from monocular video sequences is a severely
under-constrained problem. Prior models are required to re-
solve the inherent ambiguities.

Many approaches to creating such models have been pro-
posed, such as physics-based models [10, 11, 3, 5, 9], fea-
ture point-based structure from motion algorithms [13, 7,
16] and machine learning techniques [2, 12, 8]. However,
as will be discussed in Section 2, these methods typically
make restrictive assumptions that prevent them from being
completely general.

Furthermore, we are not aware of any formal study of
the ambiguities when explicitly reconstructing deformable
surfaces in the total absence of prior knowledge, or of the
number of constraints that must be supplied to resolve them.
In this paper, we address this issue from a theoretical stand-
point and show how such a theoretical understanding can
be translated into working algorithms that make minimal
assumptions on the range of possible surface deformations.

As shown in Fig. 1, we focus here on surfaces that are
textured enough to let us establish 3–D to 2–D correspon-
dences between interest points on the surface and their im-
age locations but whose physical properties may be very
different. Requiring texture is a limiting assumption but our
approach nevertheless represents a key step towards design-
ing video-based tracking algorithms able to reconstruct the
deformations of classes of deformable surfaces whose be-

Figure 1. Reconstruction of deformable surfaces from video se-
quences with minimal a priori knowledge. We constrain the re-
construction of the deforming sheet of paper and of the much flex-
ible plastic sheet in the same manner, even though they have very
different physical properties.

havior is not known a priori: Given a robust algorithm able
to recover the deformations of such a surface when it is suf-
ficiently textured, it will become feasible to construct large
training sets of such deformations; to use them to learn low-
dimensional deformation models; and finally to use these
models to recover the shape of surfaces of the same class
even though they may be less textured.

More specifically, we model our surfaces as triangulated
meshes seen under perspective projection. Computing the
3–D coordinates of its vertices can be achieved by solving a
large linear system, whose rank and singular values we can
easily compute. This will allow us to show that:
• Given sufficiently many noise-free correspondences,

the coordinates can be retrieved up to a single scale
ambiguity.

• In practice, the image locations of the correspondences
are never perfect and the resulting ambiguities can be
attributed to the presence of very small singular values
in the linear system. These ambiguities actually cor-
respond to those of a piecewise affine model, which
introduces an extra depth ambiguity for each vertex.

• The ambiguities can be resolved by considering a se-
quence of images instead of a single one and impos-
ing a very simple dynamics model that links the re-
constructions in consecutive images. This results in a
much larger linear system but of full rank thanks to the
additional motion constraints.



We will show that for surfaces with physical properties
as different as those of the sheet of paper and the piece of
plastic of Fig. 1, the same set of generic constraints allows
us to resolve the ambiguities. As a result, we can retrieve
their overall shape as they deform, even though the corre-
spondences we use are automatically established and there-
fore contain many errors.

2. Related Work
Recovering the shape of a deforming surface in a monoc-

ular sequence requires prior knowledge to make the prob-
lem tractable. Many different approaches have been studied
over the years, most of which make very strong and restric-
tive assumptions about the object of interest.

Physics-based deformation models have been used ex-
tensively to add a qualitative knowledge about the object’s
behaviour. The original 2–D models were first applied to
shape recovery [6], but have also been used for 2–D sur-
face registration [1]. They have rapidly been adapted to
3–D under the form of superquadrics [10], triangulated sur-
faces [3], or thin-plate splines [9]. To reduce the dimension-
ality of the problem, linearity assumptions have also been
made on those models through modal analysis [11, 3, 5].
Even though these models have been extremely successful,
the imply some knowledge of the pseudo-physical proper-
ties of the surface, which may not be available. Further-
more, the complexity of modeling a true nonlinear behav-
ior tends to restrict them to cases where nonlinearities are
small.

Structure from motion methods have also been shown to
be effective. They rely on feature points tracked through a
sequence to retrieve the deformed shape of a surface. A
common assumption in such methods is to consider the
deformations as being a linear combination of bases vec-
tors [7], which can be learned during the process [13]. This
of course does not correspond to the true behaviour of a
surface which, by nature, deforms nonlinearly. A slightly
different approach is to consider piecewise rigid deforma-
tions [16]. In this case, rigid objects are moving indepen-
dently, and the motion of the whole scene is considered as
a deformation. This, again, introduces a strong prior, which
in general is not valid for a deformable surface.

Machine learning techniques have known an increasing
popularity in the past few years. They make use of train-
ing data to build a model that can then be applied to track
objects from monocular images. Even though nonlinear
dimensionality reduction methods have proved successful
in the case of human motion [14], most applications to
deformable surfaces have been linear. Active appearance
models [4] pioneered this approach in the 2–D case and
have since been extended to 3–D [8]. Morphable models [2]
rely on the same philosophy to build 3–D deformable face
models. Recently [12] applied this idea to deformable sur-

face tracking, and created a training set of deformed shapes
by varying angles between the facets of a mesh. How-
ever, their training data are far from corresponding to re-
ality. Machine learning methods have proved efficient, but
suffer from the need of good training sets which might be
hard to obtain, especially in the case of deformable surfaces.

Finally, it was recently shown that texture and shading
information could be combined to retrieve the shape of a
deformable surface [15]. However, very strong assumptions
on the lighting environment must be made, and therefore the
method lacks generality.

The ultimate goal of our research is to solve the prob-
lem of building training sets of deformable surfaces from
textured objects and with minimal prior knowledge of the
feasible deformations. This would constitute a good start-
ing point to learn accurate deformation models that could
then be applied to less textured surfaces of the same kind.
We therefore see this theoretical study as a necessary step
towards fully understanding the problem we are facing and
showing that a few reasonable assumptions can make it
tractable.

3. Single-Image Ambiguities
We represent surfaces as 3–D triangulated meshes and

assume that we are given a set of 3–D to 2–D correspon-
dences between surface points and image locations. In this
section, we show that recovering the shape amounts to solv-
ing an ill-conditioned linear system. We then show that the
degeneracies, or near-degeneracies, of this system corre-
spond to depth ambiguities that can be explained in terms
of a piecewise affine projection model. Since we use a sin-
gle camera and assume its internal parameters to be known,
we express all world coordinates in the camera referential
for simplicity and without loss of generality.

3.1. Ambiguities under Perspective Projection
In this section, we formulate the computation of the 3–D

mesh vertex coordinates given the correspondences in terms
of solving a linear system and discuss its degeneracies. We
start with a mesh containing a single triangle and extend our
result to a complete one.

Projection of a 3–D Surface Point Let xi be a 3–D point
whose coordinates are expressed in the camera referential.
We write its perspective projection as
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where A is the internal parameters matrix, and ki a scalar.
If xi lies on the facet of a triangulated mesh, it can be

expressed as a weighted sum of the facet vertices. Eq. 1



becomes
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where vi ,1≤i≤3 are the 3-D coordinate vectors of the ver-
tices and (ai, bi, ci) the barycentric coordinates of xi.

Reconstructing a Single Facet Let us assume that we are
given a list of n such 3–D to 2–D correspondences for points
lying inside one single facet. The vi ,1≤i≤3 coordinates of
its vertices can be computed by solving
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where the ki are treated as auxiliary variables to be recov-
ered as well.

We could have hoped that, for n > 4, the columns of
Mf would become linearly independent and that the system
would then have a unique solution. However, this is not
what happens.

To prove that Mf is rank-deficient, we show that its last
column can always be written as a linear combination of the
others as follows. From Eq. 2 we can write
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where λj = −vj/kn for 1 ≤ j ≤ 3. For all 1 ≤ i < n, we
have
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This implies that the last column of the Mf matrix of Eq. 3
is indeed a linear combination of the previous ones with co-
efficients (λ1

T, λ2
T, λ3

T,−k1/kn, ...,−kn−1/kn). Thus,
in general, Mf has full rank minus 1.

Reconstructing the Whole Mesh If we now consider a
mesh made of nv > 3 vertices with a total of m correspon-
dences, Eq. 3 becomes
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Coefficients similar to those of Eq. 4 can be derived to com-
pute (um, vm, 1)T as a linear combination of the non-zero
columns of the last row. Since these coefficients only de-
pend on km, on the mesh vertices and on the projection ma-
trix, it can easily be checked that, as in the single triangle
case, the last column of the matrix can be expressed as a
linear combination of the others.

Thus matrix Mm of Eq. 5 has still full rank minus 1.
This was to be expected and reflects the well-known scale
ambiguity in monocular vision.

Representing the problem as in Eq. 5 was convenient to
discuss the rank of the matrix. However, in practice, we
want to recover the vertex coordinates but are not interested
in having the ki as unknowns. We therefore eliminate them
by rewriting Eq. 5 as
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with
Ti = A2×3 −
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where A3 represents the last row of matrix A and A2×3 its
first two rows. By construction, the matrix in Eq. 6 has the
same rank as matrix Mm, therefore the following results
are valid for both representations of the problem.

Effective Rank of the Matrices In the previous para-
graph, we showed that Mm has at most full rank minus
one. However, this does not tell the whole story: In general,
it is ill-conditioned and many of its singular values are small
enough so that, in practice, it should be treated as a matrix
of even lower rank. To illustrate this point, we projected
randomly sampled points on the facets of the synthetic 88
vertices mesh of the top row of Fig. 2 using a known camera
model. We then computed the singular values of matrix of
Eq. 6, which we plot in Fig. 3.

In Fig. 4, we show the effect of adding two of the corre-
sponding singular vectors—one associated to the zero sin-
gular value and the other to a small one—to the mesh in its
reference position.



Figure 2. Reconstructing an 88-vertex mesh using perfect correspondences that were corrupted using zero-mean Gaussian noise with
variance five, which is much larger than what can be expected of automated matching technique. Top. The original mesh and reconstructed
one projected in the synthetic view used to create the correspondences. As expected, the projections match very closely. Bottom. The two
meshes seen from a different viewpoint.

Figure 3. Singular values of the matrix of Eq. 6 for the 88 vertex
mesh of Fig. 1. Note how the values drop down after the 2nv =

176
th one, as predicted by the affine model of Section 3.2. The

small graph on the right is a magnified version of the part of the
graph containing the small singular values. The last one is zero up
to the precision of the matlab routine used to compute it and the
others are not very much larger.

(a) (b) (c)
Figure 4. Visualizing vectors associated to small singular values.
(a) Reference mesh and mesh to which one the vectors has been
added seen from the original viewpoint, in which they are almost
indistinguishable. (b) The same two meshes seen from a different
viewpoint. (c) The reference mesh modified by adding the vec-
tor associated to the zero singular value. Note that the resulting
deformation is close to being a scaling.

Even though only one of these values is exactly zero, we
can see that they drop down drastically after the first 2nv =
176. This shows that, even though the matrix may have full
rank minus 1, the solution of the linear system would be
very sensitive to noise. Therefore, in a real situation, we
would actually be closer to having nv ambiguities, which
can be understood in terms of the piecewise affine model
we introduce below.

3.2. Ambiguities under Piecewise Affine Projection
A piecewise affine camera model is one that involves an

affine transform for each facet of the mesh. This approxi-

mation is warranted if the facets are small enough to neglect
depth variations across them.

Projection of a 3–D Surface Point Let xi be a 3–D point
whose coordinates are again expressed in the camera refer-
ential. We write its projection to a 2–D image plane as
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′
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I2×2 0
]

, (7)

where k is a depth factor associated to the affine camera
and A

′ is a 2 × 2 matrix representing the internal parame-
ters. As in Section 3.1, we study the ambiguities for a mesh
containing first a single triangle and then many.

Reconstructing a Single Facet We can again write a lin-
ear system for a single triangle containing n 3–D to 2–D
correspondences, with 3–D points given by their barycen-
tric coordinates
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Since we only have one facet, we also only have one pro-
jection matrix, therefore a single k corresponding to the av-
erage depth of the facet is necessary, and all (ui, vi)

T can
be put in the same column.

Since P is of size 2× 3, it has at most rank 2. Moreover,
we can show that the last column of the global matrix also
is a linear combination of the two first columns of P
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The coefficients of Eq. 9 are independent of the correspon-
dence considered and are therefore valid for any row i of
the matrix. This finally means that, when n ≥ 3, the rank
of the matrix of Eq. 8 is always 6.



Reconstructing the Whole Mesh As discussed above,
when there are several triangles, using the piecewise affine
model amounts to introducing a projection matrix per facet.
However, since in reality we only have one camera, its in-
ternal parameters, rotation matrix, and center are bound to
be the same for each triangle. This only lets us with a vari-
able depth factor ki for each facet i among the nf facets of
the mesh. We can then write the system
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M
′
L, which is of size 2m×3nv, m being the number of cor-

respondences, has at most rank 2nv because P has rank 2.
Similarly, M′

R, which is of size 2m × nf , has at most rank
nf − 1, because we can again show that its last column is a
linear combination of the previous one in a similar manner
as was done for the perspective case, with the coefficients of
Eq. 9. This means that for a full mesh, M′

m has at most rank
2nv + nf − 1. This leaves us with nv + 1 ambiguities. This
again seems natural due first to the same scale ambiguity as
in the perspective case, and second to the fact that now each
vertex is free to move along the line of sight. This number
corresponds to the number observed in the perspective case
of Section 3.1, except that, in the affine case, a global scale
is different from all vertices sliding along the line of sight,
which produces an extra singular value.

4. Weak but Broadly Applicable Constraints
Since the linear systems of Section 3 are rank-deficient,

we need to introduce additional constraints to obtain accept-
able solutions. In essence, this is what all the model-based
methods discussed in Section 2 do. However, they typically
involve very specific assumptions about either the physical
properties or the range of possible deformations of the sur-
faces at hand, which is very restrictive.

In this section, we show that a much weaker and more
broadly applicable set of constraints suffices: Since we deal
with video sequences, we can assume that the surface does
not move randomly between two frames, whatever the phys-
ical properties of the target surface. We therefore perform
the reconstruction over several frames simultaneously and
simply limit the range of motion from frame to frame.

We show here that this can be expressed as a set of addi-
tional linear constraints that make our linear systems well-

conditioned, first in the affine case and then in the projective
one.

4.1. Constraining the Affine Reconstruction
Given a temporal sequence of nI images and the corre-

sponding matrices M
′
m

t , 1≤t≤nI of Eq. 10, we can create
a block diagonal matrix whose blocks are the M

′
m

t and use
it to write a big linear system that the vertex coordinates in
all frames must satisfy simultaneously. However, without
temporal consistency constraints, the ambiguities remain:
As discussed in Section 3.2, when the camera coordinates
are aligned with the world coordinates, reconstruction is
only possible up to an unknown motion along the z-axis
for each vertex at each time step. To mitigate this problem,
it is therefore natural to link the z value of vertices across
time. The simplest way to do this is to write
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for all vertices and all times. These constraints and those
imposed by the 3–D to 2–D correspondences can then be
imposed simultaneously by solving with respect to Θ
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zfirst
i and zlast

i are the z-coordinate of vertex i in the
first and last frames, in which we assume that the shape is
known, and C is an nv × 3nv matrix containing a single 1
in each row, which corresponds to the z-coordinate of one
vertex.

The number of constraints we add in this manner is equal
to the number nv of ambiguities that we derived in Sec-
tion 3.2. Therefore it affects the rank of Ms, and reduces
the number of ambiguities to zero as shown in Fig. 5. More-
over, these constraints do not overlap with the ones imposed
by the correspondences and can then be considered as min-
imal.



Figure 5. Singular values for a 5 frames sequence under affine pro-
jection. Left Without temporal consistency constraints between
frames, the linear system has many zero singular values, which
implies severe reconstruction ambiguities. Right Constraining the
z coordinates as discussed in Section 4.1 leaves the non zero sin-
gular values unchanged but increase the value of the others, thus
removing the ambiguities.

In practice the correspondences are never perfect and in-
clude noise and outliers. We therefore solve Eq. 12 in the
least-squares sense and take Θ to be

Θ∗ = argmin
Θ

(MsΘ − b)TW(MsΘ − b) , (13)

where W is a diagonal matrix of ones for the lines corre-
sponding to projection constraints and a user-defined weight
for those that correspond to the depth constraints. The
weight is designed to give comparable influence to both
classes of constraints and directly affects how much the
small singular values increase.

4.2. Constraining the Perspective Reconstruction
In Section 3.2, we showed that ambiguities under per-

spective projection are similar to those under piecewise
affine projection. It is therefore natural to constrain the re-
construction in a similar way, that is by limiting the motion
along the line-or-sight. However, since it is not parallel to
the z-axis anymore, the constraints become more difficult
to express.

Let us consider one vertex v of the mesh at times t and
t + 1. We can try minimizing d = v

t
v

t+1 · e, the length
of the projection on the line-of-sight of the v

t
v

t+1 vector,
where e is the vector cv

t after normalization, and c repre-
sents the optical center of the camera. The difficulty comes
from the fact that this constraint is nonlinear and can there-
fore not be introduced into our linear formulation. We over-
come this problem by replacing the exact formulation of d
by an upper bound that can be expressed linearly as follows:
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Figure 6. Singular values for a 5 frames sequence under perspec-
tive projection. Left Without temporal consistency constraints be-
tween frames, the linear system is rank-deficient. Right Bounding
the frame-to-frame displacements along the line of sight using the
linear expression of Eq. 14 transforms the ill-conditioned linear
system into a well-conditioned one. The smaller singular values
have increased and are now clearly non-zero. Since our motion
model introduces more equations than strictly necessary, the other
values are also affected, but only very slightly.

where xc, yc and zc are the coordinates of a vertex in the
camera reference system, and θmax

x and θmax
y are the max-

imum angles between the camera center and the points pro-
jecting on the left/right, and upper/lower border of the im-
age, respectively.

As in Section 4.1, these constraints and those imposed
by the 3–D to 2–D correspondences can be imposed simul-
taneously. We rewrite Eq. 12 by replacing the M

′
m

t matri-
ces of Eq. 10 by the matrix of Eq. 6 and the C matrices by
3nv × 3nv matrices, containing a single value in each row
that will constrain the x-, y-, or z-coordinate of one vertex.
This value is set to one of the three coefficients of Eq. 14,
depending on which coordinate the row corresponds to.

Fig. 6 shows how the singular values of the system are af-
fected by introducing our depth constraints. As in the affine
case, we can see that the smaller singular values have in-
creased and now clearly different from zero. Since this was
our only goal in adding constraints, this justifies our ap-
proach to liberalization by minimizing the upper bound of
d of Eq. 14 instead of d itself. Note that because we added
more equations than was strictly necessary, the other singu-
lar values also increased, but only very slightly.

5. Experiments
In the previous sections, we developed theoretical ba-

sis for reconstructing the shape of a deformable surface
from 3–D to 2–D correspondences in a video sequence. We
showed that constraining the variations in depth from frame
to frame is sufficient, in theory, to formulate the reconstruc-
tion problem in terms of solving a well-conditioned linear
system. In this section, we show that this indeed produces
valid reconstructions in practice.

We present results obtained using both synthetic data and
real images. In both cases, the deformations of the meshes
were retrieved by solving the linear system of Section 4
for whole sequences with known deformations in the first
and last frames. This was done using Matlab’s implemen-
tation of sparse matrices and resolution of linear systems



Figure 7. Distance between the original mesh and its reconstruc-
tion for each one of the 9 deformed versions of the mesh of Fig. 2.
We plot five curves corresponding to vertex-to-surface distances
obtained with variance one to five gaussian noise on the correspon-
dences. The distances are expressed as percentages of the length
of the mesh largest side.

with known covariance matrix in the least square sense. In
our experiments, the covariance matrix simply is the weight
matrix of Eq. 13, which weighs differently the correspon-
dences equations and the constraints.

5.1. Synthetic Data
We deformed the 88-vertex mesh of Fig. 4(a) to produce

9 different shapes and 9 corresponding sets of 3–D to 2–
D correspondences using a perspective projection matrix.
We then added Gaussian noise with mean zero and variance
ranging from one to five to the image locations of these
correspondences. Fig. 2 depicts the reconstruction results
overlaid on the original mesh with noise variance five. The
differences are hard to see, even though this represents far
lower precision than what can be expected of good feature-
point matching algorithms.

To quantify the differences between the meshes, we plot
the distances between the two meshes in Fig. 7 for each one
of 9 different shapes, given increasing noise variance. The
distances are expressed as percentages of the mesh largest
side. With a noise variance one, they are of the order of
0.25% for vertex-to-surface distance, which works out to
0.025cm for a 10cm×7cm mesh. This is very small given
that we incorporate very little a priori knowledge into our
reconstruction algorithm.

5.2. Real Data
We now present results on two real monocular video

sequences acquired with an ordinary digital camera. The
longest one is 250 frames long, which shows that, even
though our approach involves solving a very large system,
it is sparse enough to use a standard Matlab routine. In
both cases, we automatically establish 3–D to 2–D corre-
spondences between the first frame, where the 3–D pose is
assumed to be known, and the others by first tracking the
surface in 2–D using normalized cross-correlation. We then
compute correspondences by picking 10 random samples in
each facet and looking in each frame in an area limited by
the 2–D tracking result for 2–D points matching their pro-

jections in the first frame. To this end we use standard cross-
correlation, which results in noisy correspondences with a
number of mismatches at places where there is not enough
texture to guarantee reliable matches.

Fig. 8 depicts our reconstruction results for a relatively
inelastic piece of paper in a 250-frame sequence and Fig. 9
those for a much more flexible sheet of plastic in a 147-
frame sequence. In both cases, the global shape is cor-
rect, which confirms that the ambiguities have been cor-
rectly handled. However, because we impose no smooth-
ness constraint of any kind, there are also local errors that
are caused by the mismatches present in our input data. If
the goal were to derive a perfect shape from a set of noisy
correspondences, we could mitigate the effect of erroneous
matches by introducing a robust estimator into the least-
squares minimization of Eq. 13. However, we will argue
in the following section that this may not actually be neces-
sary for the application we have in mind.

Since our technique does not introduce any prior on the
physical properties of the target surface, we were able to re-
construct both the paper and plastic without changing any-
thing to our system. It is not clear that this would have been
the case had we used a physics-based approach or any other
that implicitly limits the range of deformation of the sur-
face.

6. Conclusion

In this paper we have presented a theoretical study of the
ambiguities that arise when reconstructing deformable 3–
D surfaces from monocular video sequences. We showed
that they can be interpreted in terms of those inherent to a
piecewise affine model and can be removed by simply con-
straining the frame-to-frame variation in depth. These are
very weak constraints that are broadly applicable because
they do restrict the range of possible surface deformations.

When used in conjunction with real correspondences, in-
cluding noise and outright mismatches, these constraints are
sufficient to recover the surface, not perfectly, but with good
accuracy nevertheless. More specifically, we do not smooth
our results at all because it would defeat our basic purpose,
which is to introduce as little a priori knowledge of the
surface’s physical properties as possible. As a result, our
reconstructions may contain local deviations from the true
surface. However, we do not believe this to be a major is-
sue given our ultimate purpose: If the goal is to track many
surfaces to create a motion database from which a motion
model can be learned, the deviations can be treated as ran-
dom perturbations that will be eliminated when observing a
large number of sequences. Proving this to be the case will
be the focus of our future work.



Figure 8. Reconstructing a deforming sheet of a paper from a 250-frames sequence. Top The reconstructed mesh is reprojected into the
original images and closely matches the outline of the paper. Bottom The same mesh seen from the side. In spite of local inaccuracies in
depth, the overall shape is correct, which indicates that the ambiguities have been successfully resolved. A complete video is submitted as
supplementary material.

Figure 9. Reconstruction results for a plastic sheet, which is much more flexible than the sheet of paper of Fig. 8. In spite of this, the overall
shape is again correctly recovered up to small errors due to erroneous correspondences. A complete video is submitted as supplementary
material.

References
[1] A. Bartoli and A. Zisserman. Direct Estimation of Non-

Rigid Registration. In British Machine Vision Conference,
Kingston, UK, September 2004.

[2] V. Blanz and T. Vetter. A Morphable Model for The Synthe-
sis of 3–D Faces. In ACM SIGGRAPH, pages 187–194, Los
Angeles, CA, August 1999.

[3] L. Cohen and I. Cohen. Deformable models for 3-d medical
images using finite elements and balloons. In Conference on
Computer Vision and Pattern Recognition, pages 592–598,
1992.

[4] T. Cootes, G. Edwards, and C. Taylor. Active Appearance
Models. In European Conference on Computer Vision, pages
484–498, Freiburg, Germany, June 1998.

[5] H. Delingette, M. Hebert, and K. Ikeuchi. Deformable sur-
faces: A free-form shape representation. In SPIE Geomet-
ric Methods in Computer Vision, volume 1570, pages 21–30,
1991.

[6] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
Contour Models. International Journal of Computer Vision,
1(4):321–331, 1988.

[7] X. Llado, A. D. Bue, and L. Agapito. Non-rigid 3D Fac-
torization for Projective Reconstruction. In British Machine
Vision Conference, Oxford, UK, September 2005.

[8] I. Matthews and S. Baker. Active Appearance Models Revis-
ited. International Journal of Computer Vision, 60:135–164,
November 2004.

[9] T. McInerney and D. Terzopoulos. A Finite Element Model
for 3D Shape Reconstruction and Nonrigid Motion Tracking.
In International Conference on Computer Vision, pages 518–
523, Berlin, Germany, 1993.

[10] D. Metaxas and D. Terzopoulos. Constrained deformable
superquadrics and nonrigid motion tracking. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
15(6):580–591, 1993.

[11] A. Pentland. Automatic extraction of deformable part mod-
els. International Journal of Computer Vision, 4(2):107–126,
1990.
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