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Handling Motion-Blur in 3D Tracking and
Rendering for Augmented Reality
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Abstract—The contribution of this paper is two-fold. First, we show how to extend the ESM algorithm to handle motion blur in 3D
object tracking. ESM is a powerful algorithm for template matching-based tracking, but it can fail under motion blur. We introduce
an image formation model that explicitly consider the possibility of blur, and show it results in a generalization of the original
ESM algorithm. This allows to converge faster, more accurately and more robustly even under large amount of blur. Our second
contribution is an efficient method for rendering the virtual objects under the estimated motion blur. It renders two images of the
object under 3D perspective, and warps them to create many intermediate images. By fusing these images we obtain a final
image for the virtual objects blurred consistently with the captured image. Because warping is much faster than 3D rendering,
we can create realistically blurred images at a very low computational cost.

Index Terms—Augmented Reality, Computer Vision, Object Tracking, Object Detection, Motion-Blur, Efficient Second-order
Minimization.
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1 INTRODUCTION

W ITH the rapidly increasing popularity of webcam-
and mobile devices-based AR applications, motion

blur is one of the main obstacles for vision-based tracking
and augmentation. Because it makes salient features almost
disappear, motion blur disturbs tracking algorithms based
on corners or edges extraction. One solution is to use
detection algorithms [1], [2] to restart tracking when the
blur stops, but the interruption spoils the user experience.

A method that explicitly handles motion blur is therefore
desirable. Recently a few approaches have been introduced
but they are either limited to markers [3], [4], or to camera
tracking applications [5]. Camera tracking can exploit the
whole image, but we mainly focus here on object tracking,
which is more challenging since it can rely only on the
image portion containing the object. In presence of blur,
the amount of image information relevant for tracking can
become very low.

Moreover, for Augmented Reality applications, another
problem occurs since the virtual objects must be rendered to
reflect correctly the motion blur; otherwise they would look
unnatural. Previous approaches applied artificial 2D image
blurring [6], [7]. However, these do not take perspective
into account correctly.

As Figure 1 shows, our contribution is two-fold. We
propose a method for object tracking even in presence
of large amounts of motion blur, and also a method for
rendering blurred virtual objects under general 3D motion.
For tracking we explicitly introduce motion blur into the
image formation model for template matching. In practice,
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we chose the Efficient Second-order Minimization (ESM)
algorithm because it is one of the most efficient existing
algorithm [8], [9]. Our approach yields a very simple to im-
plement generalization of the ESM formula. For rendering
we rely on the same image formation model. Our algorithm
avoids extensive repetitive rendering required to generate
motion blur for 3D motion by combining 2D warping and
3D rendering.

This paper extends our primilary work [10] in both the
tracking and rendering aspects. On the tracking side, we
relax the need of known exposure time required to simulate
the motion blur. We propose a method that automatically
adapts to the varying shutter speed, and this results in
improved robustness and convergence. We also improved
the rendering aspect by adjusting the blending process.

We experimented not only with synthetic images but also
with real sequences captured with automatic shutter speed
control. In the sequences, the tracked object moves fast and
presents heavy motion. We obtain faster, more robust, and
more accurate convergence compared to the standard ESM
algorithm. In addition, we verified the improvements under
varying shutter speed both in synthetic and real images. We
also show the generated motion blur reflects successfully
the 3D motion.

In the remainder of the paper, we first describe related
works about tracking under motion blur and motion blur
generation for Augmented Reality. Then, we describe our
methods for motion blurred object tracking and motion blur
generation and present our results.

2 RELATED WORK

Most of the existing tracking methods ignore blur and
are therefore prone to fail when the input images are too
blurred, but a few methods explicitly consider blur. For
marker detection, Okumura et al. first estimate the amount



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

Fig. 1. Tracking and motion blur generation for various 3D motions. Top row: Our algorithm can track the selected
squared region on the box despite heavy motion blur. The green squares show the successive iteration steps of
the motion estimation. Middle row: A virtual dragon is rendered with consistent motion blur. Our method properly
generates motion blur for general motion, including 3D rotations. Bottom row: For comparison, the same object
is rendered without motion blur. The insertion is less credible. Check also the supplementary video.

of blur to try to remove its effect in the input images
and improve the registration [3]. Claus et al. proposed a
machine learning approach for a fiducial detection which
is robust to motion blur as well as other real world
difficulties [4]. However, these are limited to marker and
fiducials. Another approach was developed by Klein et al.
where an inertial sensor was used to predict the motion blur
for more robust edge extraction [11]. In this paper, we rely
on the camera and natural features only.

Recently, Klein et al. developed a SLAM method robust
to motion blur [5]. It first estimates the amount of blur and
its direction by template matching between small-scaled
camera images of the previous and current frames. This
then helps extracting edges for model-based tracking [11].
In this paper, we focus on object tracking, which is more
challenging since the object can represent only a portion
of the captured image. We use a template matching-based
approach because it does not rely on feature extraction [12],
[13], which can be dangerous when motion blur erases most
of the image features, and because it usually yields very
accurate results.

Rendering virtual objects with a consistent motion blur
was already done [6], [3]. Okumura et al. only consider
the blur due to an out-of-focus lens and estimate the Point
Spread Function from the image to apply it to the rendered
image [3]. Fischer et al. consider 2D translational motion
blur and simulate it by translating the object image several

times and summing the created images [6]. A more recent
approach by Klein et al. consider the motion blur due to
the rotation of the camera [7]. In the tracking process,
they estimate the image motion as a composition of a 2D
translation and a 2D rotation, and use this motion to transfer
the motion blur on the virtual objects.

These approaches are limited to uniform 2D motion blur,
and cannot render effects such as the ones shown in the first
three columns of Figure 1, where the amount of blur is not
uniform because of rotation motions. Mei et al. proposed
an algorithm that takes perspective into account correctly
and showed it can efficiently be implemented on the
GPU [14]; unfortunately it can only consider planar objects.
By contrast, our method renders complex effects on 3D
objects while remaining efficient by rendering the virtual
objects twice under different viewpoints and interpolating
and merging these two views.

3 THE ESM-BLUR AND ESM-BLUR-SE
ALGORITHMS

In this section, we first introduce our image formation
model that considers blur explicitly, and we then show how
the ESM algorithm can be adapted to this model. In the
next section we will show how to efficiently render blurred
virtual objects under the same image formation model.
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3.1 Image Formation Model

The usual approach of template matching-based tracking
techniques is to assume a simple image formation model
I(Θ) where the captured image Ic can be generated by
warping a known template T :

I(Θ) = w(T ,Θ) , (1)

where w(., .) is a warping function, applied to the template
T with parameters Θ. The goal is to estimate motion Θ̂ by
maximizing the correlation between the captured image Ic
and the warped template as:

Θ̂ = argmin
Θ

‖Ic−I(Θ)‖2 . (2)

However such standard model ignores the possibility of
motion blur, and we generalize this model as:

I(m, t0) =
1

1− t0

∫ 1

t0
w(T ,m(t))dt , (3)

that is, the captured image is assumed to be the average
of the template warped under a motion defined by m(t).
t0 denotes the time when the shutter opens, and can be
normalized to be between 0 and 1. We now have to estimate
the full motion of the template between t0 and 1.

For simplicity, we assume this motion is linear so that
we can write:

m(t) = t ·Θ , (4)

where Θ is the template motion on shutter-close, and our
image formation model of Eq. (3) is simplified as:

I(Θ, t0) =
1

1− t0

∫ 1

t0
w(T , tΘ)dt . (5)

This model is valid even if there is no motion blur—
in cases when neither the object nor the camera move.
Moreover when t0→ 1, that is when the capture is assumed
to be instantaneous, this model tends to the more standard
model of Eq. (1). Figure 2 validates the reliability of our
image formation model for general motion.

One issue is parameterization, which needs to satisfy the
linear interpolation assumed in Eq. (4). We use exponential
maps for rotations together with simple 3-vectors for trans-
lations. We show in the following that optimizing Eq. (2)
can be done for such a model.

3.2 Optimization

Thanks to the Inverse Compositional algorithm [12], we can
always assume that the template motion Θ is small. More
precisely, the input image is first warped with the inverse
of the transformation estimated for the previous image, and
we only have to estimate the motion from the template in a
reference position to the warped input image. This motion
is small if the object moves slowly enough. To make the
derivations simpler, we consider here the simple case where
Θ = 0 corresponds to the template reference position.

Since the template motion Θ is assumed to be small,
we can consider as was done in the formulation of the

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Validation of the proposed image formation
model. (a) is the capture of the box with motion blur. (b)
is the background image which is used for overlay of (c)
the rendered template with motion blur by Eq. (5) and
(d) the rendered template without motion blur. (e) and
(f) show the absolute difference of (c) and (d) with the
captured image. The proposed image formation model
produces much less difference. Note that the proposed
tracking does not require template blurring.

ESM algorithm, the second-order Taylor expansion of the
warping function as:

w(T ,Θ)≈ T +JT Θ+Θ
>HT Θ , (6)

where JT is the Jacobian of w(T ,Θ) and HT is its Hessian,
computed at Θ= 0. By plugging this into Eq. (5), we obtain
the following second-order approximation of our image
formation model:

I(Θ, t0)

≈ 1
1− t0

∫ 1

t0
[T +JT (tΘ)+(tΘ)>HT (tΘ)]dt

= T +
1

1− t0
(
∫ 1

t0
tdt)JT Θ+

1
1− t0

(
∫ 1

t0
t2dt)Θ>HT Θ

= T +a(t0)JT Θ+b(t0)Θ>HT Θ (7)

We can avoid the term b(t0)Θ>HT Θ as it was done in
the ESM derivations by considering the expression of the
Jacobian of w(T , .) for the captured image. We express the
Jacobian JI of our image formation function I(Θ) at Θ by
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computing the derivative of Eq. (7). Then, we get:

JI(Θ) =
∂I(Θ, t0)

∂Θ>

= a(t0)JT +2b(t0)Θ>HT . (8)

By plugging Eq. (8) into Eq. (7), our image formation
model becomes

I(Θ, t0) ≈ T +a(t0)JT Θ+
1
2
(JI(Θ)−a(t0)JT )Θ

= T +
1
2
(JI(Θ)+a(t0)JT )Θ ,

which we can use to compute the motion Θ̂ as:

Θ̂ = J+blur(Ic−T ) , (9)

where J+blur is the pseudo-inverse of Jblur, with

Jblur =
1
2
(JI(Θ)+a(t0)JT ) . (10)

a(t0) is a function dependent on the shutter opening time.
From Eq. (7),

a(t0) =
1

1− t0

∫ 1

t0
tdt =

t0 +1
2

.

Θ̂ is added to the current pose. This process is performed
iteratively until the Euclidean norm of the motion update
becomes smaller than a threshold.

Eq. (10) generalizes the standard ESM formula. When
we assume as it is usually done that the exposure time is
infinitesimal, then t0 = t1 and a = 1, and Eq. (10) simplifies
to the standard ESM formula. On the other extreme, when
the shutter remains opened, t0 = 0 and then a = 1

2 , reducing
the influence of the Jacobian computed at the template.

It is therefore very easy to modify an existing imple-
mentation of the original ESM to make it more robust to
motion blur. We call the resulting algorithm ESM-Blur.

In practice, the correct value for a can be directly
computed if one knows the camera shutter opening and
closing times. In our previous work, we assumed t0 was
equal to 0 [10]. In the following section, we present our
solution to relax this assumption and estimate the value of
t0 automatically.

3.3 Shutter Speed Estimation

The method described in the previous section assumed t0
to be known. However, this is not necessarily the case in
practice, for example the camera automatically adapts the
shutter speed to the current lighting conditions. Even when
the lighting condition is mostly static, the shutter speed
still changes according to the change of principal brightness
of the scene. This can be caused by moving objects and
shadow cast from them.

We now show that we can estimate both the motion
parameters and shutter opening time simultaneously. For
this, the parameter vector we want to estimate is now
augmented with the increment of t0 as [Θ | ∆t0]

>. This

requires derivatives of the input image and template with
respect to t0, which can be computed analytically:

JI(Θ, t0) =

[
JI(Θ) | ∂I(Θ, t0)

∂ t0

]
=

[
JI(Θ) | 1

2
ȧ(t0)JT Θ

]
, and (11)

JT (Θ, t0) = [JT (Θ) | 0] , (12)

where the augmented column of JT (Θ, t0) is simply the
null vector because we can assume the template is captured
without any motion.

By substituting the Jacobian matrices in Eq. (10) with
the augmented matrices in Eqs. (11) and (12), we get the
final augmented Jacobian matrix of Jblur as:

JblurSE =
1
2
(JI(Θ, t0)+a(t0)JT (Θ, t0))

=
1
2

[
JI(Θ)+a(t0)JT |

1
2

ȧ(t0)JT Θ

]
, (13)

which can be used to estimate the motion and t0 parameters
iteratively at the same time in the same way as Eq. (9) by
replacing Jblur with Eq. (13) as:[

Θ̂

∆t0

]
= J+blurSE(Ic−T ) . (14)

At each iteration, the shutter opening time parameter is
updated by addition. However, we force t0 to remain
positive, and lower to 1 as:

t0 =

 0 t0 <−∆t0
1 t0 > 1−∆t0
t0 +∆t0 otherwise

(15)

because it is assumed to be normalized between 0 and 1 in
our image formation model. Without this, t0 could become
out of its proper range because of numerical errors and
model imperfection. We call the resulting algorithm ESM-
Blur-SE, for Shutter speed Evaluation.

3.4 Initialization and Re-Initialization
We use the Ferns method [2] to automatically initialize
our tracking method described above. It also happens that
tracking fails when the blur is too important or when there
is a complete occlusion, and we use the Ferns for re-
initialization when a failure is detected. To detect a failure,
we compute the Normalized Cross-Correlation (NCC) be-
tween the template and the image patch warped back from
the input image with the estimated pose. In practice, we
estimate the tracking has failed if the NCC is less than 0.8.

4 3D MOTION BLUR GENERATION

This section describes our method to render the virtual
objects under a motion blur consistent with the blur present
in the captured image. It is based on the image formation
model already introduced in Eq. (3) for tracking. To stick
with real-time constraints, we propose a method that com-
bines 3D rendering and 2D warping efficiently.
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(a) (b) (c) (d) (e) (f)

Fig. 3. Overview of our approach to efficient blur rendering. To render the virtual object consistently with
the retrieved motion such as in (a), we first generate two intermediate views (c) and (e) we call intraframes
using OpenGL. To create the other intermediate views, we warp the intraframes using affine transformations
to approximate perspective projections. The contributions of the two intraframes are weighted and summed to
obtain intermediate views such as (d). (b) and (f) are warped respectively from (c) and (e) only. Finally, by
summing all the intermediate views, we obtain a blurred view as in (a).

4.1 Rendering Blur
One general way to simulate motion blur is to render the
virtual object many times along its path during the image
exposure and blend the rendered images all together. How-
ever, several tens of such images are needed in practice to
create realistic smooth blur, and doing the rendering in 3D
would be prohibitive for real-time applications. Rendering
a model many times for blur effect is not attractive as the
system would have to dedicate more computation times to
rendering. Furthermore, Computer Vision algorithms now
tend to use the GPU, leaving less time for rendering.

Therefore, as depicted by Figure 3, our strategy is to
render only a few images of the virtual object, and generate
intermediate images by warping these rendered images. We
call such sparsely rendered images intraframes by quoting
the term from the MPEG format specifications. Because
warping is much faster than 3D rendering, this allows us
to generate correctly blurred images within our real-time
constraints.

More formally, the image Ivirt we want to create can be
written as:

Ivirt =
1

1− t0

∫ 1

t0
r(O,m(t))dt , (16)

where r(O,m(t)) is the image of the virtual object O
rendered under pose m(t). As in Section 3, t0 denotes the
time when the camera shutter opens, which is normalized
to be between 0 and 1. Also as in Section 3, we assume
that m(t) evolves linearly between t0 and 1. Our image
formation model for rendering is therefore similar to the
one we used for tracking as defined in Eq. (3). But contrary
to Section 3, we cannot assume here the object pose is
always small, and we write m(t) as m(t) = Θp + tΘ, where
Θp is the object pose estimated for the previous captured
image, and Θ is the object motion for the current image
computed as in the previous section.

In practice, we have to replace the integral in Eq. (16)
by a finite sum:

Ivirt ≈
1

n+1

n

∑
i=0

r(O,Θp +
i
n

Θ) . (17)

The blur realism increases with n, but of course the ren-
dering time increases as well.

As discussed above, we actually render in 3D only two
intraframes. For a good balance, we choose to take them
at i = n

4 and i = 3n
4 . We therefore approximate Ivirt as

Ivirt ≈
1

n+1
(I n

4
+ I 3n

4
+

n

∑
i=0

i6= n
4 , i 6=

3n
4

Bi) , (18)

where I n
4
= r(O,Θp +

Θ

4 ) and I 3n
4
= r(O,Θp +

3Θ

4 ). The
images Bi for the other values of i are intermediate images
created from I n

4
and I 3n

4
as explained in the next section.

4.2 Generating the Intermediate Images
From the two intraframes, we generate n intermediate
frames using affine warping. One strategy could be to use
only the first intraframe to generate the first part of the
intermediate frames, and the second intraframe to generate
the second part. However that would result in a discontinu-
ity at the junction of the two parts since the affine warping
is only an approximation of a real 3D rendering. Near this
junction, we therefore blend the warped images from the
two intraframes together to avoid this discontinuity.

More exactly an intermediate frame Bi is computed as

Bi =


w(I n

4
,A n

4→i) if i < n
4

α(i)w(I n
4
,A n

4→i)+β (i)w(I 3n
4
,A 3n

4 →i) if n
4 < i < 3n

4

w(I 3n
4
,A 3n

4 →i) if i > 3n
4

(19)
where α(i) varies linearly from 1 to 0 when i varies from
n
4 to 3n

4 , and β (i) varies linearly from 0 to 1 when i varies
from n

4 to 3n
4 . w(., .) is the warping function and the Ai→ j

are the affine transformations between image i and image
j.

To compute the affine transformations Ai→ j, we rely on
the projections of the corners of the bounding box to the
virtual object. We project these corners in the intraframes
and the intermediate frames using a pose interpolated in 3D
from t0 to 1. The transformation Ai→ j is then computed
as the affine transformation that transforms the corners
projections in frame i to their projections in frame j
as best as possible, in the least-squares sense. Thus the
transformation is approximately valid for any pixel lying
on the virtual object.
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The approximations involved by the affine warping are
validated in Figure 4 in which we compare renderings with
and without these approximations, showing the approxima-
tions yield almost no visual artefacts.

4.3 Determining the Number of Intermediate Im-
ages

This section presents an adaptive scheme for determining
the number of intermediate frames used for rendering. In
our previous paper [10], this number was systematically
set to a fixed value (we used 48 intermediate images for a
total of 50 images when including the intraframes). It was
a simple but not optimal solution as a small motion could
require much less images for a satisfying rendering, and a
large motion more images.

Therefore we estimate the required number of intermedi-
ate images according to the motion amplitude in the image.
This is done by first projecting the corners of the bounding
box using the estimated pose and computing their distances
to their locations in the previous image. We then use the
average distance in pixels as the number of intermediate
frames. In practice, we also limit the maximum number to

Fig. 4. Validating our blur rendering method. In order
to validate the approximations done in our blur ren-
dering method, we compared for four different motions
renderings using our method with 48 intermediate im-
ages (on the left column) against renderings obtained
by using 1000 intermediate images rendered without
approximations with OpenGL (on the right column).
The differences are barely visible while our method is
significantly faster.

// Intermediate image:
uniform sampler2D tex_src;

// Accumulated and blended image:
uniform sampler2D tex_acc;

varying float va; // alpha for an image
varying vec2 uv; // texture coordinate

void main()
{

vec4 src =
texture2D(tex_src, gl_TexCoord[0].st);

if (color.a == 0.0)
{
discard;

}
else
{
vec4 dst = texture2D(tex_acc, uv.st);
gl_FragColor = src * va + dst;

}
}

(a)
// Accumulated and blended image:
uniform sampler2D tex_acc;

// Camera image:
uniform sampler2D tex_dsp;

// # of intermediate images:
uniform int N;

varying vec2 uv; // texture coordinate

void main()
{

vec4 src =
texture2D(tex_acc, gl_TexCoord[0].st);

vec4 dst = texture2D(tex_dsp, uv.st);

if (src.a > 0.0)
{
if (color.a > 1.0-1.0/N) color.a = 1.0;
gl_FragColor = src + dst * (1.0-src.a);

}
else
{
gl_FragColor = dst;

}
}

(b)

Fig. 5. GLSL source codes for (a) accumulating inter-
mediate images and (b) final overlaying on the camera
image.

48 in our implementation since we observed it is visually
acceptable for inter-frame motion.

4.4 Implementation
For efficiency, we warp the intraframes and blend the
resulting intermediate images using the graphic card only.
Not only the graphic card can perform these two operations
very fast, but this avoids reading back the intraframes from
the video memory into the main memory. The rendering of
the intraframes is done using render-to-texture in OpenGL.
The textures are set to fit on a virtual image plane, which
is then transformed by linear interpolation to create the
intermediate images. The final motion-blurred image is
generated by simply accumulating each image with proper
alpha values. The whole process is very fast and enough
images can be generated to create a realistic blur effect
while keeping the real-time constraint.

The textures used to store the intraframes and the ac-
cumulation image require 4 channels, for the three color
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channels plus one for alpha blending. Specifically, the
accumulation image uses the 32-bit floating type pixel
format to avoid discretization issues which can become im-
portant when we consider alpha blending of many images.
However, if the processing time must be more shorter while
giving up fine details, 8-bit format textures can be still used
with some more care.

The warping and accumulation process is done as fol-
lows. The intraframes are rendered over a transparent, black
background (R=G=B=A=0.0). The alpha channels of the
pixels that lie on the object are then set to 1. Warping this
intraframe to the intermediate images is done by rendering
a rectangle under the pose estimated for the intermediate
image with the intraframe as the texture. This rendering is
directly accumulated to the texture by the fragment shader
provided in Figure 5(a).

Note that this accumulated image is not yet overlaid on
the camera image. The camera image is filled in another
texture with alpha values of 0. If we can neglect discretiza-
tion issues, this blending can be implemented with naive
OpenGL operations. However it is not always the case if
the number of intermediate images is too large. The second
fragment shader presented in Figure 5(b) completes the
alpha values of the accumulation image before blending
with the camera image.

5 EXPERIMENTAL RESULTS
We evaluated our tracking and motion blur generation
algorithms on a desktop PC with a 3.2 GHz CPU and
an NVIDIA GeForce GTX 580 graphics card. The camera
used for the tracking captured 640×480 resolution images
up to 30Hz. Its shutter speed can be fixed with a specified
exposure time or adjusted automatically. Rendering is done
at the same resolution with the camera image.

5.1 Tracking
5.1.1 Synthetic Images
We first performed synthetic experiments to measure and
compare the performance of ESM, ESM-Blur, and ESM-
Blur-SE (ESM-Blur with shutter speed estimation). We
selected the three templates shown in Figure 6 from the
benchmark dataset [9]. We generated synthetic images with
controlled motions and exposure times. Some of them are
shown in Figure 7. The performance evaluation focuses
only on the tracking performance since the shutter speed
estimation is intended to help the pose estimation.

We experimented with three different types of motion:
3D translation only, 3D rotation only, and a combination
of 3D translation and rotation. For each type, we increased
the motion gradually. Table 1 gives the correspondence
between the 3D motion and the average 2D motion of the
template corners in the image.

We measured at each step the success ratio, the
number of iterations to convergence, Normalized Cross-
Correlation (NCC) between the template and the image
patch at the converged pose. If the NCC is higher than some
threshold, it was counted as a success. For each step of

TABLE 1
Average amplitude (in pixels) of the template corners

2D motion as a function of the displacement in 3D
space in the synthetic images. The 2D motion grows

almost linearly with the 3D motion.

Translation (cm) 5 10 15 20 25 30
2D motion (pixels) 12.1 24.0 35.9 48.0 60.0 72.0

Rotation (deg) 5 10 15 20 25 30
Pixel 12.6 25.0 37.5 49.9 62.3 74.8

Transl. & Rot. 5 10 15 20 25 30
Pixel 16.2 31.8 47.7 63.8 80.0 95.7

motion, 1000 images were generated with random exposure
time. Note that the images do not constitute a consecutive
sequence. For each image, we ran the three algorithms
with the same initial pose used for blur generation. The
maximum number of iterations were limited to 100 to
prevent too much computation time.

The results for the template in Figure 6(a) are shown
in Figure 8. We observed very similar trends from the
results for other templates, therefore we omit them to save
space. The success rates are higher for ESM-Blur and ESM-
Blur-SE than the standard ESM algorithm. The proposed
methods also converge faster than ESM. Except maybe for
the rotational motion for which the difference is small, the
improvements are consistent over the different experiments.
Note that even though ESM-Blur-SE converges faster than
ESM-Blur, it requires more computation per iteration. The
average processing time is presented in the following sec-
tion.

Figure 8(j)-(l) show the difference of the estimated pose
by the proposed methods and the ground truth pose. We
performed more experiments on other targets, and they are
consistent with the results shown in Figures 8(g)-(i).

The gain of the tracking performance does not sacrifice
robustness to image noise. In the generated images, we
added Gaussian noise of mean 0 and increasing standard
deviation to see how the performance varies. The noise
is added independently to each pixel of the 3 channels.
The results are shown in Figure 9. This validates that
the performance degradation rate of the proposed methods
is similar, thus the proposed methods have no specific
drawback to the image noise.

5.1.2 Real Sequences
Our two test sequences are 930 and 1500 frames long,
and are available as supplementary material. The second
sequence contains much faster motion, thus tracking fails
more frequently. During capture of both sequences, the
camera was set on auto-shutter control. Some frames are
presented in Figure 1. For ESM-Blur, we set t0 = 0 and
t1 = 33.33ms. Table 2 compares our ESM-Blur and ESM-
Blur-SE with the standard ESM.

Over the first sequence, ESM fails to converge correctly
11 times, while ESM-Blur and ESM-Blur-SE fail only 3
and 2 times, respectively. Both methods are reinitialized
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Fig. 6. The three templates from the dataset introduced by Lieberknecht et al. [9] are used in our synthetic
experiments.

Fig. 7. Examples of blurred images generated from the templates in Figure 6.

TABLE 2
Comparison of tracking performances for ESM,
ESM-Blur, and ESM-Blur-SE on two real image

sequences composed of 930 and 1500 frames each.
The percentages in parentheses report the

improvements with respect to the original ESM
algorithms.

Sequence #1 ESM ESM-Blur ESM-Blur-SE
Number of Correctly 767 859 910

Tracked Frames (+11.99%) (+18.64%)
Average Number 24.33 20.04 16.81

of Iterations (-17.63%) (-30.9%)
Sequence #2 ESM ESM-Blur ESM-Blur-SE

Number of Correctly 1004 1209 1282
Tracked Frames (+20.41%) (+27.68%)
Average Number 27.62 23.48 19.01

of Iterations (-14.98%) (-31.17%)

automatically in case of failure using a Fern-based detector
when the amount of blur becomes small enough, which
means that the following frames are also lost until the
reinitialization succeeds. Avoiding failures is of course still
desirable to avoid augmentation interruption. The proposed
methods respectively tracked 92 and 143 more frames,
which are 11.99% and 18.64% more than ESM.

The iterations were stopped when the Euclidean norm of
the motion update was less than 0.1. The frames with more
motion blur typically need more iterations and yield lower
NCC. The average iterations of ESM-Blur of ESM-Blur-
SE are respectively 17.63% and 30.9% lower than that of
ESM, and it shows faster convergence.

The second sequence exhibits more challenging condi-
tions, therefore the tracking fails more often and takes
more iterations. ESM fails to converge correctly 51 times,
while the proposed methods fail only 28 and 23 times. The
proposed methods tracked 205 and 278 more frames, which
are 20.41% and 27.68% more than ESM. Iterations were

TABLE 3
Average times for tracking and rendering evaluated on
the sequence of Figure 1. Rendering was performed
using 48 intermediate images, and the naive solution

with 50 views takes about 12.30 ms.

Step Average time (ms)

Tracking
Conversion to grayscale 0.89

Motion estimation
ESM 0.17 / iter (4.69 / frame)

ESM-Blur 0.17 / iter (3.77 / frame)
ESM-Blur-SE 0.24 / iter (4.36 / frame)

Rendering
Intraframe rendering 0.65

Inter. image & alpha blending 0.60
Final rendering 0.72

14.98% and 31.17% lower than ESM.
Figure 10 shows the convergence of the three methods

on some images of the second sequence. In these images
ESM failed to converge correctly, while ESM-Blur and
ESM-Blur-SE estimated the motion correctly. It can also be
seen that ESM-Blur-SE converged within fewer iterations.
Figure 11 gives quantitative results, and is consistent with
the performances evaluated on the synthetic images. The
proposed methods outperform ESM both in the number of
iterations and the final NCC.

Average computation times for the most consuming steps
are given in Table 3. Because the computations involved in
ESM and ESM-Blur are very similar but ESM-Blur requires
less iterations, ESM-Blur is faster than ESM. Although
ESM-Blur-SE converges within even fewer iterations, the
overall time is slightly more because one iteration takes
more computation due to the additional parameter estima-
tion. From this result, we recommend ESM-Blur-SE for
more robustness, and ESM-Blur for faster performance, for
example on mobile devices.

In our experiments, we took 32×32 pixels for the tem-
plate size because it was a good compromise between
the performance and computation time. Usually, the op-
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Fig. 8. Comparison of tracking performances of ESM, ESM-Blur, and ESM-Blur-SE on synthetically generated
images for the template of Figure 6(a). From left to right: translation only, rotation only, and translation and
rotation. From top to bottom: Correct convergence rate, number of iterations, Normalized Cross-Correlation
at convergence, and differences between the estimated pose and the ground truth pose. ESM-Blur-SE
systematically outperforms ESM-Blur, which systematically outperforms ESM.

timization converges within fewer iterations if the template
size is larger, however each iteration spends more time.
The computation time for an iteration of our unoptimized
implementation takes time proportional to the template size.

5.2 Motion Blur Generation
The dragon model used in the experiment is made of 16,583
vertices and 31,144 polygons. The model was rendered as

a compiled display list, which is very fast since all vertices
and pixel data are stored in the graphics card.

Typical results of the proposed motion-blur generation
are shown in Figure 4. Even though we incorporated
2D image warping instead of several 3D renderings, the
rendered image illustrates little artefacts, which is almost
invisible in real-time augmentation.

Average rendering times are given in Table 3. The most
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Fig. 9. Success rates for increasing level of image noise for (a) translation-only motion, (b) rotation-only motion,
and (c) translation and rotation. The average motion was 20 cm (with standard deviation 10 cm) and 20 degrees
(with standard deviation 10 degree) rotation along every axis. The proposed methods exhibit similar performance
degradation to the original ESM.

Fig. 10. Comparison of the convergence between ESM (top row), and the proposed ESM-Blur (middle row) and
ESM-Blur-SE (bottom row) when ESM fails in the sequence shown in Figure 1. The quadrangles denote the
intermediate positions for the template as retrieved by the successive iterations. ESM-Blur-SE converges to the
correct pose even faster than ESM-Blur. The images are cropped around the center for visibility.

object dependent part is the intraframe rendering, which
needs to draw the object twice. By contrast, rendering
intermediate frames is very cheap and independent from the
complexity of the object. Both operations are performed on
the graphics card, letting the CPU acquiring and tracking
the next frame while the GPU is rendering the augmented
image.

6 CONCLUSION & FUTURE WORK

We proposed two complementary methods for Augmented
Reality under motion-blur, one for tracking, and the other

one for rendering. The core is a generalized image forma-
tion model which simulates more realistic image capture.
The model is then used in a very efficient optimization
based on ESM, and also applied to motion-blur generation
with a simple and efficient implementation. We also pre-
sented how to eliminate the need of manual exposure time
setting, and proved the improvements.

Our implementations of the tracking methods exploited
only the original input resolution images for performance
measure. To enlarge further the convergence range, pyra-
midal implementations could also be used in conjunction
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(a) (b)

Fig. 11. Comparison of tracking performances over a section of the real sequence for which all methods always
converge. (a) The number of iterations to convergence. (b) The NCC between the warped template and the
current image. The performance are consistent with the synthetic experiments. The proposed methods converge
faster and NCC is slightly better.

with our algorithms.
An interesting future research direction is to investigate

other image formation models to better handle complex
imaging effects, for example image distortions due to
rolling shutters often used in webcams and cameras in
mobile phones. Extensions that estimate another useful
parameters such as intrinsic camera parameters would be
also useful.
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