
Are Sparse Representations Really Relevant for Image Classification ?∗

Roberto Rigamonti, Matthew A. Brown, Vincent Lepetit
CVLab, EPFL

Lausanne, Switzerland
firstname.lastname@epfl.ch

Abstract

Recent years have seen an increasing interest in sparse
representations for image classification and object recog-
nition, probably motivated by evidence from the analysis
of the primate visual cortex. It is still unclear, however,
whether or not sparsity helps classification. In this pa-
per we evaluate its impact on the recognition rate using a
shallow modular architecture, adopting both standard fil-
ter banks and filter banks learned in an unsupervised way.
In our experiments on the CIFAR-10 and on the Caltech-
101 datasets, enforcing sparsity constraints actually does
not improve recognition performance. This has an impor-
tant practical impact in image descriptor design, as enforc-
ing these constraints can have a heavy computational cost.

1. Introduction

Inspired by work from the neuroscience community [24,
33], there has been increasing interest in computer vision al-
gorithms that rely on sparse image representations [28, 23,
35, 37, 2, 34]. The effectiveness of sparse coding from a
generative point of view, for image restoration for exam-
ple [23], is justified by observing that natural images repre-
sent only a tiny part of the image space.

While sparse representations have been regarded as more
likely to be separable in high-dimensional spaces [29], and
therefore suitable for classification, it is still not clearif they
are actually needed for recognition tasks. To the best of our
knowledge, there is no empirical study showing that sparse
representations improve recognition performance compared
to non-sparse ones.

Understanding if sparse representations are really rele-
vant for image classification is not only interesting from a
theoretical point of view, but also from a practical stance.
Their computation typically requires solving either an NP-

∗This work has been supported in part by the Swiss National Science
Foundation.

pre-processing

classification
category

label

[sparse] feature extraction ...

non-linearity ...

pooling ...

Figure 1: Architectural model of the classification pipeline.
On the right side, the evolution of the internal representation
is depicted for a sample truck image taken from the CIFAR-
10 dataset [14].

hard problem or an alternative problem that still involves a
costly iterative optimisation [6].

In this paper we aim to evaluate the actual importance
of sparsity in image classification, by performing an exten-
sive empirical evaluation and adopting the recognition rate
as a criterion. Using the biologically-inspired modular ar-
chitecture represented in Fig.1 and closely related to the
ones used in [21, 30, 12, 4], we assess the relevance that
this property has when both handcrafted and learned filter
banks are used in the feature extraction stage.

We experimented on the very challenging CIFAR-10
dataset [32, 14], made of32× 32 images of objects belong-
ing to 10 different categories, and on the more commonly
used Caltech-101 dataset [7]. The results of our experi-
ments advocate that no advantage is gained by imposing
sparsity at run-time, at least when this sparsity is not tai-
lored in a discriminative fashion. The expensive optimiza-
tion procedure can therefore be replaced by simple convo-
lutions without affecting the recognition rate.

Even though the main point of our study was not getting
a high classification rate per se, our best setup found after
extensive experiments obtains results that are comparable

to the state-of-the-art on the CIFAR-10 dataset, but using
grayscale images in place of the colour ones exploited by
the competing approaches [27, 36, 15].

2. Related Work

Imposing sparsity constraints has recently become pop-
ular in computer vision, especially for image classification
tasks. This is probably due to evidence for sparse represen-
tations in the mammal brain, and because simple algorithms
based on such constraints can reproduce linear filters simi-
lar to receptive fields observed in V1, the first layer of the
visual cortex [24, 29]. These approaches are also attractive
because they require only unlabeled data, which are much
simpler to produce than labeled data.

As a result, such algorithms have been used to extract
features that are assumed to be relevant for classification
tasks [26, 12, 34]. Sparsity is also convenient to constrain
over-complete linear representations.

Sparse coding can be interpreted as learning the input
data distribution with a sparse prior [24]. Deep Belief Net-
works (DBNs) have been used to learn the data distribution
and extract features in an unsupervised way [8], and [18]
showed that sparsity constraints are useful to make them
converge on natural images toward filters that closely re-
semble their biological counterparts.

Despite their popularity and to the best of our knowl-
edge, sparsity constraints have not really been evaluated
in terms of classification performance. Is it really impor-
tant to adopt a sparse representation to learn how to extract
good features? Is it important to enforce sparsity constraints
when extracting the features at run-time, even though it can
be costly?

Very recently, [12] developed an architecture very close
to ours. They showed the importance of taking the abso-
lute value as a non-linear operation between the feature ex-
traction and the pooling stage, and the power of stacking
multiple layers. Nonetheless, they did not really evaluate
the effects of sparsity, as they only compared learned sparse
features against convolutions with random filters.

Zeiler et al. [37] introduced a related model that oper-
ates in a convolutional sense as our system does, and pro-
posed a new approach that improves the convergence speed
by constraining the representation in an annealing fashion.
Again, there is no evaluation of the importance of sparsity
constraints.

A comprehensive review of the applications of sparsity
in the computer vision and pattern recognition domains is
presented in [34], but their claim that sparsity is helpful for
the classification task is supported only by few experiments
in a supervised, or semi-supervised, context, and not in an
unsupervised setting.

Predictive Sparse Decomposition [13] is an endeavor to
avoid the sparsity optimization by learning a regressor that

approximates the optimal reconstruction. The solution pro-
vided by the regressor is, however, only an approximation
of the true, sparse solution.

This paper represents an attempt to fill the gap repre-
sented by the absence of a thorough evaluation of the real
contribution of sparse representations in the image classi-
fication task, in order to focus future analyses towards the
most relevant aspects of image classification architectures.

3. Evaluation Framework

Our framework for evaluation relies on the architecture
shown in Figure1, which is very similar to the ones used
in recent works [21, 30, 4], particularly to [12]. We first
extract features by using filters which are either learned or
handcrafted. These features either result from a simple con-
volution between the image and the filters, or from a sparse
optimization procedure. We apply a non-linear operation to
the output, and then we “pool” the features to obtain some
robustness to small translations and deformations using dif-
ferent pooling schemes.

We detail below these different parts of our framework,
while the results of the evaluation are given in the next sec-
tion.

3.1. Feature Extraction and Refinement Stage

3.1.1 Learning the filters

To learn image filters, we chose to adopt Olshausen
and Field’s algorithm [24] (OLS), used in many recent
works [22, 12, 34] and known to converge well on natural
image patches. We have only slightly modified it for more
efficiency when processing images.

In [24], Olshausen and Field suggested that V1, the first
layer of the visual cortex, builds a sparse representation of
the images. Under this assumption and the hypothesis that a
perfect reconstruction is attainable, the problem one would
like to solve can be stated as

min
M,{ti}

∑

i

‖ti‖0 s.t.
∑

i

‖xi −Mti‖
2

2
= 0 , (1)

wherexi are training images,ti are the corresponding fea-
ture vectors,M is a matrix whose columns form the dictio-
nary, and theℓ0-norm, the number of non-zero elements,
is the best sparsity measure available. Theℓ0-norm for-
mulation in Eq. (1) is, however, non-convex, making the
optimization very difficult. The version proposed in [24]
therefore learns a dictionary of filters by optimizing the fol-
lowing objective function:

min
M,{ti}

∑

i

‖xi −Mti‖
2

2
+ λlearn‖ti‖1 , (2)

where theℓ1-norm enforces sparsity on theti vectors.
Eq. (2) looks for a dictionaryM so that the imagesxi can

be reconstructed from only a few columns ofM by comput-

(a) (b) (c)

Figure 2: Filter banks used in our experiments. (a) & (b)
Filter banks learned using theOLSalgorithm on the CIFAR-
10 and Caltech datasets, respectively. (c) The handcrafted
Leung-Malik filter bank taken from [20].

ing the productMti. The sparseness in theti vectors is en-
forced by the last term.λlearn is a regularization parameter
that establishes the relative importance of the reconstruc-
tion error‖xi −Mti‖

2

2
with respect to the regularization

term‖ti‖1. Moreover, the dictionary is overcomplete:M
has more columns than rows, and this gives us the degrees
of freedom that we need in order to be able to choose among
all the possible representations a sparse one.

Eq. (2) was introduced for small patches only, and using
it on possibly large images is slow and difficult, as many co-
efficients inM would have to be optimized simultaneously.
We therefore adopt here a convolutional approach, where
the matrix-vector product is replaced by a convolution. This
is possible if we assume that the local properties of images
are translation invariant, which seems reasonable. As a side
effect, we get a strongly overcomplete representation. [37]
and [19] use a similar approach.

The optimization problem in Eq. (2) hence becomes:

min
{fj},{t

j

i
}

∑

i

∥

∥

∥

∥

∥

xi −
∑

j

f
j ∗ tji

∥

∥

∥

∥

∥

2

2

+ λlearn

∑

j

∥

∥

∥t
j

i

∥

∥

∥

1

 , (3)

where thef js are linear filters and∗ denotes the convolution
operator. Thetjis can now be seen as a set of images with
the same size as thexi images, whose cardinality is equal
to that of the filter bank. Similar intermediate representa-
tions have been called “feature maps” in the Convolutional
Neural Networks literature [17].

The original problem in Eq. (2) was optimized using
stochastic gradient descent with clipping [5], and it is easy
to also use stochastic gradient descent to find the coeffi-
cients of thef j filters, alternatively optimizing the filters
f
j and thetjis in Eq. (3).

We evaluated many choices for the regularization param-
eterλlearn. While there is no guarantee that stochastic gra-
dient descent provides the optimal solution, the optimiza-
tion consistently converges from random initializations to
extremely similar solutions for a large interval ofλlearn val-
ues. For example, in the case of CIFAR-10, we obtained
a stable solution forλlearn ∈ [0.01, 3], though at different

speeds. The learned filter banks are shown in Figs.2(a)
and2(b).

The optimization algorithm, however, revealed to be
very sensitive to the gradient descent steps choice both for
filters and coefficients. For further investigation of the so-
lution stability, we performed an experiment where Leung-
Malik (LM) filters [20], depicted in Fig.2(c), were used as
initialization. In few iterations, the filter bank dramatically
changes its aspect and converges to a solution similar to the
one reported in Fig.2(a).

3.1.2 Handcrafted filters

In addition to learned filters, we have also performed feature
extraction with two handcrafted filter banks:

• The Leung-Malik (LM) filter bank [20]. It is composed
of 2 Gaussian derivative filters at 6 orientations and 3
scales, 8 Laplacian of Gaussian filters and 4 Gaussian
filters, for a total of 48 filters.

• A filter bank constituted by 49 randomly generated fil-
ters (RND), with the exception of the first one that is
set to be uniform.

3.1.3 Pre-processing and whitening

We used grayscale images only, therefore the first pre-
processing step transformed input color images into a
grayscale representation in[−1, 1]. Since we had to deal
with convolutions, we replicated the borders in order to ex-
ploit the full image information.

Removing the linear dependencies between the coeffi-
cients of the images, or whitening, revealed to be funda-
mental for the convergence of Eqs. (3) and (4). A whitening
operation can be learned from the covariance matrixC of
the original data [11]. By applying an eigenvalue decom-
position toC, C = EDE

⊤, a whitening matrixW can be
computed asW = ED

−1/2
E

⊤.
Similarly to Eq. (2), this is not really practical for large

images. Nonetheless, owing to the shift invariance of image
statistics,W describes a per pixel linear operation that is
independent of translation, hence we were able to efficiently
implement it as a convolution.

3.1.4 Using the filters for feature extraction

In our evaluations, we used these filtersf
j to extract features

t
j from an imagex in three different ways:

• Sparse features with gradient descent (SPARSEGD).
Thetjs are obtained by minimizing the following ob-
jective function by gradient descent:

min
{tj}

∥

∥

∥

∥

∥

x−
∑

j

f
j ∗ tj

∥

∥

∥

∥

∥

2

2

+ λextract

∑

j

∥

∥

∥t
j
∥

∥

∥

1

. (4)

This optimization is the same as the one posed in
Eq. (3) after fixing the filtersf j and considering only
the given image. Note that, in our experiments, the
regularization parameterλextract can be different from
λlearn.

• Sparse features with Matching Pursuit (SPARSEMP).
Thetjs are obtained using the Matching Pursuit algo-
rithm [1]. Fixing the number of non-zero coefficients
is equivalent to choosing a proper value for theλextract

parameter in Eq. (4). Nonetheless, Matching Pursuit is
dramatically slower, which prevented us from using it
to optimize Eq. (3).

• Features computed by direct convolution (CONV). The
t
js are obtained by direct convolution, without any

sparsity constraint:

t
j = f

j ∗ x, ∀j . (5)

This is much faster than the two previous options. It is
not, however, unrelated to them, since it corresponds
to the initialization step for the feature maps required
by both algorithms.

3.1.5 Rectification

Before the pooling stage, we apply some non-linear oper-
ation to the feature mapstj , as it is usually done in multi-
layer architectures. This operation gives a new set of feature
mapsuj . Again, we tried different possibilities:
• Taking the absolute values of the coefficients of thet

j

vectors (ABS). Them-th coefficientuj [m] of theu
j

vectors is simply taken to be:uj [m] =
∣

∣t
j [m]

∣

∣. This
operation was identified as very effective in [12] for
recognition performance despite its simplicity.

• Separating the negative coefficients from the positive
ones (POSNEG). If each submap is composed byN
coefficients, the elementsuj [m] of theuj vectors are
taken to be:

u
j [m] = [tj [m]]+, uN+j [m] = [−t

j [m]]+ , (6)

where[x]+ = x if x > 0 and0 otherwise. This dou-
bles the number of coefficients in theuj vectors.

3.2. Pooling stage

This stage pools the coefficients of theuj vectors to pro-
vide invariance to small displacements and distortions. The
choice of having a pooling stage is based on two relevant
aspects:
• From a biological perspective, the pooling stage cor-

responds to the complex cells’ layers in Hubel and
Wiesel’s model of V1 cortex [10]. The role that pool-
ing holds is that of enabling a certain degree of in-
variance to minor pose and appearance changes. The
importance of pooling layers is also acknowledged
by their employment in Convolutional Neural Net-
works [17].

• From a computational perspective, plain descriptors
have a dimensionality that is too high for practical ap-
plications. The presence of a downsampling step is
therefore vital for subsequent operations.

We tried three different pooling mechanisms found in liter-
ature:
• Gaussian pooling (GAUSS). This was used in [31]:

theujs are first convolved with a Gaussian filter, then
downscaled by a factor that is a multiple of 2. We have
empirically observed that a5 × 5 filter with σ = 2.0
gave the best results in many cases, and we have there-
fore adopted these values1.

• Average pooling (BOXCAR). This is similar toGAUSS,
except that we use a boxcar filter.

• Maximum value pooling (MAX). We retain the max-
imum absolute value in a given neighborhood. This
was used for example in [30, 12], and also evaluated
in [3].

The feature maps for a given image after pooling will be
denoted asvj below.

3.3. Classification

The last step of our pipeline applies a classifier to the uni-
tary normalized vectors obtained from the previous stages.
Since the two datasets of choice have different cardinalities
and are composed by images with different resolutions, we
have adopted different strategies for the classification step.

3.3.1 CIFAR-10

The CIFAR-10 images have a resolution of 32× 32 pix-
els. The feature maps after poolingvj are nevertheless very
large, and therefore a dimensionality reduction step before
classification is necessary. We investigated the following
methods:
• No dimensionality reduction (NONE).
• Principal Component Analysis (PCA).
• Local Discriminant Embedding (LDE) [9], with a

power regularization fixing the signal to noise ratio to
15%.

• Random Projections (RP). We tried random projec-
tions because they can be applied to sparse signals with
limited information loss. [6].

In both the PCA and the LDE case, a normalization to unit
norm is performed after the projection, as it is deemed to
give significant improvements on the final result [9]. In
order to choose the best size of the eigenspace, for each
specific configuration we performed an extensive cross-
validation for all dimensions in a ranged = {8, . . . , 256},
and chose the value that scored best in a Nearest-Neighbor
classification.

1We have performed an extensive evaluation of the different pooling
parametrizations. Please refer to the supplementary materialfor the quan-
titative results of our investigations.

We then apply one of the two following classification
methods on the feature maps after dimension reduction:
• Nearest Neighbor classification (NN). It provides a di-

rect measure of the discriminative capabilities of the
previous steps.

• Support Vector Machines (SVM). They are com-
monly adopted in pipelines similar to ours and usually
achieved the best results2.

We also tried other classifiers: Feed-Forward Neural Net-
works, ensembles of Classification Trees, and Naı̈ve Bayes
classifiers. As they did not give better results thanSVMs,
we do not report them here.

3.3.2 Caltech-101

The resolution of the Caltech-101 images is much larger
than the one of the CIFAR-10 images, and the direct clas-
sification approach we used for CIFAR-10 is not possible
anymore. Instead, and like [12] and [37], we use the Spatial
Pyramid Matching (SPM) algorithm [16]. We use the code
provided by [16] at the top of our architecture, and pass the
resulting pyramidal histograms to an SVM3.

We followed the same testing procedure reported in [37],
denoted in the following asSPM. Input images are resized
so that their shortest dimension is 150 pixels.16 × 16
patches are extracted from the feature maps after pooling
with a stride of 2 pixels and are used as input to the SPM
algorithm. We build a dictionary containing 500 words by
running the K-Means algorithm over the feature maps cor-
responding to 300 randomly chosen images, and use this
dictionary to build a three-level pyramid.

As for the CIFAR-10 case, we tried both approximate
Nearest Neighbor classification (NN) and Support Vector
Machines (SVM).

4. Results and Discussion

4.1. Evaluation datasets

The CIFAR-10 dataset [32, 14] is a hand labelled subset
of a larger dataset consisting of32 × 32 images collected
from the Web [32]. The images exhibit large variability in
pose, appearance, scale, and background composition, and
some are affected by severe distortions. These reasons jus-
tify the increasing popularity that it is gaining in the com-
puter vision and machine learning community [27, 36, 15].

The above mentioned characteristics make the CIFAR-
10 dataset suitable for our needs, since it avoids the com-
mon pitfalls involved with the uncontrolled exploitation of
natural images [25]. Moreover, the low dimensionality of

2Experiments were performed using the LIBSVM library
(http://www.csie.ntu.edu.tw/ ˜ cjlin/libsvm).

3We used the BSVM implementation bundled within the libHIK library
(http://www.cc.gatech.edu/cpl/projects/libHIK).

the images enables us to perform an extensive exploration
of the parameter space, which would be prohibitively costly
with other datasets.

We have also chosen to do additional experiments using
the Caltech-101 dataset [7], which is widely acknowledged
as a reference dataset in the computer vision community.
Caltech-101 contains images from 101 different categories
(with an additional background category). Since some cat-
egories have a relatively small number of samples, the most
common training procedures use either 15 or 30 randomly
chosen images per category, keeping the remaining ones for
testing.

4.2. Protocol

Because of the large number of different combinations
for our pipeline and the fact that most of them depend on
parameters, we first performed thorough experiments on the
CIFAR-10 images converted to grayscale and downsampled
to16×16 pixels, as computational costs for extensive exper-
iments on full resolution images or Caltech-101 are much
higher. This allowed us to identify trade-offs and the best
components of our architecture. Once the most effective
combinations were determined, we validated them on the
original32× 32 images of the CIFAR-10 dataset and, after
having identified the proper parametrization of each com-
ponent, on Caltech-101 images. In the case of Caltech-101,
we had to restrict the number of experiments due to compu-
tation times and adoptABSas a non-linearity to avoid the
doubling of descriptor’s size. The results, however, are con-
sistent with those obtained on CIFAR-10 and validate our
interpretation.

We report here only the small subset of our trials that
illustrates our main findings. Extensive additional results
are provided as supplementary material.

4.3. Experimental Results and Discussion

4.3.1 Sparsity is not necessarily required for classifica-
tion

Our first experiment aimed to evaluate the influence of the
way the features are extracted on the recognition rate. Fig-
ure3 reports the results of our classification pipeline for dif-
ferent filter banks and different feature extraction methods.
The other components were set toPOSNEG, GAUSS, PCA,
SVM, which is one of the best combinations we found.

A general rule is that, as sparsity increases when com-
puting the features, the recognition rate drops dramatically.
Moreover, the value ofλextract used forSPARSEGDmust be
much smaller than the one ofλlearn used to learn the filter
bank. This was already observed in [28], which noted that
a strong sparsity is important in learning the feature extrac-
tors, but harmful during classification.

But more importantly, using simple convolu-
tions (CONV) performs systematically at least as good as

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.cc.gatech.edu/cpl/projects/libHIK

 48

 50

 52

 54

 56

 58

 60

 62

 64

 66

 68

 0.0001 0.001 0.01

R
ec

og
ni

tio
n

ra
te

 [%
]

λextract

Figure 3: Recognition rate on the CIFAR-10 dataset as a
function of the representation’s sparsity and of the chosen
filter bank.

 34

 36

 38

 40

 42

 44

 46

 48

 50

 52

 54

 0.0001 0.001 0.01 0.1

R
ec

og
ni

tio
n

ra
te

 [%
]

λextract

OLS-SPARSEGD, 30 training samples
OLS-SPARSEGD, 15 training samples

OLS-CONV, 30 training samples
OLS-CONV, 15 training samples

Figure 4: Recognition rate on the Caltech-101 dataset as a
function of the representation’s sparsity.

enforcing sparsity (SPARSEGD). The tis are significantly
sparser when usingSPARSEGDinstead ofCONV, but this
does not have an influence on the recognition rate. This
is true whatever the way the filter bank was computed,
for both the CIFAR-10 and Caltech-101 benchmarks (see
Fig. 4). Enforcing sparsity clearly does not help here.

To investigate more when sparsity can be useful, we ran
the same experiments on images from the datasets after cor-
ruption by noise. The most significant results are reported
in Table1. We have experimented with both Gaussian and
structured noise, where the latter consists of randomly gen-
erated lines superimposed to the images. In all these ex-
periments, we worked with the original32 × 32 images of
CIFAR-10.SPARSEGDperforms well in presence of strong
Gaussian noise, but does not help for structured noise, as

Table 1: Recognition rates in presence of noise for different
feature extraction methods using learned filters and an SVM
as a classifier. Image intensities are normalized in[0, 1]. For
the structure noise experiments, random lines were super-
imposed to the images at random positions. SPARSEGD is
more interesting than CONV only in case of strong Gaus-
sian noise, for some values ofλextract.

Method λextract ‖t‖
0

Rec. Rate [%]

low Gaussian noise (σ = 0.01)

CONV 1.00 69.44
SPARSEGD 0.0001 0.83 68.66
SPARSEGD 0.0005 0.58 67.07
SPARSEGD 0.001 0.43 64.54
SPARSEGD 0.005 0.11 54.37

strong Gaussian noise (σ = 0.14)

CONV 1.00 60.30
SPARSEGD 0.0001 0.88 61.89
SPARSEGD 0.0005 0.69 63.54
SPARSEGD 0.001 0.55 63.28
SPARSEGD 0.005 0.17 59.94

low structured noise (1 random line)

CONV 1.00 48.53
SPARSEGD 0.0005 0.51 47.00
SPARSEGD 0.005 0.09 31.75

strong structured noise (1 to 3 random lines)

CONV 1.00 35.20
SPARSEGD 0.0005 0.49 33.51
SPARSEGD 0.005 0.09 15.08

it focuses its efforts around the noisy area, skipping the
parts of the images that convey meaningful information.
Nonetheless, since the original images of the datasets are
mostly free of noise, this is a property unexploited when
evaluating algorithms on these benchmarks.

Another relevant result is the impact of the sparsifying
algorithm, either Gradient Descent (SPARSEGD) or Match-
ing Pursuit (SPARSEMP), on the final recognition rate as
reported in Fig.5. Figure6 also provides visual results. It
is not straightforward to compare the two methods as they
depend on different parameters. We chose to plot the recog-
nition rate as a function of theℓ0-norm of thet vectors,
as the two algorithms provide the lowest reconstruction er-
ror they can reach for a given value of this norm. For a
givenℓ0-norm of thet vectors, the performance are signif-
icantly worse forSPARSEMPthan SPARSEGDwhile the
reconstruction errors are similar. A possible explanationfor
the very bad performance of the Matching Pursuit algorithm
is that, because it works locally, it tends to focus on details
that are specific to the given instance, hence it tends to in-

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.001 0.01 0.1 1
 0

 0.1

 0.2

 0.3

 0.4

R
ec

og
ni

tio
n

ra
te

 [%
]

R
ec

on
st

ru
ct

io
n

er
ro

r

Fraction of non-zero coefficients

Figure 5: Recognition rate comparison between
SPARSEMP and SPARSEGD when different degrees
of representation’s sparsity are requested (left axis). The
reconstruction error (right axis) is computed as theℓ2 norm
of the squared differences between the original image and
the reconstruction (both normalized in[0, 1]).

crease intra-class dissimilarities.
A last remark on this aspect is that, in all the experi-

ments we have carried out and reported in the supplemental
material, irrespectively of the chosen feature extractionand
pooling strategies, the results after pooling are dense. Inar-
chitectures that employ pooling stages, sparsity is therefore
a temporary condition only.

4.3.2 Sparsity is important when learning the filters

Although a sparse representation is not necessarily impor-
tant for feature extraction during classification, and can
even hurt the recognition rate when an unsuited sparsifica-
tion algorithm is used, we found that it is still important for
learningthe filters.

Figure3 clearly depicts the advantage gained by adopt-
ing a filter bank learned with sparsity constraints, compared
to relying on handcrafted or random filters. This is true
even when using simple convolutions (CONV) to extract
features. While the handcrafted LM filters perform almost
as well as the learned ones, this is true only when they are
whitened, since the performance of the LM filter bank when
the whitening step is removed is even worse than the perfor-
mance of whitened random filters.

4.3.3 Best results

Thanks to our extensive experiments, we could identify the
components and their parameters that perform best. Due to
lack of space, the complete evaluation results are not shown

Original image OLS-SPARSEMP OLS-SPARSEGD
‖t‖

0
= 0.16 ‖t‖

0
= 0.19

Rec. error = 6e-5 Rec. error = 1.4e-4

Original image OLS-SPARSEGD
‖t‖

0
= 0.34

Rec. error = 1.9e-2

Figure 6: First row . An image from the CIFAR-10 dataset
whitened, and its reconstructions from thet vectors ob-
tained with different algorithms and filter banks. The given
reconstruction error is the first term of Eq. (4). While simi-
lar in terms of sparsity of the features, of reconstruction er-
ror, and visual quality of the reconstruction, Matching Pur-
suit performs significantly worse than Gradient Descent.
Second row. An image taken from the Caltech-101 dataset
and whitened, along with the image reconstructed from the
t vectors usingOLS-SPARSEGD. Matching Pursuit is too
slow to be evaluated on large images such as those present
in the Caltech-101 dataset.

in this paper but in the supplemental material. The best
configuration extracts features by convolution with learned
filters (OLS-CONV). POSNEGis the best non-linear oper-
ation. Pooling features is indispensable, and pooling by 4
times downscaling after having smoothed feature maps with
a5× 5 Gaussian filter withσ = 2 (GAUSS) performs best.
LDE andPCAfor subspace projection give almost identical
results.SVMs perform definitively better thanNN for final
classification.

Despite its simplicity, our best architecture performs ex-
tremely well. The two-layer convolutional Deep Belief Net-
work presented in [15] achieves a 78.9% recognition rate by
using color images and an unsupervised pre-training set of
1.6 million images, while our architecture accomplishes a
75.18% (averaged on 5 random dataset splits, standard de-
viation= 0.27) by using grayscale images only. Moreover,
our model outperforms specifically designed, complicated,
color-based machine learning architectures like the factor-
ized third-order Boltzmann Machine proposed in [27] or the
improved version of the 2009 PASCAL image classification

challenge winning system presented in [36].

5. Conclusions

We have performed an in-depth analysis of sparse repre-
sentations in image classification. Our experimental results
suggest that solely enforcing sparsity is not helpful in terms
of recognition rate, at least when the level of noise remains
reasonable. We found that while sparsity was not helpful
during classification, with plain convolution with the filters
giving equal results in terms of recognition rate, it is im-
portant when learning the feature dictionary itself. Given
the high computational burden involved in sparse coding
and the increasing interest in biologically inspired multi-
layer architectures, this insight heavily impacts on the de-
sign strategies for image descriptors.

References

[1] F. Bergeaud and S. Mallat. Matching Pursuit of Images. In
ICIP, 1995.

[2] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning
Mid-Level Features for Recognition. InCVPR, 2010.

[3] Y.-L. Boureau, J. Ponce, and Y. LeCun. A Theoretical Analy-
sis of Feature Pooling in Visual Recognition. InICML, 2010.

[4] M. Brown, G. Hua, and S. Winder. Discriminative Learning
of Local Image Descriptors.PAMI, 2010.

[5] I. Daubechies, M. Defrise, and C. D. Mol. An iterative
thresholding algorithm for linear inverse problems with a
sparsity constraint.CPAM, 2004.

[6] D. L. Donoho. Compressed Sensing.TIT, 2006.
[7] L. Fei-Fei, R. Fergus, and P. Perona. Learning Generative

Visual Models from Few Training Examples: An Incremen-
tal Bayesian Approach Tested on 101 Object Categories. In
CVPR, 2004.

[8] G. E. Hinton. Learning to Represent Visual Input.RSTB,
2010.

[9] G. Hua, M. Brown, and S. Winder. Discriminant Embedding
for Local Image Descriptors. InICCV, 2007.

[10] D. H. Hubel and T. N. Wiesel. Receptive Fields, Binocular
Interaction and Functional Architecture in the Cat’s Visual
Cortex.JPHYSIO, 1962.

[11] A. Hyvärinen, J. Hurri, and P. O. Hoyer.Natural Image
Statistics. Springer-Verlag, 2009.

[12] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun.
What Is the Best Multi-Stage Architecture for Object Recog-
nition? InICCV, 2009.

[13] K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun. Fast In-
ference in Sparse Coding Algorithms With Applications to
Object Recognition. Technical report, NYU, 2008.

[14] A. Krizhevsky. Learning Multiple Layers of Features from
Tiny Images. Master’s thesis, 2009.

[15] A. Krizhevsky. Convolutional Deep Belief Networks on
CIFAR-10. Technical report, UOFT, 2010.

[16] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Fea-
tures: Spatial Pyramid Matching for Recognizing Natural
Scene Categories. InCVPR, 2006.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
Based Learning Applied to Document Recognition.PIEEE,
1998.

[18] H. Lee, C. Ekanadham, and A. Y. Ng. Sparse Deep Belief
Net Model for Visual Area V2. InNIPS, 2007.

[19] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convo-
lutional Deep Belief Networks for Scalable Unsupervised
Learning of Hierarchical Representations. InICML, 2009.

[20] T. Leung and J. Malik. Representing and Recognizing the
Visual Appearance of Materials Using Three-Dimensional
Textons.IJCV, 2001.

[21] D. G. Lowe. Distinctive Image Features from Scale-
Invariants Keypoints.IJCV, 2004.

[22] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.
Discriminative Learned Dictionaries for Local Image Anal-
ysis. InCVPR, 2008.

[23] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.
Non-Local Sparse Models for Image Restoration. InICCV,
2009.

[24] B. A. Olshausen and D. J. Field. Sparse Coding With
an Overcomplete Basis Set: A Strategy Employed by V1?
VISR, 1997.

[25] N. Pinto, D. D. Cox, and J. J. DiCarlo. Why Is Real-World
Visual Object Recognition Hard?PLoS, 2008.

[26] M. A. Ranzato, Y.-L. Boureau, and Y. LeCun. Sparse Feature
Learning for Deep Belief Networks. InNIPS, 2007.

[27] M. A. Ranzato and G. E. Hinton. Modeling Pixel Means
and Covariances Using Factorized Third-Order Boltzmann
Machines. InCVPR, 2010.

[28] M. A. Ranzato, F.-J. Huang, Y. Boureau, and Y. LeCun. Un-
supervised Learning of Invariant Feature Hierarchies With
Applications to Object Recognition. InCVPR, 2007.

[29] M. A. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Ef-
ficient Learning of Sparse Representations With an Energy-
Based Model. InNIPS, 2006.

[30] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Pog-
gio. Robust Object Recognition With Cortex-Like Mecha-
nisms.PAMI, 2007.

[31] E. Tola, V. Lepetit, and P. Fua. DAISY: An Efficient Dense
Descriptor Applied to Wide-Baseline Stereo.PAMI, 2010.

[32] A. Torralba, R. Fergus, and W. T. Freeman. 80 Million Tiny
Images: A Large Dataset for Non-Parametric Object and
Scene Recognition.PAMI, 2008.

[33] W. E. Vinje and J. L. Gallant. Sparse Coding and Decorre-
lation in Primary Visual Cortex During Natural Vision.SCI-
ENCE, 2000.

[34] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and
S. Yan. Sparse Representation for Computer Vision and Pat-
tern Recognition.PIEEE, 2010.

[35] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear Spatial Pyra-
mid Matching Using Sparse Coding for Image Classification.
In CVPR, 2009.

[36] K. Yu and T. Zhang. Improved Local Coordinate Coding
Using Local Tangents. InICML, 2010.

[37] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. De-
convolutional Networks. InCVPR, 2010.

