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Abstract phase during which multiple views of the keypoints to be
matched are used to train randomized trees [2] to recog-
While feature point recognition is a key component of nize them based on a few pairwise intensity comparisons.
modern approaches to object detection, existing approgche This yields both fast run-time performance and robustness
require computationally expensive patch preprocessing toto viewpoint and lighting changes, which has proved very
handle perspective distortion. In this paper, we show that effective for real-time object detection.
formulating the problem in a Naive Bayesian classification  In this paper, we show that using a classic Naive
framework makes such preprocessing unnecessary and proBayesian framework yields an approach that is simpler,
duces an algorithm that is simple, efficient, and robust.-Fur faster, and as robust as the state-of-the-art methods dis-
thermore, it scales well to handle large number of classes. cussed above. We use non-hierarchical structures that we
To recognize the patches surrounding keypoints, ourrefer to asfernsto classify the patches. Each one consists
classifier uses hundreds of simple binary features and mod-of a small set of binary tests and returns the probability tha
els class posterior probabilities. We make the problem com-a patch belongs to any one of the classes that have been
putationally tractable by assuming independence betweenlearned during training. These responses are then combined
arbitrary setsof features. Even though this is not strictly in a Naive Bayesian way. As [9], we train our classifier by
true, we demonstrate that our classifier nevertheless per-synthesizing many views of the keypoints extracted from
forms remarkably well on image datasets containing very a training image as they would appear under different per-
significant perspective changes. spective or scale.

The binary tests we use as classifier features are picked
completely at random, which puts our approach firmly
1. Introduction in the camp of techniques that rely on randomization to
achieve good performance [1]. We will show that this is par-

The ability to recognize interest points across images ticularly effective for the specific classification task we a
that may have been taken from very different viewpoints is addressing, which requires scale and perspective invajan
required to address many important Computer Vision prob-jnyolves a very large number of classes, but can tolerate sig
lems. They range from image registration to object detec- pificant error rates since we use robust statistical mettwds
tion [7, 6] and often require real-time performance. The exploit the information provided by the keypoints. Further
standard approach to addressing this problem is to buildmore, our approach is particularly easy to implement, does
affine-invariant descriptors of local image patches and to not overfit, does not required hocpatch normalization, and
compare them across images. This usually involves finegjlows fast and potentially incremental training.
scale selection, rotation correction, and intensity ndrma
ization [11, 10]. It results in a high computational overthea L.
and often requires handcrafting the descriptors to achievez' Image Patch Classification
insensitivity to specific kinds of distortion.

It has recently been shown that casting this wide-baseline
matching problem as a more generic classification problem
leads to solutions that are much less computationally de-
manding [9].

The importance of image patch recognition and match-
ing across images is widely accepted for applications rang-
ing from object recognition and image retrieval to pose esti
- ! - = mation. Given feature points extracted from the images, two
This approach relies on an offline training \5in classes of approaches have been proposed to achieve

*This work has been supported in part by the Swiss Nationansei results S.UCh as .thC.)SG of Figure 6. ) ) )
Foundation. The first family involves computing local descriptors in-




variant to changes such as perspective and lighting [13, 10] many more features, which is key to improved recognition
In particular the SIFT vector [10], computed from local his- rate.

tograms of gradients, works remarkably well, at least on

textured images and we will use it as a benchmark for our 3-1. Formulation

own approach. . o _ _ As discussed in Section 2 we treat the set of all possible
A second class relies on statistical learning teCh”'quesappearances of the image patch surrounding a keypoint as

to model the set of possible appearances of a patch. The, c|ass. Therefore, given the patch surrounding a keypoint
one-shot approach of [6] uses PCA and Gaussian MiXiureyetacted in an image, our task is to assign it to the most
Models but does not account for perspective distortions Thi likely class. Letci,i = 1,...,H be the set of classes and

is addressed in [9] using Randomized Trees (RTSs). SinCejg £, j—1 ... N be the set of binary features that will be

the set of possible patches around an image feature undegclated over the patch we are trying to classify. Forynall
changing perspective and lightning conditions can be seenq 4re looking for

as a class, it is possible to train a set of RTs to recognize

feature points by feeding it samples of their possible ap- G =argmaxP(C=c;i| f1,f2,..., fn),
pearances, synthesized by warping the patches found in a G
training image using randomly chosen homographies. whereC is a random variable that represents the class.

This approach is fast and effective to achieve the kind Bayes’ Formula yields
of object detection depicted by Figure 6. Note that un-
like in traditional classification problems, a close-tafpet PC=c|f,fa,....TN) = P(f1, f2,.... fn[C=G)P(C=c) _
method is not required. Here itis enough to recognize some P(fa, f2,..., fn)
features succesfully and to use a robust estimator such a%ssuming a uniform prioP(C)
RANSAC to detect the object. However a scalable approach
is still highly desirable for practical applications sinite
number of keypoints might become very large (typically
400). We will show that when this happens the performance ¢ = argmaxP(fy, fa,..., fn [C=Gi). (1)
of the RTs tends to drop whereas that of the ferns does not. G

Recently [12] used keypoints as visual words [14] for |n our implementation, the value of each binary featfjre

image retrieval in very large image databases. Keypointsonly depends on the intensities of two pixel locatiahg
are labeled by a hierarchical k-means [5] clustering basedanddL2 of the image patch we write

on their SIFT descriptors. This allows a very large number
of visual words, but the performance measure is the number o { 1if1(dj1) <I(dj2)
of correctly retrieved documents rather than number of cor- ! 0 otherwise

rectly classified keypoints. In this work, we concentrate on
localizing individual keypoints to obtain pose informatio
which is required in tracking and augmented reality appli-
cations.

, since the denominator is
simply a scaling factor that it is independent from the glass
our problem reduces to finding

wherel represents the image patch. Since they are very sim-
ple, we require manyN ~ 300) for accurate classification.
Therefore a complete representation of the joint probgbili

in Eq. (1) is not feasible since it would require estimating

. . | ificati and storing ¥ entries for each class. One way to compress
3. Naive Bayesian Classification the representation is to assume independence between fea-

It has been shown that image patches can be recognizedres. An extreme version is to assume complete indepen-
on the basis of very simple and randomly chosen binary dence, thatis,
tests that are grouped into decision trees and recursiaely p N
tition the space of all possible patches [9]. In practice, no P(f1,fo,....,fn|C=0c) = I'LP(fj |IC=gq).
single tree is discriminative enough when there are many 1=

clagses. quever, using a number of trees and averaging o ever this completely ignores the correlation between
their votes yields good results. features. To make the problem tractable while accounting

In this section, we will argue that, when the te§ts ar€ for these dependencies, a good compromise is to partition
chosen randomly, the power of the approach derives noty r features intdv groups of siz&s— % These groups are
fr_or_n the tree stru_cture itself but frpm the fact tha_lt_ COM- \\hat we define agernsand we compute the joint proba-
bining groups of binary tests allows improved classifiGatio i for features in each fern. The conditional probayili
rates. Therefore, replacing the trees by our non-hierea¢hi  po.omes
ferns and pooling their answers in a Naive Bayesian man-
ner yields better results and scalability in terms of number

of classes. The naive combination strategy lets us combine

M

P(fy, f2,....,In|C=0i) = |_|P(Fk|C:Ci)7 (2)
k=1



for i=1toH
logR |cli] + 0 Lifor(int i =0; i <H i++) P[i] = 0.;
end for
forall fernF do 2:for(int k = 0; k <M kt++) {
index« 0 3: int index =0, *» d=D+k * 2 * S
for j=1t0S 4: for(int j =0; j <3S, j++) {
index«+ 2 x index 5: i ndex <<= 1;
if I (dgkj,1)) <! (dgkj2) then 6: if («(K+ d[0]) < *(K + d[1]))
index« index+ 1 7: i ndex++;
end if 8: d += 2;
end for }
for i=1toH 9: p=PF+ k » shift2 + index * shifti;
logR, | c[i] < logh | c[i] +logPg [indexi] || 10: for(int i =0; i <H i++) P[i]+=p[i];
end for }
end for

Figure 1.Left: The pseudo-code of the run-time algorithm that comp#ef, f»,..., fn | C = ¢i) as given by Eq. (2) to classify the
image patcH, whereindexis an integer index computed from the binary features. Nagenactification, illumination normalization, or
parameter tuning are requiregight: A C++ implementation of the pseude-code. The code useddining is very similar.

whereF = {fsk 1), fo2)s -5 fowg 1, K=1,...,M repre- set of all its possible appearances under different viewing
sents th&" fern ando (k, j) is a random permutation func- ~ conditions. . .
tion with range 1...,N. Hence we follow a Semi-Naive However even if each terR(Fc | C = ¢i) is only a part of

Bayesian [15] approach by modelling only some of the de- the full joint probability of Eq. (1), their estimation dtih-

pendencies between features. The viability of such an ap-volves estimating an extremely large number of parameters,

proach has been shown by [8] in the context of image re-and they cannot be reliably estimated directly as empirical

trieval applications. probabilities in practice. In order to explain how we esti-
This form can now be handled easily since the it has mate theP(F | C = ¢j), lets us introduce the eve@(F)

M x 25 parameters wititM between 30-50, and we show that states thatthe empirical probabilities for gare reli-

in Section 4 that a fern siz@around 10 gives good recog- abl€’. We can then expressR(F | C = ¢;) term as:

nition rates, compared to thé'2vith N ~ 300 for the full P(F|C=c) = P(F|C=c,0(FR))PO(F)) +
joint probability representation. It is also flexible sirmer- P(Rc|C=c ’W)P(W)
formance/memory trade-offs can be made by changing the b 3)

n_umber of.ferns and t.heir. sizes. The c_orresponding co.de isP(Fk | C = ¢;,0(F)) is nothing more than the empirical
given as Flgl_Jre 1 to highlight the simplicity of the resuifin probability of P(F¢ | C = ¢), and P(F¢ | C = ci,0(F))
implementation. should be taken as constant and is therefore equhl teet
us now modeP(O(F)) as:

3.2. Training
For our experiments, we start the training by construct- P(O(K)) = A 5
ing a set ofH prominent keypoints lying on the object Zilki +U)
model. To each feature point corresponds a class. whereny; is the number of training samples that verify the
The fern features, that is the locatioss; andd; ,, are  set of featuredy. When the training set is truly repre-
picked at random. The terms sentative of the actual variations within classes, this @hod
makes sense since it tends to 1 when the number of train-
P(|C=c), k=1, ..., M ing samples grows, and yields a simple way to estimate the
P(F | C =i, ). Itis easy to check that we have then:
are estimated by computing the features on training samples T
of each class. We can exploit here our strong knowledge on P(|C=¢)= _KTE
the problem to create a virtually infinite training set: We Zk(Nki +U)

use a small number of images and synthesize many newn practice, the value af does not really influence the re-
views of the object using simple rendering techniques assults as soon as it is higher than 0. In all our experiments,
affine deformations, and extract training patches for eachwe useu = 1. This factor can be interpreted as a Dirichlet
class. White noise is also added for more realism. For eachprior, since the class conditional probabilities are mizdkl
keypoint on the model, this gives us a fine sampling of the as multinomials [4].



200
850 |- |

300 R‘atio !hresf‘\o\ds 900‘c|asses) J—

Ratio thresholds (300 classes) —+— [ H Simple thresholds (900 classes) ---x---
Simple thresholds (300 classes) ---%--- 800 - |
250 “', 4 750
‘ 700
650
200 600 -
550
500
150 450 |-
400 |-
350 -
300 |

250

100

I
Number of Evaluated Class Posteriors

Number of Evaluated Class Posteriors

200
1 150
100
HHAKRHHKHH 33 X 50

0 L L L L 0 L L L L L
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Number of Ferns Evaluated Number of Ferns Evaluated
Figure 2. The number of class posteriors that needs to baateal decreases very rapidly when the probabilities aeshioided by their
ratio to the maximum probability. Plots show these curvesmB00 and 900 classes are trained respectively.

50 |- e
e
*5 *e
koo Ko
fana s EVRVIVINI HA N Kexio
XK 3636 3¢ XXeae

R TRV VNIV

300 Classes 900 Classes|
No Thresholding 93.2 87.2
Simple Thresholds 87.2 80.6
Ratio Thresholds 90.2 84.1

Table 1. Percentage of correctly classified image patchisani
without thresholding. Since the thresholds are calculasuy the
training set they can cause misclassification on a test sethel
case of ratio thresholds this loss of performance is noffiignt.

has fallen back by a large margin is unlikely to catch up.
, , = Note that this second strategy requires the computation of
Figure 3. Two of the images used for evaluation. the maximum posterior at the end of each step.

Figure 2 shows the average number of class posteriors
calculated at the end of each step for the two thresholding
3.3. Handling Many Classes strategies. As the plots clearly show, thresholds on thesat
to maximum probability at each step decreases the number
of necessary evaluations significantly. The thresholdgwer
chosen to be as large as possible without causing a mis-
X , ) Elassification on the training set. For these experimergs, w
number of classes increases this quickly bec_:omes burdent,coq the two images shown Figure 3, and the percentage
some. Furthermore some of the c_Ia_ss p_ostenors rc_each VeNht correctly classified image patches evaluated on randomly
small values at the end of a multiplication of the first few generated images of these images. As can be observed from

fe”‘_‘s anld the_nr f_|n|al Vallije becor:nes |rrele\|/an|t for Elasffs Sle'TabIe 1 the ratio thresholds decrease the classificatien rat
ection. In princip € we do not have to calculate the fina é)nly slightly and therefore can generalize well.
value of the posterior for each class as long as the selecte

class does not change.

Here we consider two strategies for eliminating classes 4. Comparing Ferns and Trees
during posterior evaluation as each term coming from a fern
is multiplied, so that the computation can be carried out Ferns and Random Trees are very similar in spirit but
much more quickly. The first strategy is to use a simple differ in two important respects. In trees the binary tests a
threshold, which can be learned from the training set, on organized hierarchically and the posterior distributians
the posteriors as each term gets multiplied. This elimsate computed additively. By contrast, ferns are flat and compute
classes that are unlikely to be the correct class. The secposteriors multiplicatively. In this section, we first coarp
ond approach is to use a threshold on the ratio of the maxi-the two approaches. We then offer a theoretical insight into
mum posterior to the considered class posterior at each stepwhy ferns appear to outperform trees, but only when the
This is based on the observation that a class posterior thatraining set is sufficiently large.

At run-time, computing the class probabilities takes a
single lookup for each fern and their final multiplication.
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4.1. Ferns Outperform Trees of ferns is increased the random selection method does not

cause large variations on the classifier performance.
We evaluate the performance of the proposed fern based yyg 4150 investigate the behavior of the classification rate

approach by comparing to the results of a Random Tree,q the number of classes increases. Figure 5 shows that a

based implementation. The number of tests in the ferns a”qarger number of classes does not affect the performance
the depth of the trees are taken to be equal, and we comparg fons much, while tree based methods can not cope with
the classification rate when using the same number of Struc'many classes. In both experiments we have trained the clas-

tures, that is of ferns or Random Trees. In particular, the gjgiers using classes from three different images up to 700
same number of tests is performed on each keypoint, and,|5sses for each image.

the same number of joint probabilities has to be stored.

We do our tests on the images presented 3 with 5004.2. Linking the Two Approaches
classes and calculate the average classification rate on
randomly generated test images while eliminating false
matches using object geometry. Since the feature selec
tion is random, we repeat the test 10 times and calculate the"
mean and variance of the classification rate and we perform
the test On- the two Images. - . P(Fk | C— Ci) _ PeP(@(Fk)) + H(l— P(e(Fk))) 7

As depicted by Figure 4, despite the inaccuracy of the
independence assumptions the fern based classifier outpemwhere P is the empirical probability angt = % Since
forms the combination of trees. Furthermore as the numbercomputing the product of such terms is the same as sum-

Here we show that the two approaches are equivalent
when the training set is small and give some insights into
hy the ferns perform better when it is large.

Recall that we evaluate(F, | C = ¢;) of Eq. (3)



ming their logarithms, we write roughly correctly scaled whereas those fed to SIFT are com-
puted using a finely estimated scale. In other words, we use
logP(F | C = ¢j) a more primitive and simpler to implement keypoint extrac-
= log [u (P(O(Fk)) (% - 1) + 1)} tion meLho”d, which should handicap us, but does not really
Ps as we shall see.
= logu+log {1+ P(6(F0) (F N 1)} We then train 20 ferns of size 14 as described in Sec-
logu +P(O(K)) (% - 1) whenP(O(F)) is small tion 3 and use them to establish matches between the model
P(O(RY)) . image and the sequence images selecting the most probable
W T (logp —P(B(R)) whenP(©(R)) is small class for each keypoint in the test image. In parallel, we
aR+b, compute SIFT descriptors for the keypoints extracted from
wherea andb depend oP(©(F)) and . the model images and match each of them against the key-
points in the sequence images by selecting the one which
has the nearest SIFT descriptor. We retain the 400 strongest
keypoints in the reference image, and 1000 keypoints in
based on the maximum of the products of B& | C = ;) the sequence images for the two methods. Then in both
as the ferns do. or. as the maximum of the sum of the em-c2S€S We use robust RANSAC estimation to compute the
e homography between the images, which is then refined us-

pirical probabilities, as the trees do. In this case, the two . . S ;
approaches are roughly equivalent ing a non-linear estimation method using all matches that

By contrast, our experiments show that when the training ﬁre compart:ble v(\j”ttu it. Al hmatches_ar(te_ checl_<ed t?]gawSt this
set is sufficient large the ferns perform much better. This omography and those who reprojection using this homog-

can be understood as follows: As soon as one single femraphy is within 10 plxels are ret‘?"”e" as inliers,
attributes a very low probability to one class, the final com- The graph _Of Figure 6 depicts the number of cqrrect
puted probability for the class is guaranteed to be low be- matches obtalneq by b.Oth mgthods for all frames in the
cause of their multiplicative behavior. This does not occur sequence. Despite their simplicity, ferns match at least as
with trees due to their additive behavior. This increases th Many Points as SIFT and often even more. )
discriminating power of ferns but requires posterior prob- As shown Figure 7, we also applied ferns on face images

abilities that can be trusted. This is why the evaluation © test the effect of non-planarity. Despite the planarity a
method of Section 3.2 is required sumption made for simplicity when generating the synthetic

training views, the ferns still perform well. The results ob
tained with SIFT are similar and not repeated here.

%

Therefore, when the training set is small and the empir-
ical probabilities are only crude estimates of the true pnes
there is not much difference in selecting the class either

5. Results

We compare our ferns against SIFT [10], which is widely 5.2. Comparing Computation Times
reported as one of the most effective approaches. It com-

. : . L ) : It is difficult to perform a completely fair comparison be-
bines orientation estimation and SIFT descriptors to aghie P P y P

. e . We will sh hat I - tween our ferns and SIFT for several reasons. SIFT reuses
viewpoint invariance. We will show that ferns let us omit ;e mediate data from the keypoint extraction to compute

costly preprocessmg.steps W'thoqt loss in terms of per- canonic scale and orientations and the descriptors, while
formance and sometimes even yield better performancefems can rely on a low-cost keypoint extraction. On the

We first compare classification rates and then computation . hand, the distributed SIFT C code is not optimized,

times. and the Best-Bin-First K-tree of [3] is not used to speed up
the nearest-neighbor search.

However, it is relatively easy to see that our approach

We compared the match rates of SIFT and ferns on therequires much less computation. Performing the individ-
sequence depicted by Figure 6, in which a mouse pad wasual tests of Section 3 requires very little and most of the
moved in front of a moving camera over a cluttered back- time is spent computing the sums of the posterior proba-
ground. The mouse pad was undergoing large displace-bilities. Without taking into account the strategies of Sec
ments, which produces image blur and large scale, perspection 3.3 to speed things up, the classification of a keypoint
tive, and illumination changes. requiresH x M additions, withH the number of classes, and

In the case of SIFT, we used the multi-resolution code M the number of ferns. By contrast, SIFT uses H281di-
kindly provided by David Lowe, which computes the Lapla- tions and as many multiplications when the Best-Bin-First
cian at several levels for each octave. By contrast, to testK-tree is not used. This represents an obvious advantage of
the ferns, we used a simple keypoint detector that consid-our method at run-time sindd can be much less than 128
ers extrema of the Laplacian over 3 octaves only. This im- and is taken to be 20 in practice. Still note that in contrast
plies that the patches our ferns have to work with are only to our method SIFT does not require a training phase.

5.1. Comparing Matching Rates
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Figure 6. Matching a planar target over 1074 fram&sp row. Matches obtained using ferns for a few framé4iddle row. Matches

obtained using SIFT for the same frameBottom row. Number of correct matches obtained by both methods for athés in the
sequence. Ferns match at least as many points as SIFT ancteéie more. The video sequence is available as supplenneatatial.

The major gain actually comes from the fact that ferns do per frame for both keypoint extraction and recognition in
not require descriptors. This is significant because comput 640x 480 images, and four fifth of the time is taken by the
ing the SIFT descriptors, which is the most difficult part to extraction. This corresponds to a theoretical 50Hz frame
optimize, takes about 1ms on a MacBook Pro laptop with- rate if one does factor in the time required for frame acqui-
out including the time required to convolve the image. By sition. Training takes less than five minutes.
contrast, ferns take 13102 milliseconds to classify one
keypoint into 200 classes on the same machine. Moreover .
ferns still run nicely with a primitive keypoint extractor, 6. Conclusion

such as the one we used in our experiments. When 300 key- We have presented a general method for image patch

points are extracted and matched against 200 classes, oyg,.,qnition that is effective for object pose estimation de
implementation on the MacBook Pro laptop requires 20ms spite severe perspective distortion. The “semi-naivaicstr



Figure 7. Matching face images with ferns. Despite the nangrity of faces, ferns are still effective. Results witlrBare similar and
not shown here.

ture of ferns is well adapted and allows a scalable, simple
and fast implementation to what is one of the most critical
step in many Computer Vision tasks. Furthermore the ferns 18]
naturally allow trade offs between computing and discrimi-

native power. As computers become more powerful, we can
add more ferns to improve the performance. Conversely,
one can adapt to low computational power such those on
hand-held systems by reducing the number of ferns.

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

Y. Amit. 2D Object Detection and Recognition: Mod-
els, Algorithms, and Network3he MIT Press, 2002.

Y. Amit and D. Geman. Shape Quantization and
Recognition with Randomized TreedNeural Com-
putation 9(7):1545-1588, 1997.

J. Beis and D. Lowe. Shape Indexing using Approxi-
mate Nearest-Neighbour Search in High-Dimensional
Spaces. InConference on Computer Vision and

Pattern Recognitionpages 1000-1006, Puerto Rico,

1997.

C. Bishop. Pattern Recognition and Machine Learn-
ing. Springer, 2006.

A. Bocker, S. Derksen, E. Schmidt, A. Teckentrup,
and G. Schneider. A Hierarchical Clustering Ap-
proach for Large Compound LibrariesJournal of
Chemical Information and Modeling45:807-815,
2005.

L. Fei-Fei, R. Fergus, and P. Perona. One-shot learn-
ing of object categorieslEEE Transactions on Pat-
tern Analysis and Machine Intelligenc@8(4):594—
611, 2006.

R. Fergus, P. Perona, and A. Zisserman. A Sparse Ob-
ject Category Model for Efficient Learning and Ex-

haustive Recognition. I€onference on Computer Vi-
sion and Pattern Recognitioduly 2005.

D. Hoiem, R. Sukthankar, H. Schneiderman, and
L. Huston. Object-based image retrieval using the sta-
tistical structure of imagesConference on Computer
Vision and Pattern Recognitio02:490-497, 2004.

[9] V. Lepetit and P. Fua. Keypoint recognition using ran-

[10]

[11]

[12]

[13]

[1

4]

[15]

domized treeslEEE Transactions on Pattern Analy-
sis and Machine Intelligen¢@8(9):1465-1479, Sept.
2006.

D. Lowe. Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Com-
puter Vision 20(2):91-110, 2004.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisser-
man, J. Matas, F. Schaffalitzky, T. Kadir, and L. V.
Gool. A comparison of affine region detectotster-
national Journal of Computer Visior65(1/2):43-72,
2005.

D. Nister and H. Stewenius. Scalable Recognition
with a Vocabulary Tree. l€onference on Computer
Vision and Pattern Recognitio2006.

C. Schmid and R. Mohr. Local Grayvalue Invari-
ants for Image RetrievallEEE Transactions on Pat-
tern Analysis and Machine Intelligenc&9(5):530—
534, May 1997.

J. Sivic and A. Zisserman. Video Google: Efficient vi-
sual search of videos. foward Category-Level Ob-
ject Recognitionvolume 4170 ofLNCS pages 127—
144. Springer, 2006.

F. Zheng and G. Webb. A comparative study of semi-
naive bayes methods in classification learning?ito-
ceedings of the Fourth Australasian Data Mining Con-
ference (AusDMO05)pages 141-156, Sydney, 2005.



