
ESM-Blur: Handling & Rendering Blur in 3D Tracking and Augmentation
Youngmin Park∗

GIST, U-VR Lab
Vincent Lepetit†

EPFL, CVLab
Woontack Woo‡

GIST, U-VR Lab

ABSTRACT

The contribution of this paper is two-fold. First, we show how to
extend the ESM algorithm to handle motion blur in 3D object track-
ing. ESM is a powerful algorithm for template matching-based
tracking, but it can fail under motion blur. We introduce an image
formation model that explicitly considers the possibility of blur, and
show it results in a generalization of the original ESM algorithm.
This allows to converge faster, more accurately and more robustly
even under large amount of blur. Our second contribution is an ef-
ficient method for rendering the virtual objects under the estimated
motion blur. It renders two images of the object under 3D perspec-
tive, and warps them to create many intermediate images. By fusing
these images we obtain a final image for the virtual objects blurred
consistently with the captured image. Because warping is much
faster that 3D rendering, we can create realistically blurred images
at a very low computational cost.

1 INTRODUCTION

With the fast increasing popularity of webcam- and mobile devices-
based AR applications, motion blur is one of the main obstacles for
vision-based tracking and augmentation. Because it makes salient
features almost disappear, motion blur disturbs tracking algorithms
based on corners or edges extraction. One solution is to use detec-
tion algorithms [7, 11] to restart tracking when the blur stops, but
the interruption spoils the user experience.

A method that explicitly handles motion blur is therefore de-
sirable. For example, [10] handles blur in marker-based tracking,
and [6] in natural features-based camera tracking. Camera tracking
can exploit the whole image, while we mainly focus here on object
tracking as, which is more challenging: It can only rely on the im-
age part containing the object, and in presence of blur, the amount
of image information relevant for tracking can become very low.
Like us, [4, 9] consider motion blur in the case of template track-
ing. The main advantages of our approach is its simplicity and ef-
ficiency. We show how to easily modify the ESM algorithm, the
most efficient template matching algorithm [2], without any need
for blurring the template.

Moreover, for Augmented Reality applications, another problem
occurs since the virtual objects must be rendered to reflect correctly
the motion blur, otherwise they would look unnatural. [3, 5] are
limited to 2D translational motions. [9] proposes an algorithm that
take perspective into account correctly and shows it can efficiently
be implemented on the GPU, unfortunately it can only consider pla-
nar objects. While simple, our method efficiently synthesizes mo-
tion blur on general 3D objects.

As Figure 1 shows, our contribution is two-fold. We propose
a method for object tracking even in presence of large amounts of
motion blur, and also a method for rendering blurred virtual objects
under general 3D motion. For tracking we explicitly introduce mo-
tion blur into the image formation model for template matching.

∗e-mail: ypark@gist.ac.kr
†e-mail: vincent.lepetit@epfl.ch
‡e-mail: wwoo@gist.ac.kr

Figure 1: Tracking and motion blur generation for various 3D motions
for (left:) a 3D rotation, (right:) a 3D translation. Top row: Our algo-
rithm can track the book despite heavy motion blur. The arrows depict
the dominant motion in each figure. Middle row: A virtual teapot is
rendered with consistent motion blur. Our method properly generates
motion blur for general motion, including 3D rotations. Bottom row:
For comparison, the same teapot rendered without motion blur.

For rendering we rely on the same image formation model. Our
algorithm avoids extensive repetitive rendering required to gener-
ate motion blur for 3D motion by combining 2D warping and 3D
rendering.

We experimented with several real sequences in which the
tracked object moves fast and presents heavy motion blur. We ob-
tain faster, more robust, and more accurate convergence compared
to the standard ESM algorithm. We also show the generated motion
blur reflects successfully the 3D motion.

In the remainder of the paper, we first describe our methods
for motion blurred object tracking and motion blur generation, and
present our results.

2 THE ESM-BLUR ALGORITHM

In this section, we first introduce our image formation model that
considers blur explicitely, and we then show how the ESM algo-
rithm can be adapted to this model. In the next section we will show
how to efficiently render blurred virtual objects under the same im-
age formation model.

2.1 Image Formation Model
The usual approach of template matching-based tracking tech-
niques is to assume a simple image formation model I(Θ) where



the captured image Ic can be generated by warping a known tem-
plate T :

I(Θ) = w(T ,Θ) , (1)

where w(., .) is a warping function, here applied to the template
T with parameters Θ. The goal is to estimate the motion Θ̂ by
maximizing the correlation between the captured image Ic and the
warped template as:

Θ̂ = argmin
Θ

‖Ic−I(Θ)‖2 . (2)

However, this is valid only when the captured image is not
blurred. To correctly handle blur, we generalize the image forma-
tion model by writing:

I(m) =
1

t1− t0

∫ t1

t0
w(T ,m(t))dt , (3)

that is, the captured image is made of the average of the template
appearances when it is warped under a motion defined by m(t). t0
denotes the time when the camera shutter opens, and t1 the time
when it closes. Instead of estimating a single motion vector Θ, we
now have to estimate the full motion m(t) of the template between
times t0 and t1. To make the estimation possible, we will assume
that this motion is linear so that we can write:

m(t) =
t
t1

Θ , (4)

where Θ is the template motion at time t1, and our image formation
model of Eq. (3) simplifies in:

I(Θ) =
1

t1− t0

∫ t1

t0
w(T ,

t
t1

Θ)dt . (5)

This model is valid even if there is no motion blur—in cases when
neither the object nor the camera move. Moreover when t0 → t1,
that is when the capture is assumed to be instantaneous, this model
tends to the more standard model of Eq. (1). We show in the fol-
lowing that optimizing Eq. (2) can be done for such a model.

2.2 Optimization
As shown in [1], we can always assume that the template motion
Θ is small. As in the original ESM algorithm, we first consider the
second-order Taylor expansion of the warping function. To make
the derivations simpler, we consider here the simple case where
Θ = 0 corresponds to the template reference position. However, the
derivations can be extended to the more general case as it was done
in [8] in a straightforward way. We can therefore write:

w(T ,Θ)≈ T +JT Θ+Θ
>HT Θ , (6)

where JT is the Jacobian of w(T , .) computed at Θ = 0, and HT is
its Hessian, also computed at Θ = 0. HT is of rather unusual nature
since it is a tensor, but fortunately we won’t have to estimate it. By
plugging Eq. (6) into Eq. (5), we obtain the following second-order
approximation of our image formation model:

I(Θ)

≈ 1
t1− t0

∫ t1

t0
[T +JT

(
t
t1

Θ

)
+

(
t
t1

Θ

)>
HT

(
t
t1

Θ

)
]dt

= T +
1

t1(t1− t0)
(
∫ t1

t0
tdt)JT Θ+

1
t2
1 (t1− t0)

(
∫ t1

t0
t2dt)Θ>HT Θ

= T +aJT Θ+bΘ
>HT Θ (7)

where a and b depend on t0 and t1.

ESM can make the second-order term Θ>HT disappear by con-
sidering the expression of the Jacobian of w(T , .) for the captured
image. In our case, it is more difficult since this image is blurred.
However, we can still express the Jacobian JI of our image forma-
tion function I(Θ) at Θ by computing the derivative of Eq. (7). We
get:

JI(Θ) = aJT +2bΘ
>HT . (8)

By plugging Eq. (8) into Eq. (7), we can avoid the awkward term
bΘ>HT in the expression of our image formation model:

I(Θ) ≈ T +aJT Θ+
1
2
(JI(Θ)−aJT )Θ

= T +
1
2
(JI(Θ)+aJT )Θ ,

which we can use to compute the motion Θ̂ as:

Θ̂ = J+
blur(Ic−T ) .

J+
blur is the pseudo-inverse of Jblur, with

Jblur =
1
2
(JI(Θ)+aJT ) (9)

and
a =

1
t1(t1− t0)

(
∫ t1

t0
tdt) =

t0 + t1
2t1

. (10)

Eq. (9) generalizes the standard ESM formula. When we assume
as it is usually done that the exposure time is infinitesimal, then t0 =
t1 and a = 1, and Eq. (9) simplifies to the standard ESM formula.
On the other extreme, when the shutter remains opened, t0 = 0 and
then a = 1

2 , reducing the influence of the Jacobian computed at the
template.

It is therefore very easy to modify an existing implementation of
the original ESM to make it more robust to motion blur. In practice,
the correct value for a can be directly computed if one knows the
camera shutter opening and closing times. For the results presented
in this paper the camera was set so that the camera shutter remains
open, and we took a = 1

2 .

2.3 Initialization and Re-Initialization
We use the Ferns method [11] to automatically initialize our track-
ing method described above. It also happens that tracking fails
when the blur is too important or when there is a complete oc-
clusion, and we use the Ferns for re-initialization when a fail-
ure is detected. To detect a failure, we compute the Normalized
Cross-Correlation (NCC) between the template and the image patch
warped back from the input image with the estimated pose. In prac-
tice, we estimate the tracking has failed if the NCC is less than 0.8.

3 3D MOTION-BLUR GENERATION

This section describes our method to render the virtual objects un-
der a motion blur consistent with the blur present in the captured
image. It is based on the image formation model already intro-
duced in Eq. (3) for tracking. To stick with real-time constraints,
we propose a method that combines 3D rendering and 2D warping
for efficiency.

3.1 Rendering Blur
One general way to simulate motion blur is to render the virtual
object many times along its path during the image exposure and
blend the rendered images all together. However, several tens of
such images are needed in practice to create realistic smooth blur,
and doing the rendering in 3D would be prohibitive for real-time
applications. For example, rendering a single image of the GLUT



(a) (b) (c) (d) (e) (f)
Figure 2: Overview of our approach to efficient blur rendering. To render the virtual object consistently with the retrieved motion such as in
(a), we first generate two intermediate views (c) and (e) we call intraframes using OpenGL. To create the other intermediate views, we warp
the intraframes using affine transformations to approximate perspective projections. The contributions of the two intraframes are weighted
and summed to obtain intermediate views such as (d). (b) and (f) are other intermediate views for the pose that are not in-between the two
intraframes. Finally, by summing all the intermediate views, we obtain a blurred view as in (a).

Figure 3: Comparison of the convergences of standard ESM (left
column) and our method (right column) on difficult images. The
quadrangles denote the intermediate positions for the template as
retrieved by the successive iterations. Top row: Both methods esti-
mate the correct pose, however our method converges much faster.
Bottom row: Our method converges while standard ESM diverges,
usually after many iterations.

teapot using the glutSolidTeapot function takes about 3 ms
on our desktop PC. Rendering more complex objects in practical
applications would take longer.

Therefore, as depicted by Figure 2, our strategy is to render only
a few images of the virtual object, and generate intermediate images
by warping these rendered images. We call such sparsely rendered
images intraframes by quoting the term from the MPEG format
specifications. Because warping is much faster than 3D rendering,
this allows us to generate correctly blurred images within our real-
time constraints.

More formally, the image Ivirt we want to create can be written
as:

Ivirt =
1

t1− t0

∫ t1

t0
r(O,m(t))dt , (11)

where r(O,m(t)) is the image of the virtual object O rendered un-
der pose m(t). As in Section 2, t0 denotes the time when the camera
shutter opens, t1 the time when it closes. Also as in Section 2, we
assume that m(t) evolves linearly between t0 and t1. Our image for-
mation model for rendering is therefore similar to the one we used
for tracking as defined in Eq. (3). But contrary to Section 2, we
cannot assume here the object pose is always small, and we write
m(t) as m(t) = Θp + t

t1 Θ, where Θp is the object pose estimated
for the previous captured image, and Θ is the object motion for the
current image computed as in the previous section.

In practice, we have to replace the integral in Eq. (11) by a finite

sum:

Ivirt ≈
1

n+1

n

∑
i=0

r(O,Θp +
i
n

Θ) . (12)

The blur realism increases with n, but of course the rendering time
increases as well. In practice we use n = 50. As discussed above,
we actually render in 3D only two intraframes. For a good balance,
we choose to take them at i = n

4 and i = 3n
4 . We therefore approxi-

mate Ivirt as

Ivirt ≈
1

n+1
(I n

4
+ I 3n

4
+

n

∑
i=0

i6= n
4 , i6= 3n

4

Bi) , (13)

where I n
4

= r(O,Θp + Θ

4 ) and I 3n
4

= r(O,Θp + 3Θ

4 ). The images
Bi for the other values of i are intermediate images created from I n

4
and I 3n

4
as explained in the next section.

3.2 Generating the Intermediate Images
From the two intraframes, we generate n intermediate frames us-
ing affine warping. One strategy could be to use only the first in-
traframe to generate the first part of the intermediate frames, and
the second intraframe to generate the second part. However that
would result in a discontinuity at the junction of the two parts since
the affine warping is only an approximation of a real 3D rendering.
Near this junction, we therefore blend the warped images from the
two intraframes together to avoid this discontinuity.

More exactly an intermediate frame Bi is computed as

Bi =


w(I n

4
,A n

4→i) if i < n
4

α(i)w(I n
4
,A n

4→i)+β (i)w(I 3n
4
,A 3n

4 →i) if n
4 < i < n

4

w(I 3n
4
,A 3n

4 →i) if i > 3n
4

(14)
where α(i) varies linearly from 1 to 0 when i varies from n

4 to 3n
4 ,

and β (i) varies linearly from 0 to 1 when i varies from n
4 to 3n

4 .
w(., .) is the warping function and the Ai→ j are the affine transfor-
mations between image i and image j.

To compute the affine transformations Ai→ j, we rely on the pro-
jections of the corners of the bounding box to the virtual object. We
project these corners in the intraframes and the intermediate frames
using a pose interpolated in 3D from t0 to t1. The transformation
Ai→ j is then computed as the affine transformation that transforms
the corners projections in frame i to their projections in frame j.
Thus the transformation is approximately valid for any pixel lying
on the virtual object.

3.3 Implementation
For efficiency, we warp the intraframes and blend the resulting in-
termediate images using the graphic card only. Not only the graphic
card can perform these two operations very fast, but also this avoids



Table 1: Average times for tracking and rendering. The standard
ESM algorithm took 5.62 ms in average for motion estimation. Ren-
dering was performed using 48 intermediate images, and the naive
solution with 50 views takes about 171.75 ms.

Step Average time (ms)

Tracking Conversion to grayscale 0.89
Motion estimation 0.18 / iter (4.20 / frame)

Rendering
Intraframe rendering 7.27

Inter. image & alpha blending 0.70
Final rendering 1.00

reading back the intraframes from the video memory into the main
memory. The rendering of the intraframes is done using render-
to-texture in OpenGL. The textures are set to fit on a virtual image
plane, which is then transformed by linear interpolation to create the
intermediate images. The final motion-blurred image is generated
by simply accumulating each image with proper alpha values. The
whole process is very fast and enough images can be generated to
create a realistic blur effect while keeping the real-time constraint.

4 EXPERIMENTAL RESULTS

We experimented our tracking and motion blur generation algo-
rithm with a desktop PC having 3.2 GHz CPU and NVIDIA Quadro
FX 5600 graphics card. Figure 1 shows the overall result of our
tracking and rendering methods. The video is captured at 30 Hz
with the shutter speed of 33.33ms so as to the shutter is almost al-
ways opened while grabbing a frame. Therefore, we set t0 = 0 and
t1 = 33.33ms, giving a value of 1

2 for a in Eq. (10).
The tracked template is 10×10 cm large, and taken at the cen-

ter of the book cover. We moved the book freely including rotation
and translation along three axes. The tracking method estimated the
motion successfully even though the book is heavily motion-blurred
due to fast movement and long shutter speed. For the various mo-
tions, the teapot is correctly motion-blurred.

Our test sequence is 752 frames long, and is available as a sup-
plementary material. Some frames are presented in Figure 1. Over
this sequence, ESM fails to converge correctly 11 times, while
ESM-Blur fails only 5 times. Both methods are reinitialized au-
tomatically in case of failure using a Fern-based detector when the
amount of blur becomes small enough, however avoiding failures is
of course still desirable to avoid augmentation interruption.

Figure 4 compares our ESM-Blur method and standard ESM
over a section of the sequence shown Figure 1 for which both meth-
ods always converge correctly. The iterations were stopped when
the Euclidean norm of the motion update was less than 0.01. The
frames with more motion blur typically need more iterations and
yield lower NCC. ESM-Blur always converges faster, with an aver-
age number of iterations of 31.21 for ESM and 23.31 for ESM-Blur.
In absence of ground truth data, we evaluated the accuracy with the
Normalized Cross-Correlation between the template patch and the
patch in the input image. Our algorithm almost always yields higher
correlation. Computation times for the most consuming steps are
given in Table 1. Because of fewer iterations, ESM-Blur is faster.

Figure 1 shows augmented images with and without rendering
motion blur. Motion-blur clearly improves the integration real-
ism. The most time consuming and object dependent part is the
intraframe rendering, which needs to draw the object twice. By con-
trast, rendering intermediate frames is very cheap and independent
from the complexity of the object. Both operations are performed
on the graphics card, letting the CPU acquiring and tracking the
next frame while the GPU is rendering the augmented image.

5 CONCLUSION & FUTURE WORK

We proposed two complementary methods for Augmented Reality
under motion-blur, one for tracking, and the other one for render-
ing. Our approach is general: We first introduced a suitable image

120 130 140 150 160 170 180 190 200 210 220
10

15

20

25

30

35

40

45

50

Frame #

Ite
ra

tio
ns

 to
 c

on
ve

rg
en

ce

 

 
ESM
ESM−Blur (a=1/2)

120 130 140 150 160 170 180 190 200 210 220
0.95

0.96

0.97

0.98

0.99

1

Frame #

N
or

m
al

iz
ed

 C
ro

ss
 C

or
re

la
tio

n

 

 
ESM
ESM−Blur (a=1/2)

Figure 4: Comparison between ESM and our method (ESM-Blur)
over a section of the sequence shown Figure 1 for which both meth-
ods always converge. Top: The number of iterations needed for both
methods. Our method converges within less iterations. Bottom: The
normalized cross correlation between the warped template patch and
the current image. Our algorithm almost always yields higher corre-
lation.

formation model, to easily extend an existing efficient algorithm. It
would be interesting to investigate other image formation models
to better handle complex imaging effects, for example image dis-
tortions due to rolling shutters often used in webcams and cameras
in mobile phones.

ACKNOWLEDGEMENTS

This research was supported in part by the Practical development
project of GIST GTI and in part by the CTI development project of
KOCCA, MCST in S.Korea.

REFERENCES

[1] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying
framework. IJCV, 56(3):221–255, Mar. 2004.

[2] S. Benhimane and E. Malis. Homography-based 2d visual tracking
and servoing. IJRR, 2007.

[3] J. Fischer, D. Bartz, and W. Strasser. Enhanced visual realism by
incorporating camera image effects. In ISMAR’06.

[4] H. Jin, P. Favaro, and R. Cipolla. Visual tracking in the presence of
motion blur. In CVPR’05.

[5] G. Klein and D. Murray. Compositing for small cameras. In IS-
MAR’08.

[6] G. Klein and D. Murray. Improving the agility of keyframe-based
SLAM. In ECCV’08.

[7] D. G. Lowe. Distinctive image features from scale-invariant key-
points. IJCV, 60(2):91–110, Nov. 2004.

[8] E. Malis. Improving vision-based control using efficient second-order
minimization techniques. In ICRA’04.

[9] C. Mei and I. Reid. Modeling and generating complex motion blur for
real-time tracking. In CVPR’08.

[10] B. Okumura, M. Kanbara, and N. Yokoya. Augmented reality based
on estimation of defocusing and motion blurring from captured im-
ages. In ISMAR’06.

[11] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten
lines of code. In CVPR’07.


