
Hands Deep in Deep Learning for Hand Pose Estimation

Markus Oberweger Paul Wohlhart Vincent Lepetit
Institute for Computer Graphics and Vision

Graz University of Technology, Austria
{oberweger, wohlhart, lepetit}@icg.tugraz.at

Abstract.
We introduce and evaluate several architectures

for Convolutional Neural Networks to predict the 3D
joint locations of a hand given a depth map. We first
show that a prior on the 3D pose can be easily intro-
duced and significantly improves the accuracy and
reliability of the predictions. We also show how to
use context efficiently to deal with ambiguities be-
tween fingers. These two contributions allow us to
significantly outperform the state-of-the-art on sev-
eral challenging benchmarks, both in terms of accu-
racy and computation times.

1. Introduction

Accurate hand pose estimation is an important re-
quirement for many Human Computer Interaction or
Augmented Reality tasks, and has attracted lots of
attention in the Computer Vision research commu-
nity [10, 11, 14, 15, 17, 22, 23, 29]. Even with 3D
sensors such as structured-light or time-of-flight sen-
sors, it is still very challenging, as the hand has many
degrees of freedom, and exhibits self-similarity and
self-occlusions in images.

Given the current trend in Computer Vision, it is
natural to apply Deep Learning [18] to solve this
task, and a Convolutional Neural Network (CNN)
with a standard architecture performs remarkably
well when applied to this problem, as a simple ex-
periment shows. However, the layout of the network
has a strong influence on the accuracy of the out-
put [4, 21] and in this paper, we aim at identifying
the architecture that performs best for this problem.

More specifically, our contribution is two-fold:

• We show that we can learn a prior model of the
hand pose and integrate it seamlessly to the net-
work to improve the accuracy of the predicted

pose. This results in a network with an un-
usual “bottleneck”, i.e. a layer with fewer neu-
rons than the last layer.

• Like previous work [21, 27], we use a refine-
ment stage to improve the location estimates for
each joint independently. Since it is a regres-
sion problem, spatial pooling and subsampling
should be used carefully for this stage. To solve
this problem, we use multiple input regions cen-
tered on the initial estimates of the joints, with
very small pooling regions for the smaller in-
put regions, and larger pooling regions for the
larger input regions. Smaller regions provide
accuracy, larger regions provide contextual in-
formation.

We show that our original contributions allow
us to significantly outperform the state-of-the-art
on several challenging benchmarks [22, 26], both
in terms of accuracy and computation times. Our
method runs at over 5000 fps on a single GPU and
over 500 fps on a CPU, which is one order of magni-
tude faster than the state-of-the-art.

In the remainder of the paper, we first give a short
review of related work in Section 2. We introduce
our contributions in Section 3 and evaluate them in
Section 4.

2. Related Work

Hand pose estimation is an old problem in Com-
puter Vision, with early references from the nineties,
but it is currently very active probably because of the
appearance of depth sensors. A good overview of
earlier work is given in [6]. Here we will discuss
only more recent work, which can be divided into
two main approaches.

The first approach is based on generative, model-
based tracking methods. [15, 17] use a 3D hand

ar
X

iv
:1

50
2.

06
80

7v
1 

 [
cs

.C
V

] 
 2

4 
Fe

b 
20

15



model and Particle Swarm Optimization to handle
the large number of parameters to estimate. [14]
also considers dynamics simulation of the 3D model.
Several works rely on a tracking-by-synthesis ap-
proach: [5] considers shading and texture, [1] salient
points, and [29] depth images. All these works re-
quire careful initialization in order to guarantee con-
vergence and therefore rely on tracking based on the
last frames’ pose or separate initialization methods—
for example, [17] requires the fingertips to be vis-
ible. Such tracking-based methods have difficulty
handling drastic changes between two frames, which
are common as the hand tends to move fast.

The second type of approach is discriminative, and
aims at directly predicting the locations of the joints
from RGB or RGB-D images. For example, [11] and
[13] rely on multi-layered Random Forests for the
prediction. The former uses invariant depth features,
and the latter uses clustering in hand configuration
space and pixel-wise labelling. However, both do
not predict the actual 3D pose but only classify given
poses based on a dictionary. Motivated by work
for human pose estimation [20], [10] uses Random
Forests to perform a per-pixel classification of depth
images and then a local mode-finding algorithm to
estimate the 2D joint locations. However, this ap-
proach cannot directly infer the locations of hidden
joints, which are much more frequent for hands than
for the human body.

[23] proposed a semi-supervised regression forest,
which first classifies the hands viewpoint, then the
individual joints, to finally predict the 3D joint loca-
tions. However, it relies on a costly pixel-wise classi-
fication, and requires a huge training database due to
viewpoint quantization. The same authors proposed
a regression forest in [22] to directly regress the 3D
locations of the joints, using a hierarchical model of
the hand. However, their hierarchical approach ac-
cumulates errors, causing larger errors for the finger
tips.

Even more recently, [26] uses a CNN for feature
extraction and generates small “heatmaps” for joint
locations from which they infer the hand pose us-
ing inverse kinematics. However, their approach pre-
dicts only the 2D locations of the joints, and uses a
depth map for the third coordinate, which is prob-
lematic for hidden joints. Furthermore, the accuracy
is restricted to the heatmap resolution, and creating
heatmaps is computationally costly as the CNN has
to be evaluated at each pixel location.

The hand pose estimation problem is of course
closely related to the human body pose estimation
problem. To tackle this problem, [20] proposed per-
pixel semantic segmentation and regression forests
to estimate the 3D human body pose from a single
depth image. [9] recently showed it was possible to
do the same from RGB images only, by combined
body part labelling and iterative structured-output re-
gression for 3D joint localization. [27] recently pro-
posed a cascade of CNNs to directly predict and iter-
atively refine the 2D joint locations in RGB images.
Further, [25] used a CNN for part detection and a
simple spatial model, which however, is not effective
for high variations in pose space.

In our work, we build on the success of CNNs and
use them for their demonstrated performance. We
observe, that the structure of the network is very im-
portant. Thus we propose and investigate different
architectures to find the most appropriate one for the
hand pose estimation problem. We propose a net-
work structure that works very well, outperforming
the baselines on two difficult datasets.

3. Hand Pose Estimation with Deep Learning

In this section we present our original contribu-
tions to the hand pose estimation problem. We first
briefly introduce the problem and a simple 2D hand
detector, which we use to get a coarse bounding box
of the hand as input to the CNN-based pose predic-
tors.

Then we describe our general approach which
consists of two stages. For the first stage we con-
sider different architectures that predict the locations
of all joints simultaneously. Optionally, this stage
can predict the pose in a lower-dimensional space,
which is described next. Finally, we detail the sec-
ond stage, which refines the locations of the joints
independently from the predictions made at the first
stage.

3.1. Problem Formulation

We want to estimate the J 3D hand joint locations
J = {ji}Ji=1 with ji = (xi, yi, zi) from a single depth
image. We assume that a training set of depth im-
ages labeled with the 3D joint locations is available.
To simplify the regression task, we first estimate a
coarse 3D bounding box containing the hand using a
simple method similar to [22], by assuming the hand
is the closest object to the camera: We extract from
the depth map a fixed-size cube centered on the cen-



ter of mass of this object, and resize it to a 128× 128
patch of depth values normalized to [−1, 1]. Points
for which the depth is not available—which may hap-
pen with structured light sensors for example—or are
deeper than the back face of the cube, are assigned a
depth of 1. This normalization is important for the
CNN in order to be invariant to different distances
from the hand to the camera.

3.2. Network Structures for Predicting the Joints’
3D Locations

We first considered two standard CNN architec-
tures. The first one is shown in Fig. 1a, and is a sim-
ple shallow network, which consists of a single con-
volutional layer, a max-pooling layer, and a single
fully-connected hidden layer. The second architec-
ture we consider is shown in Fig. 1b and is a deeper
but still generic network [12, 27], with three convolu-
tional layers followed by max-pooling layers and two
fully-connected hidden layers. All layers use Recti-
fied Linear Unit [12] activation functions.

Additionally, we evaluated a multi-scale ap-
proach, as done for example in [7, 19, 25]. The moti-
vation for this approach is that using multiple scales
may help capturing contextual information. It uses
several downscaled versions of the input image as in-
put to the network, as shown in Fig. 1c.

Our results will show that, unsurprisingly, the
multi-scale approach performs better than the deep
architecture, which performs better than the shallow
one. However, our contributions, described in the
next two sections, bring significantly more improve-
ment.

3.3. Enforcing a Prior on the 3D Pose

So far we only considered predicting the 3D posi-
tions of the joints directly. However, given the phys-
ical constraints over the hand, there are strong cor-
relation between the different 3D joint locations, and
previous work [28] has shown that a low dimensional
embedding is sufficient to parameterize the hand’s
3D pose. Instead of directly predicting the 3D joint
locations, we can therefore predict the parameters
of the pose in a lower dimensional space. As this
enforces constraints of the hand pose, it can be ex-
pected that it improves the reliability of the predic-
tions, which will be confirmed by our experiments.

As shown in Fig. 1d, we implement the pose prior
into the network structure by introducing a “bottle-
neck” in the last layer. This bottleneck is a layer with

less neurons than necessary for the full pose repre-
sentation, i.e.� 3 · J . It forces the network to learn
a low dimensional representation of the training data,
that implements the physical constraints of the hand.
Similar to [28], we rely on a linear embedding. The
embedding is enforced by the bottleneck layer and
the reconstruction from the embedding to pose space
is integrated as a separate hidden layer added on top
of the bottleneck layer. The weights of the recon-
struction layer are set to compute the back-projection
into the 3 · J-dimensional joint space. The resulting
network therefore directly computes the full pose.
We initialize the reconstruction weights with the ma-
jor components from a Principal Component Analy-
sis of the hand pose data and then train the full net-
work using back-propagation. Using this approach
we train the networks described in the previous sec-
tion.

The embedding can be as small as 8 dimensions
for a 42-dimensional pose vector to fully represent
the 3D pose as we show in the experiments.

3.4. Refining the Joint Location Estimates

The previous architectures provide estimates for
the locations of all the joints simultaneously. As done
in [21, 27], these estimates can then be refined inde-
pendently.

Spatial context is important for this refinement
step to avoid confusion between the different fingers.
The best performing architecture we experimented
with is shown in Fig. 2a. We will refer to this archi-
tecture as ORRef, for Refinement with Overlapping
Regions. It uses as input several patches of different
sizes but all centered on the joint location predicted
by the first stage. No pooling is applied to the small-
est patch, and the size of the pooling regions then in-
creases with the size of the patch. The larger patches
provide more spatial context, whereas the absence of
pooling on the small patch enables better accuracy.

We also considered a standard CNN architecture
as a baseline, represented in Fig. 1b, which relies on
a single input patch. We will refer to this baseline as
StdRef, for Refinement with Standard Architecture.

To further improve the accuracy of the location es-
timates, we iterate this refinement step several times,
by centering the network on the location predicted at
the previous iteration.



(a) (b)

(c) (d)

Figure 1: Different network architectures for the first stage. C denotes a convolutional layer with the number of filters
and the filter size inscribed, FC a fully connected layer with the number of neurons, and P a max-pooling layer with the
pooling size. We evaluated the performance of a shallow network (a) and a deeper network (b), as well as a multi-scale
architecture (c), which was used in [7, 19]. This architecture extracts features after downscaling the input depth map by
several factors. (d) All these networks can be extended to incorporate the constrained pose prior. This causes an unusual
bottleneck with less neurons than the output layer.

(a) (b)

Figure 2: Our architecture for refining the joint locations during the second stage. We use a different network for each
joint, to refine its location estimate as provided by the first stage. (a) The architecture we propose uses overlapping inputs
centered on the joint to refine. Pooling with small regions is applied to the smaller inputs, while the larger inputs are
pooled with larger regions. The smaller inputs allow for higher accuracy, the larger ones provide contextual information.
We experimentally show that this architecture is more accurate than a more standard network architecture. (b) shows a
generic architecture of an iterative refinement, where the output of the previous iteration is used as input for the next. As
for Fig. 1, C denotes a convolutional layer, FC a fully connected layer, and P a max-pooling layer. (Best viewed in color)

4. Evaluation

In this section we evaluate the different archi-
tectures introduced in the previous section on sev-
eral challenging benchmarks. We first introduce
these benchmarks and the parameters of our meth-

ods. Then we describe the evaluation metric, and
finally we present the results, quantitatively as well
as qualitatively. Our results show that our differ-
ent contributions significantly outperform the state-
of-the-art.



4.1. Benchmarks

We evaluated our methods on the two following
datasets:

NYU Hand Pose Dataset [26]: This dataset con-
tains over 72k training and 8k test frames of RGB-
D data captured using the Primesense Carmine 1.09.
It is a structured light-based sensor and the depth
maps have missing values mostly along the occluding
boundaries as well as noisy outlines. For our exper-
iments we use only the depth data. The dataset has
accurate annotations and exhibits a high variability
of different poses. The training set contains samples
from a single user and the test set samples from two
different users. The ground truth annotations contain
J = 36 joints, however [26] uses only J = 14 joints,
and we did the same for comparison purposes.

ICVL Hand Posture Dataset [22]: This dataset
comprises a training set of over 180k depth images
showing various hand poses. The test set contains
two sequences with each approximately 700 depth
maps. The dataset is recorded using a time-of-flight
Intel Creative Interactive Gesture Camera and has
J = 16 annotated joints. Although the authors pro-
vide different artificially rotated training samples, we
only use the genuine 22k. The depth images have
a high quality with hardly any missing depth val-
ues, and sharp outlines with little noise. However,
the pose variability is limited compared to the NYU
dataset. Also, a relatively large number of samples
both from the training and test sets are incorrectly
annotated: We evaluated the accuracy and about 36%
of the poses from the test set have an annotation error
of at least 10 mm.

4.2. Meta-Parameters and Optimization

The performance of neural networks depends on
several meta-parameters, and we performed a large
number of experiments varying the meta-parameters
for the different architectures we evaluated. We re-
port here only the results of the best performing sets
of meta-parameters for each method. However, in
our experiments, the performance depends more on
the architecture itself than on the values of the meta-
parameters.

We trained the different architectures by minimiz-
ing the distance between the prediction and the ex-
pected output per joint, and a regularization term for

weight decay to prevent over-fitting, where the regu-
larization factor is 0.001. We do not differ between
occluded and non-occluded joints. Because the an-
notations are noisy, we use the robust Huber loss [8]
to evaluate the differences. The networks are trained
with back-propagation using Stochastic Gradient De-
scent [3] with a batch size of 128 for 100 epochs. The
learning rate is set to 0.01 and we use a momentum
of 0.9 [16].

4.3. Evaluation Metrics

We use two different evaluation metrics:

• the average Euclidean distance between the pre-
dicted 3D joint location and the ground truth,
and

• the fraction of test samples that have all pre-
dicted joints below a given maximum Euclidean
distance from the ground truth, as was done
in [24]. This metric is generally regarded very
challenging, as a single dislocated joint deterio-
rates the whole hand pose.

4.4. Importance of the Pose Prior

In Fig. 3a and 3c we compare different embed-
ding dimensions and direct regression in the full
3 · J-dimensional pose space for the NYU and the
ICVL dataset, respectively. The evaluation on both
datasets shows that enforcing a pose prior is bene-
ficial compared to direct regression in the full pose
space. Only 8 dimensions out of the original 42-
or 48-dimensional pose spaces are already enough
to capture the pose and outperform the baseline on
both datasets. However, the 30-dimensional embed-
ding performs best, and thus we use this for all fur-
ther evaluations. The results on the ICVL dataset,
which has noisy annotations, are not as drastic, but
still consistent with the results on the NYU dataset.

The baseline on the NYU dataset of Tompson et
al. [26] only provide the 2D locations of the joints.
For comparison, we follow their protocol and aug-
ment their 2D locations by taking the depth of each
joint directly from the depth maps to derive com-
parable 3D locations. Depth values that do not lie
within the hand cube are truncated to the cube’s back
face to avoid large errors. This protocol, however,
has a certain influence on the error metric, as evident
in Fig. 4a. The augmentation works well for some
joints, as apparent by the average error. However,
it is unlikely that the augmented depth is correct for



0 10 20 30 40 50 60 70 80
Distance threshold / mm

0

20

40

60

80

100

Fr
ac

tio
n 

of
 fr

am
es

 w
ith

in
 d

is
ta

nc
e 

/ %

Tompson et al.
Deep

Deep-Prior 8D
Deep-Prior 15D

Deep-Prior 30D

(a) Pose Prior on NYU dataset

0 10 20 30 40 50 60 70 80
Distance threshold / mm

0

20

40

60

80

100

Fr
ac
tio

n 
of
 fr
am

es
 w
ith

in
 d
is
ta
nc
e 
/ %

Tompson et al.
Deep

Deep-StdRef
Deep-ORRef

Deep-Prior-StdRef
Deep-Prior-ORRef

(b) Refinement on NYU dataset

0 10 20 30 40 50 60 70 80
Distance threshold / mm

0

20

40

60

80

100

Fr
ac

tio
n 
of
 fr

am
es

 w
ith

in
 d
is
ta
nc

e 
/ %

Tang et al.
Deep

Deep-Prior 8D
Deep-Prior 15D

Deep-Prior 30D

(c) Pose Prior on ICVL dataset

0 10 20 30 40 50 60 70 80
Distance threshold / mm

0

20

40

60

80

100
Fr
ac
tio

n 
of
 fr
am

es
 w
ith

in
 d
is
ta
nc
e 
/ %

Tang et al.
Deep

Deep-StdRef
Deep-ORRef

Deep-Prior-StdRef
Deep-Prior-ORRef

(d) Refinement on ICVL dataset

Figure 3: Importance of the pose prior (left) and the refinement stage (right). We evaluate the fraction of frames where
all joints are within a maximum distance for different approaches. A higher area under the curve denotes more accurate
results. Left (a), (c): We show the influence of the dimensionality of the pose embedding. The optimal value is around
30, but using only 8 dimensions performs already very well. The pose prior allows us to significantly outperform the
state-of-the-art, even before the refinement step. Right (b), (d): We show that our architecture with overlapping input
patches, denoted by the ORRef suffix, provides higher accuracy for refining the joint positions compared to a standard
deep CNN, denoted by the StdRef suffix. For the baseline of Tompson et al. [26] we augment their 2D joint locations with
the depth from the depth maps, as done by [26], and depth values that do not lie within the hand cube are truncated to the
cube’s back face to avoid large errors. (Best viewed on screen)

all joints of the hand, e.g. the 2D joint location lies
on the background or is self-occluded, thus causing
higher errors for individual joints. When using the
evaluation metric of [24], where all joints have to be
within a maximum distance, this outlier has a strong
influence, in contrast to the evaluation of the average
error, where an outlier can be insignificant for the
mean. Thus we outperform the baseline more signif-

icantly for the distance threshold than for the average
error.

4.5. Increasing Accuracy with Pose Refinement

The refinement stage can be used to further in-
crease the location accuracy of the predicted joints.
We achieved the highest accuracy by using our CNN
with constrained prior hand model as first stage, and



then applying the second iterative refinement stage
with our CNN with overlapping input patches, de-
noted ORRef.

The results in Fig. 3b, 3d and 4 show that apply-
ing the refinement improves the location accuracy for
different base CNNs. From rather inaccurate initial
estimates, as provided by the standard deep CNN,
our proposed ORRef performs only slightly better
than refinement with the baseline deep CNN, denoted
by StdRef. This is because for large initial errors only
the larger input patch provides enough context for
reasoning about the offset. The smaller input patch
cannot provide any information if the offset is big-
ger than the patch size. For more accurate initial
estimates, as provided by our deep CNN with pose
prior, the ORRef takes advantage from the small in-
put patch which does not use pooling for higher ac-
curacy. We iterate our refinement two times, since
iterating more often does not provide any further in-
crease in accuracy.

We would like to emphasize that our results on
the ICVL dataset, with an average accuracy below
10 mm, already scratch at the uncertainty of the la-
belled annotations. As already mentioned, the ICVL
dataset suffers from inaccurate annotations, as we
show in some qualitative samples in Fig. 5 first and
fourth column. While this has only a minor effect on
training, the evaluation is more affected. We evalu-
ated the accuracy of the test sequence by revising the
annotations in image space and calculated an average
error of 2.4 mm with a standard deviation of 5.2 mm.

4.6. Running Times

Table 1 provides a comparison of the running
times of the different methods, both on CPU and
GPU. They were measured on a computer equipped
with an Intel Core i7, 16GB of RAM, and an nVidia
GeForce GTX 780 Ti GPU. Our methods are imple-
mented in Python using the Theano library [2], which
offers an option to select between the CPU and the
GPU for evaluating CNNs. Our different models per-
form very fast, up to over 5000 fps on a single GPU.
Training takes about five hours for each CNN. The
deep network with pose prior performs very fast and
outperforms all other methods in terms of accuracy.
However, we can further refine the joint locations at
the cost of higher runtime.

4.7. Qualitative Results

We present qualitative results in Fig. 5. The typi-
cal problems of structured light-based sensors, such

Architecture GPU CPU

Shallow 0.07 ms 1.85 ms
Deep [12] 0.1 ms 2.08 ms
Multi-Scale [7] 0.81 ms 5.36 ms
Deep-Prior 0.09 ms 2.29 ms
Refinement 2.38 ms 62.91 ms
Tompson et al. [26] 5.6 ms -
Tang et al. [22] - 16 ms

Table 1: Comparison of different runtimes. Our CNN with
pose prior (Deep-Prior) is faster by a magnitude com-
pared to the other methods (pose estimation only). We can
further increase the accuracy using the refinement stage,
still at competitive speed. All of the denoted baselines use
state-of-the-art hardware comparable to ours.

as missing depth, can be problematic for accurate lo-
calization. However, only partially missing parts, as
shown in the third and fourth columns for example,
do not significantly deteriorate the result. The loca-
tion of the joint is constrained by the learned hand
model. If the missing regions get too large, as shown
in the fifth column, the accuracy gets worse. How-
ever, because of the use of the pose subspace embed-
ding, the predicted joint locations still preserve the
learned hand topology. The erroneous annotations of
the ICVL dataset deteriorate the results, as our pre-
dicted locations during the first stage are sometimes
more accurate than the ones obtained during the sec-
ond stage: see for example the pinky in the first or
fourth column.

5. Conclusion

We evaluated different network architectures for
hand pose estimation by directly regressing the 3D
joint locations. We introduced a constrained prior
hand model that can significantly improve the joint
localization accuracy. Further, we applied a joint-
specific refinement stage to increase the localization
accuracy. We have shown, that for this refinement a
CNN with overlapping input patches with different
pooling sizes can benefit from both, input resolution
and context. We have compared the architectures on
two datasets and shown that they outperform previ-
ous state-of-the-art both in terms of localization ac-
curacy and speed.

Acknowledgements: This work was funded by the
Christian Doppler Laboratory for Handheld Aug-
mented Reality and the TU Graz FutureLabs fund.



P1 P2 R1 R2 M1 M2 I1 I2 C T1 T2 T3 W1 W2 Avg
0

10

20

30

40

50
M
ea

n 
er
ro
r o

f j
oi
nt
 / 
m
m

Tompson et al.
Shallow

Deep
Multi-Scale

Deep-Prior-ORRef

(a) NYU dataset

C T1 T2 T3 I1 I2 I3 M1 M2 M3 R1 R2 R3 P1 P2 P3 Avg
0

5

10

15

20

25

M
ea

n 
er

ro
r o

f j
oi

nt
 / 

m
m

Tang et al.
Shallow

Deep
Multi-Scale

Deep-Prior-ORRef

(b) ICVL dataset

Figure 4: Average joint errors. For completeness and comparability we show the average joint errors, which are, however,
not as decisive as the evaluation in Fig. 3. Though, the results are consistent. The evaluation of the average error is more
tolerant to larger errors of a single joint, which deteriorate the pose as for Fig. 3, but are insignificant for the mean if
the other joints are accurate. Our proposed architecture Deep-Prior-ORRef, the constrained pose CNN with refinement
stage, provides the highest accuracy. For the ICVL dataset, the simple baseline architectures already outperform the
baseline. However, they cannot capture the higher variations in pose space and noisy images of the NYU dataset, where
they perform much worse. The palm and fingers are indexed as C: palm, T: thumb, I: index, M: middle, R: ring, P: pinky,
W: wrist. (Best viewed on screen)

NYU dataset ICVL dataset

D
ee

p-
Pr

io
r

D
ee

p-
O

R
R

ef

Figure 5: Qualitative results. We show the inferred joint locations on the depth images (in gray-scale), as well as the
3D locations with the point cloud of the hand (blue images) from a different angle. The ground truth is shown in blue,
our results in red. The point cloud is only annotated with our results for clarity. The right columns show some erroneous
results. One can see the difference between the global constrained pose and the local refinement, especially in the presence
of missing depth values as shown in the fifth column. While the global pose constraint still preserves the hand topology,
the local refinement cannot reason about the locations without the missing depth data. (Best viewed on screen)



References
[1] L. Ballan, A. Taneja, J. Gall, L. V. Gool, and

M. Pollefeys. Motion Capture of Hands in Action
Using Discriminative Salient Points. In European
Conference on Computer Vision, 2012.

[2] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin,
R. Pascanu, G. Desjardins, J. Turian, D. Warde-
Farley, and Y. Bengio. Theano: A CPU and GPU
Math Expression Compiler. In Proc. of SciPy, 2010.

[3] L. Bottou. Large-Scale Machine Learning with
Stochastic Gradient Descent. In Proc. of COMP-
STAT, 2010.

[4] A. Coates, A. Y. Ng, and H. Lee. An Analysis
of Single-Layer Networks in Unsupervised Feature
Learning. In Proc. of AISTATS, 2011.

[5] M. de La Gorce, D. J. Fleet, and N. Paragios. Model-
Based 3D Hand Pose Estimation from Monocular
Video. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(9), 2011.

[6] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and
X. Twombly. Vision-Based Hand Pose Estimation:
A Review. Computer Vision and Image Understand-
ing, 108(1-2), 2007.

[7] C. Farabet, C. Couprie, L. Najman, and Y. LeCun.
Learning Hierarchical Features for Scene Labeling.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2013.

[8] P. J. Huber. Robust Estimation of a Location Param-
eter. Annals of Statistics, 53, 1964.

[9] C. Ionescu, J. Carreira, and C. Sminchisescu. Iter-
ated Second-Order Label Sensitive Pooling for 3D
Human Pose Estimation. In Conference on Com-
puter Vision and Pattern Recognition, 2014.

[10] C. Keskin, F. Kıraç, Y. E. Kara, and L. Akarun.
Real Time Hand Pose Estimation Using Depth Sen-
sors. In International Conference on Computer Vi-
sion, 2011.

[11] C. Keskin, F. Kıraç, Y. E. Kara, and L. Akarun. Hand
Pose Estimation and Hand Shape Classification Us-
ing Multi-Layered Randomized Decision Forests. In
European Conference on Computer Vision, 2012.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet Classification with Deep Convolutional Neu-
ral Networks. In Advances in Neural Information
Processing Systems, 2012.

[13] A. Kuznetsova, L. Leal-taixe, and B. Rosenhahn.
Real-Time Sign Language Recognition Using a
Consumer Depth Camera. In International Confer-
ence on Computer Vision, 2013.

[14] S. Melax, L. Keselman, and S. Orsten. Dynam-
ics Based 3D Skeletal Hand Tracking. In Proc. of
Graphics Interface Conference, 2013.

[15] I. Oikonomidis, N. Kyriazis, and A. A. Argyros.
Full DOF Tracking of a Hand Interacting with an

Object by Modeling Occlusions and Physical Con-
straints. In International Conference on Computer
Vision, 2011.

[16] B. T. Polyak. Some Methods of Speeding Up the
Convergence of Iteration Methods. USSR Computa-
tional Mathematics and Mathematical Physics, 4(5),
1964.

[17] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun. Re-
altime and Robust Hand Tracking from Depth. In
Conference on Computer Vision and Pattern Recog-
nition, 2014.

[18] J. Schmidhuber. Deep Learning in Neural Net-
works: An Overview. Technical Report 03-14, ID-
SIA, 2014.

[19] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu,
R. Fergus, and Y. LeCun. Overfeat: Integrated
Recognition, Localization and Detection Using Con-
volutional Networks. In Proc. of ICRL, 2014.

[20] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp,
M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Cri-
minisi, A. Kipman, and A. Blake. Efficient Human
Pose Estimation from Single Depth Images. In Con-
ference on Computer Vision and Pattern Recogni-
tion, 2011.

[21] Y. Sun, X. Wang, and X. Tang. Deep Convolutional
Network Cascade for Facial Point Detection. In
Conference on Computer Vision and Pattern Recog-
nition, 2013.

[22] D. Tang, H. J. Chang, A. Tejani, and T.-K. Kim. La-
tent Regression Forest: Structured Estimation of 3D
Articulated Hand Posture. In Conference on Com-
puter Vision and Pattern Recognition, 2014.

[23] D. Tang, T. Yu, and T. Kim. Real-Time Articu-
lated Hand Pose Estimation Using Semi-Supervised
Transductive Regression Forests. In International
Conference on Computer Vision, 2013.

[24] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgib-
bon. The Vitruvian Manifold: Inferring Dense Cor-
respondences for One-Shot Human Pose Estima-
tion. In Conference on Computer Vision and Pattern
Recognition, 2012.

[25] J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint
Training of a Convolutional Network and a Graphi-
cal Model for Human Pose Estimation. In Advances
in Neural Information Processing Systems, 2014.

[26] J. Tompson, M. Stein, Y. LeCun, and K. Perlin.
Real-Time Continuous Pose Recovery of Human
Hands Using Convolutional Networks. ACM Trans-
actions on Graphics, 33, 2014.

[27] A. Toshev and C. Szegedy. DeepPose: Human Pose
Estimation via Deep Neural Networks. In Confer-
ence on Computer Vision and Pattern Recognition,
2014.

[28] Y. Wu, J. Lin, and T. Huang. Capturing Natural
Hand Articulation. In International Conference on
Computer Vision, 2001.



[29] C. Xu and L. Cheng. Efficient Hand Pose Estima-
tion from a Single Depth Image. In International
Conference on Computer Vision, 2013.


	1 . Introduction
	2 . Related Work
	3 . Hand Pose Estimation with Deep Learning
	3.1 . Problem Formulation
	3.2 . Network Structures for Predicting the Joints' 3D Locations
	3.3 . Enforcing a Prior on the 3D Pose
	3.4 . Refining the Joint Location Estimates

	4 . Evaluation
	4.1 . Benchmarks
	4.2 . Meta-Parameters and Optimization
	4.3 . Evaluation Metrics
	4.4 . Importance of the Pose Prior
	4.5 . Increasing Accuracy with Pose Refinement
	4.6 . Running Times
	4.7 . Qualitative Results

	5 . Conclusion

