
Fully Automated and Stable Registration for Augmented Reality Applications ∗

Vincent Lepetit † Luca Vacchetti † Daniel Thalmann ‡ Pascal Fua †

† CVlab ‡ VRlab
Swiss Federal Institute of Technology

1015 Lausanne, Switzerland
{vincent.lepetit,luca.vacchetti,daniel.thalmann,pascal.fua}@epfl.ch

Abstract

We present a fully automated approach to camera reg-
istration for Augmented Reality systems. It relies on purely
passive vision techniques to solve the initialization and real-
time tracking problems, given a rough CAD model of parts
of the real scene. It does not require a controlled environ-
ment, for example placing markers. It handles arbitrarily
complex models, occlusions, large camera displacements
and drastic aspect changes.

This is made possible by two major contributions: The
first one is a fast recognition method that detects the known
part of the scene, registers the camera with respect to it, and
initializes a real-time tracker, which is the second contribu-
tion. Our tracker eliminates drift and jitter by merging the
information from preceding frames in a traditional recur-
sive tracking fashion with that of a very limited number of
key-frames created off-line. In the rare instances where it
fails, for example because of large occlusion, it detects the
failure and reinvokes the initialization procedure.

We present experimental results on several different
kinds of objects and scenes.

1. Introduction

Using the well known AR toolkit [14] is a good way to
obtain good registration data because it is easy to use, au-
tomatic and robust. This level of performance, however,
requires the use of markers, which is often cumbersome
and sometimes even impossible. By contrast, we propose
a registration method based on natural features that, given
a rough partial CAD model of the scene, achieves a com-
parable level of automation while being accurate enough to
provide the visual comfort required by AR applications.

This has been made possible by our two main contri-

∗This work was supported in part by the Swiss Federal Office for Edu-
cation and Science.

butions. The first one is a fast and automatic initialization
method that detects the known part of the scene and regis-
ters the camera with respect to it. During a learning stage,
a database of feature points in the scene is build. Given an
image of the scene, the camera can then be registered online
by matching the feature points present in the image against
the database. This approach is inspired by recent work on
object recognition [15, 1] and wide-baseline matching, but
our method goes much further towards reducing the compu-
tational burden, thus making it suitable for AR applications.

The second contribution is a real-time camera tracking
that can handle large camera displacements, drastic aspect
changes and partial occlusions and that is drift- and jitter-
free, without imposing any restriction on the target object’s
complexity. It achieves this level of performance by fus-
ing the information from preceding frames in a conven-
tional recursive tracking fashion with the one provided by
a very limited number of key-frames created during an off-
line stage. In the rare instances where it fails, for example
because of large occlusion, it can detect the failure and rein-
vokes the initialization procedure. Figure 1 depicts a typical
behaviour of our tracker on a simple application. In the Re-
sults section, we will show the capability of our system in
more complex situations.

We believe our system to go well beyond the current AR
state-of-the-art: While automated initialization is a crucial
problem for practical applications, it is rarely addressed in
the context of natural feature based tracking. Most existing
trackers are initialized by hand, or require the camera to be
very close to a specified position. Furthermore, when they
lose track they typically have to be reinitialized in the same
fashion. Similarly, while the off-line camera registration
problem can be considered as essentially solved, robust on-
line tracking remains an open issue. Many of the real-time
algorithms described in the literature still lack robustness,
can lose a partially occluded target object, tend to drift or
are prone to jitter, which makes them unsuitable for real-
world Augmented Reality applications.

Our system requires a small user-supplied set of key-

a. b. c. d. e.

f. g. h. i. j.

Figure 1. Typical behaviour of our system. a: a keyframe of the tracked object, used during the
learning stage; b: an image is given to the system, it is matched with one of the keyframes (here the
one shown in a) to automatically initialize the tracker; c and d: feature points are tracked to register
the camera, even under partial occlusions; e: the tracker fails because of a complete occlusion of the
tracked object, the failure is detected and the initialization procedure is reinvoked; f: this procedure
recognizes the object when it reappears; g: the tracker can handle aspect changes; h, i and j: virtual
objects can be added with respect to the tracked object, and occlusion are properly handled. By
watching the video at http://cvlab.epfl.ch/research/augm/, one can see that the virtual objects are
remarkably stable.

frames and a rough CAD model of part of the real scene
for both initialization and tracking. In theory, this can be
seen as a drawback but it is not really one in practice: A
CAD model is also required by most AR applications that
can benefit from a 3D tracker and can easily be created us-
ing either automated techniques or commercially available
products such as Image Modeler by RealViz(TM), or Boujou
by 2D3(TM). These commercial products can also be used to
very quickly create a few key-frames. The keyframes make
the tracker robust, and allow automatic initialization.

Unlike previous techniques that limit the range of object
shapes that can be handled, we impose no such constraint
and put no restriction on the object type or its complexity
as long as enough feature points are present. We have been
able to track objects as different as a machine tool, a corri-
dor and a human face.

In the remainder of the paper, we first discuss related
work. Section 3 explicits some important details about
keyframes used in our system. Section 4 describes our
initialization method, and Section 5 describes the tracking
stage.

2. Related Work

2.1 Automatic Initialization

Few works address specifically the problem of tracker
initialization in the Augmented Reality area, but this prob-
lem is closely related to object recognition. In this research

domain, two approaches can be distinguished, either a view-
based representation or a 3D representation is used.

View based methods represent objects by a set of images
[18, 19] or image properties such as histograms [24], and
have the advantage of allowing fast recognition, even for
complex objects. Nevertheless, it can require huge amounts
of memory, and it is difficult to handle occlusions and clut-
tered backgrounds. Considering the object 3D model allows
more flexibility. In this case, the object recognition and the
camera registration are simultaneously performed: 2D geo-
metric features such as corners or edges are extracted from
the image and matched against the object 3D features, and
geometric constraints are applied to remove spurious corre-
spondences. These methods are restricted to relatively sim-
ple objects, and can be relatively expensive [13, 5] in terms
of computation time.

Recently, methods that combine both approaches have
been developed. The object to be recognized is represented
by a set of key points characterized by their local appear-
ances. The object 3D model may be known [1], or not [15].
Feature points are extracted from the images, and charac-
terized in order to be matched against the set of keypoints.
Then, the spurious matches are removed by applying geo-
metric constraints, for example by robustly estimating the
epipolar geometry between the different object views or the
object pose when the 3D model is available.

Ideally, the feature point extraction and characteriza-
tion should be insensitive to viewpoint and illumination
changes. Scale-invariant feature extraction can be obtained

using the Harris detector [10] at several Gaussian derivative
scales, or considering local optima of pyramidal difference-
of-Gaussian filters in scale-space [15]. Mikolajczyck et al.
[16] have also defined an affine invariant point detector to
handle larger viewpoint changes, but it relies on an iterative
estimation that would be too slow in our context. Various
local descriptors have been proposed: Schmidt et al. [21]
use a vector made of orientation-invariant measures that are
functions of relatively high order image derivatives. Baum-
berg [2] uses a variant of the Fourier-Mellin transformation
to achieve rotation invariance. He also gives an algorithm
to remove stretch and skew and obtain an affine invariant
characterization. Allezard et al. [1] represent the key point
neighbourhood by a hierarchical sampling, and rotation in-
variance is obtained by starting the circular sampling with
respect to the gradient direction.

These different works obtain impressive results, but they
are still too slow to be used in an Augmented Reality con-
text, because the involved computation typically takes sev-
eral seconds. Our method (Section 4) goes much further
towards reducing the computational burden to about one
hundred milliseconds, thus making it suitable for AR ap-
plications.

2.2 Real-Time Camera Tracking

Some model-based approaches to camera tracking look
for 3D poses that correctly re-project the features such as
edges, line segments, or points, of either a planar or fully
3D model into a 2D image. They rely on finding the local
minimum in an objective function such as edge- or segment-
[8] or point- [9] based methods. Therefore, the optimization
procedure may get trapped in a wrong local minimum, in
particular in the presence of aspect changes or even when
two edges of the same object become very close to each
other. As a result, the tracker’s behavior can become unpre-
dictable.

Other approaches [23] derive the camera position by
concatenating transformations between adjacent frames, by
tracking natural features. The tracking is accurate and there
is no jitter because feature matching is done with respect to
very close frames. Unfortunately, for long sequences these
methods suffer from the error accumulation problem.

A number of methods introduce reference frames [4] and
some keep track of disappearing and appearing points [20].
However, they need to smooth the results, for example by
means of Kalman filtering, to prevent jittering. As pointed
by [20] such filtering is not really suitable for Augmented
Reality applications: for example, in the case of a Head
Mounted Display application, it is not realistic to have a
simple model for the head motion.

Traditional frame-to-frame recursive approaches to
matching and those that rely on reference frames both have

 1260

 1280

 1300

 1320

 1340

 1360

 90 100 110 120 130 140 150

Ground truth
Keyframes only

 1260

 1280

 1300

 1320

 1340

 1360

 90 100 110 120 130 140 150

Ground truth
Recursive method

 1260

 1280

 1300

 1320

 1340

 1360

 90 100 110 120 130 140 150

Ground truth
Our method

Figure 2. Plots showing one coordinate of
the camera center tracked using three differ-
ent methods. The dots represent the ground
truth. First plot shows the jitter of keyframe
method. Second plot highlights the error ac-
cumulation of an early version of our tracker,
based on recursive estimation. Last plot
shows the result of our method.

their strengths and weaknesses. Keyframe-based techniques
prevent drift, but cannot provide good precision for every
frame without using a very large set of keyframes. Further-
more, they typically introduce jitter. Techniques based on
chained transformations eliminate jitter but tend to drift on
long sequences and are subject to losing track altogether. In
Section 5 we propose a method that merges the information
from preceding frames with that provided by key-frames,
and that has the advantages of both approaches. To compare
these different approaches, we conducted the following ex-
periment. We used our feature matching approach to track
the projector in the sequence of Figure 11 three different
times:

1. using only off-line keyframes,

2. using only chained transformations,

3. combining both using our proposed method.

Figure 2 depicts the evolution of one of the camera center
coordinates with respect to the frame index and we have
verified that the behavior for all other camera parameters
is similar. In all three graphs, we superpose the output
of the tracker using one of the three methods mentioned
above with ”ground truth” obtained by manually calibrat-
ing the camera every 5 frames. The sequence made by us-
ing keyframes only exhibits jitter while the recursive one is
quickly corrupted by error accumulation. The method pre-
sented in this paper keeps closer to the ground truth and
avoids drift.

3. Keyframes

In this section we specify what exactly a keyframe is
in our system. We also describe the re-rendering proce-
dure that is used in our automatic initialization and tracking
methods.

Figure 3. In an off-line procedure, keyframes
of the object or the scene are shot.

3.1 Creating Keyframes

During the off-line stage, a small set of images, that we
call keyframes, representing the scene or the object from
different viewpoints, has to be chosen and calibrated. For
the results presented in this paper, about ten snapshots taken
from all around the objects are well enough (see Figure 3).
The calibration can be automatic using commercial post-
production tools, such as the ones by RealViz or 2D3. For
the sequences presented in this paper, we developed a sim-
ple application in which the camera is calibrated by choos-
ing very few points on the 3D model and matching them
with the corresponding 2D points in the image. In this way
creating a keyframe set is just a matter of some minutes.

When the projection matrix is known for every keyframe,
the system performs interest point detection using the Har-
ris corner detector [?] and back-projects the points that lie
on the object surface. Finally, a keyframe collects the fol-
lowing data: The two sets of corresponding 2D and 3D
points, the bitmap image of the 2D point neighborhood and
the corresponding surface normals ~n, used for keyframes
rerendering (see below), and the camera projection matrix
PK , decomposed into the internal parameters matrix AK ,
the rotation matrix RK and the translation vector TK , so
that PK = AK [RK |TK].

3.2 Rerendering a Keyframe

Both our initialization and tracking methods use synthe-
sized images of the modeled part of the scene, as seen from
a new viewpoint. They are used during the learning stage by
our initialization method and by the tracker to match distant
frames in a fast way to effectively use the keyframes.

We synthesize the new image, that we call the “re-
rendered” image, by skewing pixel patches around each in-
terest point from the keyframe image to the given viewpoint.
An alternative solution would have been to re-render an im-
age of the object using an OpenGL textured 3D object, but

~
H~H

Figure 4. Pixels around interest points are
transfered from the keyframe (left) to the re-
rendered image (right) using a homography,
which can be locally approximated by an
affine transformation.

we chose the first way to have a more precise result around
the points and to speed up the system.

Locally approximating the object surface around the in-
terest points by a plane, each patch in the keyframe is re-
lated to the corresponding image points in the re-rendered
image by a homography (Figure 4). Given the correspond-
ing 3D plane π of a patch around interest point m0 hav-
ing coordinates π = (~n, d) so that for points on the plane
~n>X + d = 0, the expression for the homography H
induced by the plane can be easily deduced from [11].
If the new viewpoint is defined by the projection matrix
P = A[R|T], the expression of H is:

H = AK(δR − δT.~n′
>

/d′)A−1 (1)

with
δR = RR>

K ; δT = −RR>
KTK + T ;

~n′ = RK~n; d′ = d − T>
K (RK~n).

The matrix H transfers the pixels m around m0 to the
pixels m′ in the rerendered image so that: m′ = H.m. To
save computation time, this transformation can be approxi-
mated around m0 by an affine transformation, obtained by
the first order approximation

m′ ' H.m0 + JH(m0).(m − m0)

where JH is the Jacobian of the function induced by H .
In our system, the 2D mapping is done using optimized

functions provided by the IPP library of Intel.

4. Automatic Initialization Method

Following recent approaches in object recognition, our
automatic initialization method relies on a learning stage,
where a database of key feature points is constructed. Each
key point consists of a 3D point corresponding to an interest
point that lies on the object model in the keyframes, and a
descriptor based on its local appearance in the images.

The recognition phase then consists in robustly match-
ing feature points in the image with the points present in the
database. The matching process is performed according to a
similarity measure between their descriptors. To make this
process efficient, the point local appearance must be char-
acterized in a way that is invariant to viewpoint changes,
and that also allows fast comparisons between points. To
this end, we propose to use an eigen image approach. In
the remainder of this Section, we first give a brief presen-
tation of eigen images, and show how they can be used to
define a viewpoint invariant description of points. Finally,
we discuss the matching strategy and give some results.

4.1. Viewpoint Invariant Local Description

As we discussed in the Related Work Section, different
descriptors have been defined in the literature, but they are
too time consuming. We use an idea similar to the one de-
veloped in [15] to make the point local description robust
to viewpoint changes, where the local descriptor consists
of a set of image patches of the point seen from different
viewpoints. Here this idea is used in conjonction with eigen
images to achieve low computation time. We also make use
of the object model, which is not available in [15].

During the off-line learning stage, one database of key
points per keyframe is build. We will discuss how to
use these several databases below. Each keyframe is re-
rendered (see Section 3.2) from different viewpoints around
the camera position computed for the keyframe, slightly
changing the camera orientation and translation. We asso-
ciate to the 3D points Mi present in the keyframe the image
patches (denoted Vi,j onwards) around their projections in
the re-rendered keyframes as shown in Figure 5.

To perform fast template matching, we make use of
the eigen image methodology. This approach has been
shown to be remarkably efficient for robot positioning [18],
face [17], hand [3] or navigation landmark recognition [6].
Given a set S of p images, eigen images approaches con-
struct a family of basis images that characterize the major-
ity of the variation in S by a principal component analysis
(PCA). Then only few multiplications are required to com-
pare two patches instead of the large number involved by
the classical evaluation of the correlation. By combining
this comparison with a hash table, this allows us to perform
a large number of point comparisons in a short time. We
normalize the brightness of the images to make the correla-
tion measure insensitive to illumination changes [6].

The eigen space of all the patches Vi,j is computed, and
finally, the key point is defined as a 3D point and the set of
its patches expressed in the eigen space:

Ki = (Mi, V
′
i,1, . . . , V

′
i,l),

where l is the number of re-rendered keyframes, and the

Figure 5. Some patches associated to a key
point.

V ′
i,j the expression of the patches Vi,j in the eigen space.

The set of patches is a way to represent the possible local
appearances of the 3D point seen from viewpoints around
the keyframe viewpoint. In practice we use patches of size
16 × 16 pixels, and 8 re-rendered keyframes.

4.2. Matching Strategy

When our initialization system is given an image, it de-
tects the interest points mk present in this image, and com-
putes the expressions W ′

k in the eigen space of the patches
centered in these points. Then each point mk is matched
with the key points Ki that verify

∃ j so that ‖W ′
k − V ′

i,j‖
2 < T 2,

The search for correspondents is performed efficiently since
we use eigen images to represent the patches. Each point
mk may be matched with 0, 1 or several key points. Then
we can register the camera position from the correspon-
dences between the 2D points mk and the 3D object points
Mi, using the POSIT algorithm [7] and the robust estima-
tor RANSAC [11]. POSIT computes the camera position
and orientation from 2D/3D correspondences without need-
ing any initialization, and RANSAC handles the spurious
correspondences.

4.3. Results

Figure 6 shows some examples of our automatic ini-
tialization method. The recovered viewpoints are accurate
enough to initialize our tracker even when the camera posi-
tion is relatively far to the one corresponding to the tracker:
either the object orientation and distance can be different.
This procedure takes about 150 ms, detailed computation
times are given Figure 7.

Two ways to use this procedure are possible: the im-
age from the camera is matched against one keyframe only,
and the user has to move the camera to the neighbourhood
of the camera position related to the chosen keyframe, in a
fairly large interval as shown in Figures 1 and 6. The second
possibility consists in matching the camera image against
all the keyframes and choosing the one that gives the more
matches. This solution allows the user to start from any po-
sition, but it takes more time.

Figure 6. Three examples of automatic initialization. The used keyframe is the first image on the left.
Note that the camera positions are quite different. The white lines represent the correct matching,
the black ones the spurious matches removed by the robust viewpoint estimation.

Interest point extraction 20 ms
Interest point characterization 10 ms
Matching 90 ms
Robust viewpoint estimation 10 ms

Figure 7. Computation times (on a Pentium
IV, 2.3GHz) of the initialization procedure, for
500 interest points detected in the image,
matched against a database of about 1000
key points with 8 patches each. The eigen
space computation is performed off-line and
takes a few seconds per keyframe.

5. Tracking Method

Our tracking method is suitable for any kind of 3D tex-
tured object that can be described as a polygonal mesh. It
starts with the 2D matching of interest points, and then it ex-
ploits them to infer the 3D position of the points on the ob-
ject surface. Once the 3D points on the object are tracked, it
is possible to retrieve the camera displacement in the object
coordinate system using robust estimation. In the remainder
of this section we will describe in detail our tracking algo-
rithm. First we present a simpler version that relies only on
the keyframes. This method works well even on long se-
quences but suffers from jittering. We show how to prevent
this problem by adding information from previous frames
in the sequence. This method is more complex but allows a
remarkably stable insertion of virtual objects.

5.1. Keyframe Based Tracking

At every time step t, we detect Harris interest points (de-
noted mi

t onwards) in the current source image. One of
the keyframes is chosen in order to maximize the number
of common interest points, and the points mi

t are matched
with the points of this keyframe, considering an appearance

based measure to establish correspondence. The keyframe
choice and our algorithm to perform the wide baseline
matching between the current frame and the keyframe are
described below. Note that we consider only one keyframe
at a time: using more keyframes would certainly yield a
more accurate viewpoint estimation, but also more compu-
tation time.

The 3D position of each point in the keyframe have been
precomputed, and expressed in the world coordinate sys-
tem. They are propagated to the matched points in the
frame at time t, and from these 2D-3D correspondences,
the camera rotation Rt and translation Tt for this frame can
then be estimated using a numerical minimization with a
M-estimator [12] initialized with the position recovered in
the previous frame as initial guess. More formally, we min-
imize the residual sum:

rt =
∑

i

ρTUK

(

φt(M
µ(i)
K , mi

t)
)

over Rt and Tt, where

• φt(M, m) is the reprojection error in the frame ac-
quired at time t (with respect to Rt and Tt) of 3D point
M matched with 2D point m;

• the interest point mi
t is matched with the 3D point

M
µ(i)
K of the keyframe chosen at time t;

• ρTUK is the Tukey M-estimator used for reducing the
influence of wrong matches.

As we previously discussed, a pose estimation based ex-
clusively on keyframes would have poor accuracy when few
points are matched or when they are not regularly spread out
in the scene and in the image. In Section 5.2, we show how
to merge the two sources of information.

Keyframe choice At every time step, the keyframe to be
matched with the current frame must be chosen in order to

a. b.

c. d.

Figure 8. a. A keyframe; b. the current frame,
c. the re-rendered keyframe with respect to
the previous camera position estimate; d. an
example of facets index rendering used for
keyframe choice.

maximize the number of common interest points. We use
the following criterion:

∑

f∈Model

(Area (A[Rt−1|Tt−1], f) − Area (AK [RK |TK]))2 ,

where Area(P, f) is the 2D area of the facet f after projec-
tion by P , and AK [RK |TK] and A[Rt−1|Tt−1] the projec-
tion matrices of the keyframe and the previous frame. The
facets area in the keyframes (the terms Area (AK [RK |TK]))
can obviously be pre-computed. Areas in the previous
frame are efficiently computed using an OpenGL render-
ing of the object model where every facet is rendered in a
different color, representing the facet index. The area of
every single facet is estimated by summing the number of
occurrences of the facet’s pixels. This method has constant
complexity, and requires only a single reading of the image.

Wide baseline matching while tracking Conventional
methods to match points between images make use of a
square bi-dimensional correlation window. This technique
gives results under the assumption of very small perspective
distortion between two frames. However, to effectively use
keyframes, the ability to match distant frames in a fast way
becomes essential. Consequently we rerendered the chosen
keyframe from the viewpoint estimated at time t−1. The re-
rendered image is in a more convenient position as shown
in Figure 8 and can be matched with the current frame us-
ing a simple, conventional method. This method allows us
to effectively match views even where there are as much as
30 degrees of rotation.

5.2. Merging Information from Keyframes and Pre-
vious Frames Using Local Adjustment

One of the key issues of our method is to effectively com-
bine keyframes and previous frame information. In [25], we
gave a simple method that gives good results, but that tends
to accumulate error when too few points from the keyframes
are available. In this paper, we give a solution based on a lo-
cal adjustment, that makes the inserted virtual objects more
stable, and compensates relatively bad initialization, such as
the ones provided by our automatic initialization method.

2D points lying on the projected 3D model in the pre-
vious frame are matched with points in the current frame.
These points are the projection of 3D points lying on the
3D model. To coherently merge the information from the
keyframe and the previous frame, we simultaneously op-
timize the reprojection errors in these frames over the 3D
position of these points, and over the viewpoints related to
the previous and the current frames. The problem becomes:

min
Rt, Tt

Rt−1, Tt−1

Mi

rt + rt−1 +
∑

i

si
t (2)

with

si
t = ρTUK

(

φt(Mi, m
i
t) + φt−1(Mi, m

ν(i)
t−1)

)

,

where the interest point mi
t detected in the current frame

is matched with the point m
ν(i)
t−1 detected in the previous

frame.
The important point here is that the 3D position Mi of

the tracked points are also optimized, but constrained to stay
on the 3D model surface. The formulation of this objective
function allows us to satisfy both the constraints from the
matches with keyframes and between the successive frames,
without assumption of the accuracy of viewpoints previ-
ously estimated. Equation (2) can be rewritten as:

min
Rt,Tt,Rt−1,Tt−1

(

rt + rt−1 + min
Mi

∑

i

si
t

)

(3)

since rt and rt−1 are independent of the tracked points Mi.
We will follow the reasoning of [22], who have a similar

term in off-line Model Based Bundle Adjustment, to elimi-
nate the Mi in order to simplify the minimization problem:
instead of estimating the Mi, it is equivalent to estimating
its projection in the two images. Then, according to [22],
the terms si

t can be approximated using a transfer function
that involves only the point reprojection. Such a transfer
function Ψ(m1, P1, P2) returns the point m2 so that it exists
a 3D point M belonging to the model surface m1 = P1M

t
im

t−1P

t
im Pt t−1P(,)Ψ ,

Pt

Model

t−1m (i)ν

Figure 9. Computing si
t: the camera positions

Pt−1 and Pt are simultaneously optimized on-
line.

and m2 = P2M . Finally si
t is approximated by (see Figure

9):

si
t = ρTUK

(

∥

∥

∥
Ψ(m

ν(i)
t−1, Pt−1, Pt) − mi

t)
∥

∥

∥

2

+
∥

∥

∥
Ψ(mi

t, Pt, Pt−1) − m
ν(i)
t−1

∥

∥

∥

2
)

where Pt−1 = A[Rt−1|Tt−1] and Pt = A[Rt|Tt].

Efficient computation In practice we use the viewpoint
recovered using the keyframe only as an initial guess. The
computation of the transfer function Ψ can be theoretically
prohibitive, but since estimated 3D points are then close
to their actual position, we reasonably know the facet on
which the point actually lies, and Ψ can be approximated
by the homography induced by the facet. The robust estima-
tor handles errors on facet assignments and false matches.
Since we start from a good initial estimate, optimization is
very quick and converges in a couple of iterations.

5.3. Failure Detection

When the number of points matched with the keyframe
is below than a threshold (lets say 10 points), the tracker
is stopped and the initialization procedure is reinvoked, try-
ing to match the new frames with the keyframe the tracker
was using. The tracking is restarted when enough points are
matched by the initialization procedure.

5.4. Results

After an important work of optimization our tracker
nearly runs at real-time (about 15 frames/sec) for images of
size 768 × 576 pixels (computation time details are given

Interest point extraction 20 ms
Keyframe re-rendering 15 ms
Point matching 20 ms
Viewpoint estimation 10 ms

Figure 10. Computation times (on a Pentium
IV, 2.3GHz) of our tracker, for 500 extracted
interest points, using images of 768 × 576
pixels.

Figure 10), and we have a working prototype system run-
ning at full real-time (25 frames/sec) on 320 × 200 images
from a Firewire camera. We set up a variety of demon-
strations, to show that this method can be used for many
different categories of objects.

Aspect changes In the example depicted by Figure 11,
the camera is moving around an old video projector doing
a complex movement with 180 degree rotations. The model
was created by a designer using Maya, and it took 4 hours
of work. The use of keyframes allows our tracker to deal
with aspect changes during the sequence.

Occlusions Figure 12 shows snapshots of a second video
sequence, where the same object is partially occluded by a
human operator, in order to roughly simulate the behaviour
of an Head Mounted Display. Since our algorithm consid-
ers local features, the tracking is not corrupted by partial
occlusions as far as enough feature points are visible.

Generality Our algorithm is able to track objects of very
different types. In the third example depicted by Figure 13,
we track a human head of which the model has been recon-
structed off-line from another short video sequence. Even
though we only have the face model and not the whole head,
we have been able to track 180 degree rotations. We ran our
tracker on this sequence giving only one keyframe.

Scene tracking Figure 14 depicts an example where the
camera is moved at the intersection of two corridors. De-
spite the huge aspect changes throughout the sequence, the
camera trajectory is correctly recovered using the 3D model
of the corridors and only four keyframes.

Robustness to 3D model errors We experimentally no-
ticed that the 3D model accuracy is not an important issue.
For example, there is a small mistake in the 3D model of the
object of Figures 11 and 12: The position of one of the two
cylinders on the front face is not very accurate, however it
does not corrupt the result. Likewise, the same face model
of Figure 13 has been used to track other people faces (of
various shapes) with success.

These videos and others can be seen at
http://cvlab.epfl.ch/research/augm/

6. Conclusion

In this paper we presented an Augmented Reality system
that consists of a robust, drift- and jitter-free tracker, which
is initialized by an automatic procedure. Our system relies
on purely passive vision techniques, and can be used for
a large class of objects, with no constraints on the kind of
camera motion. We use model information and off-line de-
fined keyframes to keep on following the target object even
when it is occluded or only partially visible, or when the
camera turns around it. We combine off-line and on-line
information to prevent the typical jitter and drift problems.

We believe our system to go well beyond the current AR
state-of-the-art: its level of automation, its robustness and
its visual comfort due to the stability of the inserted visual
objects make it suitable for practical Augmented Reality ap-
plications.

References

[1] N. Allezard, M. Dhome, and F. Jurie. Recognition of 3d tex-
tured objects by mixing view-based and model-based repre-
sentations. In International Conference on Pattern Recogni-
tion, pages 960–963, Barcelona, Spain, Sep 2000.

[2] A. Baumberg. Reliable feature matching across widely sep-
arated views. In Conference on Computer Vision and Pattern
Recognition, pages 774–781, 2000.

[3] M. J. Black and A. D. Jepson. Eigentracking: Robust match-
ing and tracking of articulated objects using a view-based
representation. In European Conference on Computer Vi-
sion, pages 329–342, 1996.

[4] K. Chia, A. Cheok, and S. Prince. Online 6 DOF Augmented
Reality Registration from Natural Features. In International
Symposium on Mixed and Augmented Reality, 2002.

[5] P. David, D. DeMenthon, R. Duraiswami, and H. Samet.
SoftPOSIT: Simultaneous Pose and Correspondence Deter-
mination”, ECCV 02, Copenhagen, May 2002. In Euro-
pean Conference on Computer Vision, Copenhagen, Den-
mark, May 2002.

[6] V. C. de Verdiere and J. Crowley. Local appearance space
for recognition of navigation landmarks. Journal of Robotics
and Autonomous Systems, 31:61–70, 2000.

[7] D. DeMenthon and L. S. Davis. Model-based object pose
in 25 lines of code. In European Conference on Computer
Vision, pages 335–343, 1992.

[8] T. Drummond and R. Cipolla. Real-Time Tracking of Com-
plex Structures with On-Line Camera Calibration. In British
Machine Vision Conference, September 1999.

[9] Y. Genc, S. Riedel, F. Souvannavong, and N. Navab. Marker-
less tracking for augmented reality: A learning-based ap-
proach. In International Symposium on Mixed and Aug-
mented Reality, 2002.

[10] C. Harris and M. Stephens. A combined corner and edge
detector. In Fourth Alvey Vision Conference, Manchester,
1988.

[11] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2000.

[12] P. Huber. Robust Statistics. Wiley, New York, 1981.

[13] F. Jurie. Solution of the Simultaneous Pose and Correspon-
dence Problem Using Gaussian Error Model. Computer Vi-
sion and Image Understanding, 73(3):357–373, 1999.

[14] H. Kato and M. Billinghurst. Marker Tracking and HMD
Calibration for a Video-Based Augmented Reality Confer-
encing System. In IEEE and ACM International Workshop
on Augmented Reality, October 1999.

[15] D. G. Lowe. Object recognition from local scale-invariant
features. In International Conference on Computer Vision,
pages 1150–1157, 1999.

[16] K. Mikolajczyk and C. Schmid. An affine invariant interest
point detector. In European Conference on Computer Vision,
pages 128–142. Springer, 2002. Copenhagen.

[17] M.Turk and A.Pentland. Eigenfaces for recognition. Journal
of Cognitive Neuroscience, 3(1):71–86, 1991.

[18] S. Nayar, H. Murase, and S. Nene. Learning, positioning,
and tracking visual appearance. In IEEE International Con-
ference on Robotics and Automation, pages 3237–3244, San
Diego, CA, May 1994.

[19] S. K. Nayar, S. A. Nene, and H. Murase. Real-Time 100
Object Recognition System. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 18(12):1186–1198,
1996.

[20] S. Ravela, B. Draper, J. Lim, and R. Weiss. Adaptive track-
ing and model registration across distinct aspects. In Interna-
tional Conference on Intelligent Robots and Systems, pages
174–180, 1995.

[21] C. Schmid and R. Mohr. Local grayvalue invariants for im-
age retrieval. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(5):530–534, May 1997.

[22] Y. Shan, Z. Liu, and Z. Zhang. Model-Based Bundle Adjust-
ment with Application to Face Modeling. In International
Conference on Computer Vision, Vancouver, Canada, July
2001.

[23] G. Simon and M.-O. Berger. Real time registration of known
or recovered multi-planar structures: application to ar. In
British Machine Vision Conference, Cardiff, UK, 2002.

[24] M. Swain and D. Ballard. Color indexing. International
Journal of Computer Vision, 7(1):11–32, 1991.

[25] L. Vacchetti, V. Lepetit, and P. Fua. Fusing Online and Of-
fline Information for Stable 3–D Tracking in Real-Time. In
Conference on Computer Vision and Pattern Recognition,
Madison, WI, June 2003.

Figure 11. A lever, slot-machine wheels and a jackpot light to the old projector, thus turning it into a
slot-machine.

Figure 12. Video sequence with occlusions.

Figure 13. A 3D model of the face is tracked to augment the video sequence by adding glasses and
a mustache to the subject.

Figure 14. Corridor tracking results. Only four keyframes have been used.

