
Foundations and TrendsR© in
Computer Graphics and Vision
Vol. 1, No 1 (2005) 1–89
c© 2005 V. Lepetit and P. Fua

Monocular Model-Based 3D Tracking of
Rigid Objects: A Survey

Vincent Lepetit1 and Pascal Fua2

1 Computer Vision Laboratory, CH-1015 Lausanne, Switzerland,
Vincent.Lepetit@epfl.ch

2 Computer Vision Laboratory, CH-1015 Lausanne, Switzerland,
Pascal.Fua@epfl.ch

Abstract

Many applications require tracking of complex 3D objects. These
include visual servoing of robotic arms on specific target objects, Aug-
mented Reality systems that require real-time registration of the object
to be augmented, and head tracking systems that sophisticated inter-
faces can use. Computer Vision offers solutions that are cheap, practical
and non-invasive.

This survey reviews the different techniques and approaches that
have been developed by industry and research. First, important math-
ematical tools are introduced: Camera representation, robust estima-
tion and uncertainty estimation. Then a comprehensive study is given
of the numerous approaches developed by the Augmented Reality and
Robotics communities, beginning with those that are based on point
or planar fiducial marks and moving on to those that avoid the need to
engineer the environment by relying on natural features such as edges,
texture or interest. Recent advances that avoid manual initialization
and failures due to fast motion are also presented. The survery con-
cludes with the different possible choices that should be made when



implementing a 3D tracking system and a discussion of the future of
vision-based 3D tracking.

Because it encompasses many computer vision techniques from low-
level vision to 3D geometry and includes a comprehensive study of the
massive literature on the subject, this survey should be the handbook
of the student, the researcher, or the engineer who wants to implement
a 3D tracking system.



1
Introduction

Tracking an object in a video sequence means continuously identifying
its location when either the object or the camera are moving. There are
a variety of approaches, depending on the type of object, the degrees
of freedom of the object and the camera, and the target application.

2D tracking typically aims at following the image projection of
objects or parts of objects whose 3D displacement results in a motion
that can be modeled as a 2D transformation. An adaptive model is then
required to handle appearance changes due to perspective effects or to
deformation. It can provide the object’s image position in terms of its
centroid and scale or of an affine transformation [141, 26, 62]. Alter-
natively, more sophisticated models such as splines [16], deformable
templates [142], 2D deformable meshes [112], or 2D articulated mod-
els [20] can be used. However, none of these methods involves recovering
the actual position in space.

By contrast, 3D tracking aims at continuously recovering all six
degrees of freedom that define the camera position and orientation
relative to the scene, or, equivalently, the 3D displacement of an object
relative to the camera.
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2 Introduction

1.1 Focus and Organization of the Survey

The 3D tracking literature is particularly massive both because there
are almost as many approaches as target applications and because many
different approaches to solving the same problem are possible. Here we
focus on online model-based 3D tracking using a single camera. We
will describe both marker-based techniques and marker-less natural
features-based approaches for camera, scene, and object 3D tracking.

In particular, we will not consider batch methods to camera trajec-
tory recovery: Because these methods can consider image sequence as a
whole, they can rely on non-causal strategies that are not appropriate
for online camera tracking. Furthermore, an excellent reference text
for this topic already exists [54]. We will restrict ourselves to single-
camera approaches because multi-camera systems require calibration
of the stereo-rig and are therefore less popular. We will consider only
rigid objects or scenes, as opposed to deformable [25, 89] or articulated
objects such as human bodies [43, 121] that would take us too far afield.

We will first introduce the key mathematical tools required for 3D
tracking. We will then present marker-based techniques that use either
point fiducials or planar markers to ease the tracking task. Next we will
focus on techniques that rely on natural features. Finally, we will discuss
recent advances that seek to increase tracking robustness to disappear-
ance and reappearance of the target object by replacing frame-to-frame
tracking by detection in each frame individually.

1.2 Different Approaches for Different Applications

3D tracking is a very useful tool in many different fields, and we briefly
review some of them below.

1.2.1 Augmented Reality Applications

Many potential Augmented Reality (AR) applications have been
explored, such as medical visualization, maintenance and repair, anno-
tation, entertainment, aircraft navigation and targeting. They all
involve superposing computer generated images on real scenes, which
must be done at frame-rate in online systems. 3D real-time tracking is
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therefore a critical component of most AR applications. The objects in
the real and virtual worlds must be properly aligned with respect to
each other, and the system latency should also be low, lest the illusion
that the two worlds coexist be compromised.

1.2.2 Visual Servoing

Visual servoing involves the use of one or more cameras and a Computer
Vision system to control the position of a device such as a robotic
arm relative to a part it has to manipulate, which requires detecting,
tracking, servoing, and grasping. It therefore spans computer vision,
robotics, kinematics, dynamics, control and real-time systems, and is
used in a rich variety of applications such as lane tracking for cars,
navigation for mobile platforms, and generic object manipulation.

The tracking information is required to measure the error between
the current location of the robot and its reference or desired location
from eye-in-hand cameras. As a consequence, the tracking algorithm
must be robust, accurate, fast, and general.

1.2.3 Man–Machine Interfaces

3D tracking can be integrated into man–machine interfaces. For exam-
ple, it could be used to continuously update the position of a hand-held
object, which would then serve as a 3D pointer. This object would then
become an instance of what is known as a Tangible Interface. Such inter-
faces aim at replacing traditional ones by allowing users to express their
wishes by manipulating familiar objects and, thus, to take advantage
of their everyday experience.

Eventually, this is expected to lead to more natural and intuitive
interfaces. In this context, vision-based tracking is the appropriate tech-
nique for seamless interaction with physical objects.

1.3 Computer Vision-Based 3D Tracking

Many other technologies besides vision have been tried to achieve 3D
tracking, but they all have their weaknesses: Mechanical trackers are
accurate enough, although they tether the user to a limited working
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volume. Magnetic trackers are vulnerable to distortions by metal in
the environment, which are a common occurrence, and also limit the
range of displacements. Ultrasonic trackers suffer from noise and tend
to be inaccurate at long ranges because of variations in the ambient
temperature. Inertial trackers drift with time.

By contrast, vision has the potential to yield non-invasive, accurate
and low-cost solutions to this problem, provided that one is willing to
invest the effort required to develop sufficiently robust algorithms. In
some cases, it is acceptable to add fiducials, such as LEDs or special
markers, to the scene or target object to ease the registration task, as
will be discussed in Section 3. Of course, this assumes that one or more
fiducials are visible at all times. Otherwise, the registration falls apart.
Moreover, it is not always possible to place fiducials. For example,
Augmented Reality end-users do not like them because they are visible
in the scene and it is not always possible to modify the environment
before the application has to run.

It is therefore much more desirable to rely on naturally present fea-
tures, such as edges, corners, or texture. Of course, this makes tracking
far more difficult: Finding and following feature points or edges can be
difficult because there are too few of them on many typical objects.
Total, or even partial occlusion of the tracked objects typically results
in tracking failure. The camera can easily move too fast so that the
images are motion blurred; the lighting during a shot can change sig-
nificantly; reflections and specularities may confuse the tracker. Even
more importantly, an object may drastically change its aspect very
quickly due to displacement. For example this happens when a cam-
era films a building and goes around the corner, causing one wall to
disappear and a new one to appear. In such cases, the features to be
followed always change and the tracker must deal with features coming
in and out of the picture. Sections 4 and 5 focus on solutions to these
difficult problems.



2
Mathematical Tools

This section introduces the mathematical tools commonly used for 3D
tracking purposes. They are described in similar terms in many papers
and we felt it more effective to present them all here. We begin with
camera representation and pose parameterization. In particular, cam-
era orientation can be formulated as a rotation in 3D space and we
discuss its many possible representations. We then turn to the numer-
ical optimization techniques required to estimate the pose from image
data and discuss ways to increase their robustness when the data is
noisy. Finally, we introduce filtering tools that enforce motion models
and let us combine mutiple cues and estimate probability distributions
over the space of poses.

2.1 Camera Representation

Here we focus on the standard pinhole camera model, including poten-
tial deviations from it, which is appropriate for most cameras cur-
rently used for tracking purposes. Note, however, that new camera
designs, such as the so-called omnidirectional cameras that rely on
hyperbolic or parabolic mirrors to achieve very wide field of views,
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6 Mathematical Tools

are becoming increasingly popular. The complete treatment of such
cameras is beyond the scope of this survey. Nevertheless, they are
amenable to mathematical treatment very similar to the one presented
below [46, 126].

2.1.1 The Perspective Projection Model

Photogrammetrists have extensively researched the estimation of cam-
era poses and more generally camera parameters from images well
before Computer Vision scientists. In this survey, we focus on com-
bining such estimation techniques with automated extraction of image
features for 3D tracking rather than estimation itself. We therefore pro-
vide here only what must be undestood to carry out this integration.
For additional details about camera models and an in-depth study of
the numerical and geometric properties of camera calibration, we refer
the interested reader to the photogrammetric texts [48, 88].

Mathematically, image formation can be defined as the projection
from the 3D space to the image plane depicted by Figure 2.1. The
coordinates of a 3D point M = [X, Y, Z]T expressed in a Euclidean
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Fig. 2.1 The perspective projection model. (O,�i,�j,�k) is the world coordinate system,
(C, �ic, �jc, �kc) is the camera coordinate system, M is a 3D point, and m is its projection
onto the image plane.
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world coordinate system and the corresponding 2D point m = [u, v]T

in the image are related by the equation

sm̃ = PM̃, (2.1)

where s is a scale factor, m̃ = [u, v, 1]T and M̃ = [X, Y, Z, 1]T are
the homogeneous coordinates of points m and M, and P is a 3 ×4
projection matrix. P is defined up to a scale factor, and thus depends
on 11 parameters. It is usually taken to be a perspective projection
matrix because it realistically describes the behavior of a reasonably
good quality camera, while remaining relatively simple. Such perspec-
tive projection matrix can be decomposed as:

P = K [R | t]
where:

• K is the 3×3 camera calibration matrix that depends of the
internal parameters of the camera such as the focal length;

• [R | t] is the 3×4 external parameters matrix, and corre-
sponds to the Euclidean transformation from a world coordi-
nate system to the camera coordinate system: R represents
a 3×3 rotation matrix, and t a translation. We describe both
in more detail below.

2.1.2 The Camera Calibration Matrix

The K camera calibration matrix contains the intrinsic camera param-
eters, also called internal parameters. We write

K =


 αu s u0

0 αv v0

0 0 1


, (2.2)

where

• αu and αv are respectively the scale factor in the u- and
v- coordinate directions. They are proportional to the focal
length f of the camera: αu = kuf and αv = kvf , where ku

and kv are the number of pixels per unit distance in the u

and v directions;
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• c = [u0, v0]T represents the image coordinates of the inter-
section of the optical axis and the image plane, also called
the principal point;

• s, referred as the skew, is non-zero only if the u and v direc-
tions are not perpendicular, which is exceedingly rare in mod-
ern cameras.

Taking the principal point c to be at the image center often is a very
reasonable approximation. Similarly, if the pixels are assumed to be
square, αu and αv can be taken to be equal. From now on, a camera
will be said to be calibrated when its internal parameters are known.

2.1.3 The External Parameters Matrix

The 3×4 external parameters [R | t] matrix defines the orientation and
the position of the camera. It is formed of a R rotation matrix and a
t translation vector and we will often refer to it as the camera pose.
Tracking applications usually assume that the K calibration matrix is
known and focus on estimating R and t, or, equivalently, the target
object’s position and orientation with respect to the camera.

More formally, it corresponds to the Euclidean transformation from
a world coordinate system to the camera coordinate system: A 3D point
represented by the vector Mw in the world coordinate system will be
represented by the vector Mc = RMw + t in the camera coordinate
system. From this relation, we can easily recover the expression of the
camera center, or optical center C in the world coordinate system. It
must satisfy 0 = RC + t, which implies C = −R−1t = −RT t.

2.1.4 Estimating the Camera Calibration Matrix

In most 3D tracking methods, the internal parameters are assumed
to be fixed and known, which means that the camera cannot zoom,
because it is difficult to distinguish a change in focal length from a
translation along the camera Z-axis. These parameters can be esti-
mated during an offline camera calibration stage, from the images
themselves. A discussion of camera calibration techniques is beyond
the scope of this survey. Let us simply say that classical calibration
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Fig. 2.2 A 3D calibration grid used for the estimation of the camera calibration matrix.

methods make use of a calibration pattern of known size inside the
field of view. Sometimes it is a 3D calibration grid on which regular
patterns are painted [133, 37], such as the black disks of Figure 2.2.

In this example, the 3D coordinates of the corners of the white
squares with respect to the grid’s upper left corner are exactly known.
It is relatively easy to find those corners in the image and, from the
correspondence between the 3D points and the 2D image points, to
compute projection matrix parameters.

[144, 124] simultaneously introduced similar calibration methods
that rely on a simple planar grid seen from several positions. They are
more flexible since the pattern can be simply printed, attached to a
planar object, and moved in front of the camera. A Windows-based
tool can be found at [143], and another implementation is provided
in [60].

2.1.5 Handling Lens Distortion

The perspective projection model is not always sufficient to represent
all the aspects of the image formation since it does not take into account
the possible distortion from the camera lens, which may be non negligi-
ble, especially for wide angle cameras. Fortunately, the lens distortion
can be modeled as a 2D deformation of the image. As shown in Fig-
ure 2.3, given an estimate of the distortion parameters, the distortion
effect can be efficiently removed from the image captured by the cam-
era at run-time using a look-up table, and the perspective projection
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(a) (b)

Fig. 2.3 Undistorting an image. (a) Due to perspective distortion, projections of straight
lines are curved. (b) In the undistorted image, the projections of straight lines are now
straight.

model can then be applied. Among other things, this allows the use of
wide angle cameras for tracking purposes, which can be beneficial since
they make it easier to keep target objects within the field of view.

A common representation of the distortion parameters is as follow.
Let ŭ = [ŭ, v̆]T be the observed, distorted pixel image coordinates,
and x̆ = [x̆, y̆]T the corresponding normalized coordinates such that
ŭ = u0 + αux̆ and v̆ = v0 + αuy̆, where u0, v0, αu, and αv are the
intrinsic parameters of Equation (2.2). Let u = (u, v) and x = (x, y)
be the corresponding undistorted values. The distortion is expressed as
the sum of two components such that x̆ = x + dxradial + dxtangential.
The radial distortion that can be approximated as

dxradial = (1 + k1r
2 + k2r

4 + · · · )x,

where r = ‖x‖ =
√

x2 + y2. The tangential distortion dxtangential has
much less influence. It can be expressed as

dxtangential =
[

2p1xy + p2(r2 + 2x2)
p1(r2 + 2y2) + 2p2xy

]
,

but is usually ignored.
The software package of [60] allows the estimation of the distortion

parameters using a method derived from [55]. This is a convenient
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method for desktop systems. For larger workspaces, plumb line based
methods [17, 42] are common in photogrammetry. Without distortion,
the image of a straight line will be a straight line, and reciprocally the
distortion parameters can be estimated from images of straight lines by
measuring their deviations from straightness. This is a very practical
method in man-made environments where straight lines, such as those
found at building corners, are common.

2.2 Camera Pose Parameterization

For estimation and numerical optimization purposes, the camera pose
must be appropriately parameterized. While representing translations
poses no problem, parameterizing rotation in R

3 is more difficult to do
well.

It is well known that a rotation in R
3 has only three degrees of

freedom, and it would be awkward to directly use the nine elements of
the 3×3 rotation matrix that represents it as parameters. Six additional
non-linear constraints – three to force all three columns to be of unit
length, and three to keep them mutually orthogonal – would have be
added to ensure that the matrix is orthonormal.

We now briefly review the different parameterizations that have
proved to be effective for 3D tracking: Euler angles, quaternions, and
exponential maps. All three parameter representations have singular-
ities, but these can be avoided by locally reparametrizing the rota-
tion. Nevertheless, we will argue that, in general, the last one has the
best properties for our purposes. However, if one restricts oneself to
small rotations, they are all equivalent because they yield the same
first order approximation. A more thorough comparison can be found
in [47].

2.2.1 Euler Angles

A rotation matrix R can always be written as the product of three
matrices representing rotations around the X, Y, and Z axes. There are
several conventions on the order in which these rotations are carried
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out. For example, taking α, β, γ to be rotation angles around the Z,
Y, and X axis respectively yields

R =


 cos α −sin α 0

sin α cos α 0
0 0 1




 cos β 0 sin β

0 1 0
−sin β 0 cos β




 1 0 0

0 cos γ −sin γ

0 sin γ cos γ


.

The inverse operation, extracting the Euler angles for a given rotation
matrix can be easily performed by identifying the matrix coefficients
and their analytical expression.

Even though Euler angles can do a creditable job for a large range
of camera orientations, they have a well known drawback: When two
of the three rotations axes align, one rotation has no effect. This
problem is known as gimbal lock, and this singularity can result in
ill-conditioned optimization problems. The representations discussed
below are designed to avoid this problem.

2.2.2 Quaternions

A rotation in the 3D space can also be represented by a unit quater-
nion [45]. Quaternions are hyper-complex numbers that can be written
as the linear combination a + bi + cj + dk, with i2 = j2 = k2 = ijk =
−1. They can also be interpreted as a scalar plus a 3-vector (a,v). A
rotation about the unit vector �ω by an angle θ is represented by the
unit quaternion

q =
(

cos
(

1
2
θ

)
, �ω sin

(
1
2
θ

))
.

To rotate a 3D point M, we write it as a quaternion p = (0,M) and
take the rotated point p′ to be

p′ = q · p · q̄,

where · is the quaternion multiplication operator and q̄ =(
cos
(1

2θ
)
,−�ω sin

(1
2θ
))

is the conjugate of q.
This representation avoids gimbal lock but estimation techniques

must constrain the norm of q to remain equal to one. If q is estimated
using numerical optimization techniques, this can be done by either
adding the quadratic term k(1−‖q‖2) to the objective function, where
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k is a sufficiently large weight, or using a constrained optimization
approach. This tends to increase the algorithmic complexity and is
therefore not desirable in general. We now turn to the exponential-map
representation that avoids both gimbal lock and additional constraints.

2.2.3 Exponential Map

Unlike the quaternion representation, the exponential map requires
only three parameters to describe a rotation. It does not suffer from
the gimbal lock problem and its singularities occur in a region of the
parameter space that can easily be avoided.

Let �ω = [ωx, ωy, ωz]T be a 3D vector and θ = ‖�ω‖ be its norm. An
angular rotation θ around an axis of direction �ω can be represented as
the infinite series

exp(Ω) = I + Ω +
1
2!

Ω2 +
1
3!

Ω3 + · · · (2.3)

where Ω is the skew-symmetric matrix

Ω =


 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


. (2.4)

This is the exponential map representation, which owes its name to
the fact that the series of Equation (2.3) is of the same form as the
series expansion of an exponential. It can be evaluated using Rodrigues’
formula

R(Ω) = exp(Ω) = I + sin θΩ̂ + (1 − cos θ)Ω̂2, (2.5)

where Ω̂ is the skew-symmetric matrix corresponding to the unit vector
�ω

‖�ω‖ . At first sight, this formulation may seem to be singular when θ =
‖�ω‖ goes to zero. However, this is not the case because Equation (2.5)
can be rewritten as

R(Ω) = exp(Ω) = I +
sin θ

θ
Ω +

(1 − cos θ)
θ2 Ω2, (2.6)

which is not singular for small values of θ as can be seen by replacing
sin θ

θ and (1−cos θ)
θ2 by the first two terms of their Taylor expansions.

This representation does have singularities that manifest themselves
when ‖�ω‖ = 2nπ with n ≥ 1. In these cases, there is effectively no
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rotation at all, no matter what the direction of �ω. However, in practice,
they can be easily avoided as follows. When ‖�ω‖ becomes too close
to 2π, for example larger than π, �ω can be replaced by (1 − 2π

‖�ω‖)�ω,
which represents the same rotation while having a norm smaller than
π. Indeed, a rotation of θ radians about �v is equivalent to the rotation
of 2π − θ radians about −�v.

In short, the exponential map represents a rotation as a 3-vector
that gives its axis and magnitude. It avoids the gimbal lock problem of
Euler angles and does not require an additional constraint to preserve
the norm of a quaternion. It is therefore a very appropriate formulation
and the rotation matrix corresponding to the vector can be computed
according to Equation (2.6).

2.2.4 Linearization of Small Rotations

In 3D tracking applications, the camera motion between consecutive
frames can often be assumed to remain small, along with the corre-
sponding rotation angles. In such cases, it is appropriate to use a first
order approximation of the rotation, which linearizes the pose estima-
tion problem and simplifies the computations.

Let M′ be the position of 3D point M after a rotation R about the
origin by a small angle. All the formulations discussed above yield to
the same first order approximation

M′ =RM
≈ (I + Ω)M
=M + ΩM,

(2.7)

where the matrix Ω is the skew-symmetric matrix of Equation (2.4).

2.3 Estimating the External Parameters Matrix

Continuously estimating the external parameters matrix from a video
flux is considerably facilitated by a strong prior on the camera position
given by the previously estimated camera positions, and this will be
discussed in the next sections. Nevertheless, we present here several
approaches to estimating these parameters without any prior knowledge
of camera position but given some correspondences between 3D points
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in the world coordinate system and their projections in the image plane.
It is both a good introduction to other tracking approaches and useful
in practice to initialize tracking algorithms. Estimating the external
parameters when the internal parameters are known is often referred
to as the pose estimation problem.

We assume here that we are given n correspondences between 3D
points Mi, and their projections mi. We are looking for the perspective
projection matrix P that projects the points Mi on mi. In other words,
we want to achieve for i PM̃i ≡ m̃i for all i, where ≡ denotes the
equality up to a scale factor.

2.3.1 How Many Correspondences are Necessary?

When the internal parameters are known, n = 3 known correspon-
dences Mi ↔ mi produce 4 possible solutions. When n = 4 or n = 5
correspondences are known, [38] shows there are at least two solutions
in general configurations, but when the points are coplanar and there
is no triplets of collinear points, the solution is unique for n ≥ 4. For
n ≥ 6, the solution is unique.

2.3.2 The Direct Linear Transformation (DLT)

The Direct Linear Transformation was first developed by photogram-
metrists [125] and then introduced in the computer vision commu-
nity [37, 54]. It can be used to estimate the whole matrix P of Equa-
tion (2.1) by solving a linear system even when the internal parameters
are not known. Each correspondence Mi ↔ mi gives rise to two linearly
independent equations in the entries Pij of P, that is

P11Xi + P12Yi + P13Zi + P14

P31Xi + P32Yi + P33Zi + P34
= ui,

P21Xi + P22Yi + P23Zi + P24

P31Xi + P32Yi + P33Zi + P34
= vi.

These equations can be rewritten in the form Ap = 0, where p is a vec-
tor made of the coefficients Pij . The obvious solution p = 0 is of course
of no interest and the correct solution can be found from the Singular
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Value Decomposition (SVD) of A as the eigen vector corresponding to
the minimal eigen value.

The internal and external parameters can then be extracted from
P [37, 54], but it would be dangerous to apply this approach for 3D
tracking. In practice, the advisability of simultaneously estimating both
internal and external parameters strongly depends on the geometry
and the number of correspondences. In favorable configurations, 15
to 20 correspondences may suffice whereas, in unfavorable ones, even
hundreds may not be enough. In such situations, it is always preferable
to estimate the internal parameters separately. More specifically, for 3D
tracking, using a calibrated camera and estimating only its orientation
and position [R | t] yields far more reliable results.

Once the camera calibration matrix K is known, the external
parameters matrix can be extracted from P up to a scale factor as
[R | t] � K−1P. The 3×3 matrix made of the first three columns of
this matrix is not necessarily a rotation matrix, but a correction can
easily be made [144].

In real conditions, pixel locations mi are usually noisy. Because
the actual error minimized by the DLT algorithm is an algebraic error
as opposed to a meaningful physical quantity, the camera parameters
estimated by this method should be refined by iterative optimization of
the non-linear reprojection error. This will be discussed Subsection 2.4.

2.3.3 The Perspective-n-Point (PnP) Problem

The DLT method aims at estimating all 11 parameters of the projection
matrix. It might also be applied to pose estimation, but it relies on
an over-parameterization if the internal parameters are known. This
results in reduced stability and requires more point correspondences
than absolutely necessary. When the internal parameters have been
estimated separately, a more satisfactory approach is to explicitly use
this knowledge.

The 3 point pose problem, that is the estimation of the camera
pose from 3 point correspondences also known as the perspective-3-
point problem (P3P) has up to 4 real solutions in most cases. For 4 of
more points, the solution is in general unique whether or not they are
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coplanar, as long as they are not aligned. However in unfavorable cases
there can be infinitely many solutions no matter how many points are
supplied. Most notably, when there is a twisted cubic space curve of the
particular type that can be inscribed on a circular cylinder, and which
contains all of the points and the camera center, there are infinitely
many solutions: There is one for each point along the twisted cubic
and additional points on the cubic do not reduce the ambiguity. Some
algorithms, notably linearized ones, fail for points lying on a cylinder,
known to photogrammetrists as the dangerous surface, even if they fail
to lie on a twisted cubic. The cubic can also degenerate to a circle
attached orthogonally to a line, which can happen when the camera is
directly above one corner of a square of points on a calibration grid.
Wrobel’s paper [48] lists the singular cases. In practice, one must also be
aware that pose solutions can become unreliable even when the camera
is quite far from these limiting cases.

Different approaches to the P3P problem have been proposed within
the Computer Vision community [38, 51, 104]. They usually attempt to
first estimate the distances xi = ‖CMi‖ between the camera center C
and the 3D points Mi, from constraints given by the triangles CMiMj .
Once the xi are known, the Mi are expressed in the camera frame as
Mc

i. Then, [R | t] is taken to be the displacement that aligns the
points Mi on the Mc

i and can be found in closed-form solution using
quaternions [57] or singular value decomposition (SVD) [4, 58]. Solving
for the xi requires finding the roots of a fourth degree polynomial.

To remove the ambiguity, one additional correspondence is needed.
A simple approach is to solve the P3P problem for subsets of three of
the four points, and retain the common solution.

POSIT [31] is another popular way to solve the pose estimation
problem for n ≥ 4. It involves first computing an approximate solu-
tion assuming a scaled orthographic projection for the camera model,
which means that an initial estimation of the camera position and ori-
entation can be found by solving a linear system. A weight is assigned
to each point based on the estimated pose and applied to its coordi-
nates. A new projection is estimated from these scaled coordinates, and
the process is iterated until convergence. This method is very simple
to implement [60], but is relatively sensitive to noise. In addition, it
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cannot be applied when the points are coplanar. [101] provides a sim-
ilar approach for the planar case, but the two cases – coplanar and
non-coplanar points – have to be explicitly distinguished.

[104] gives a quasi-linear algorithm for the case n ≥ 5, which involves
solving a linear system of the form AX = 0 where X is a vector made
the first powers of the distance ‖CM‖ between the camera center C
and one of the 3D points M, and A is made of the coefficients of fourth
degrees polynomials. This approach does not degenerate in the coplanar
case.

2.3.4 Pose Estimation from a 3D Plane

The camera pose can also be estimated from a planar structure when
the internal parameters are known. This property has often been used in
3D tracking because the projections of planar structures are relatively
easy to recover in images.

The relation between a 3D plane and its image projection can
be represented by a homogeneous 3 ×3 matrix, called a homography
matrix. Let us consider the Z = 0 plane. The expression of the homog-
raphy H that maps a point M = (X, Y, 0)T on to this plane and its cor-
responding 2D point m under the perspective projection P = K [R | t]
can be recovered by writing

m̃=PM̃

=K
(
R1 R2 R3 t

)



X

Y

0
1




=K
(
R1 R2 t

) X

Y

1




=H


 X

Y

1


,

(2.8)

where R1, R2 and R3 respectively are the first, second and third col-
umn of the rotation matrix R.
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Conversely, once H and K are known, the camera pose can be
recovered. The matrix H can be estimated from four correspondences
Mi ↔ mi using a DLT algorithm similar to the one introduced Subsec-
tion 2.3.2 to estimate projection matrices. Since Ht

w = K
(
R1 R2 t

)
,

the translation vector t and the first two columns of the rotation matrix
R of the camera pose can be retrieved from the product K−1Ht

w. The
last column R3 is given by the cross-product R1×R2 since the columns
of R must be orthonormal. As before, the camera pose can then be
refined by non-linear minimization as described below.

2.3.5 Non-Linear Reprojection Error

The strength of the previous methods is that they do not require ini-
tial estimates and are fast. However they are sensitive to noise and,
therefore, lack precision. In particular, the DLT algorithm provides a
solution that minimizes an algebraic error, while it is better to con-
sider instead a geometric error. For PnP algorithms, it is not clear
which error is actually minimized.

If the measurements mi are noisy, the camera pose should then be
refined by minimizing the sum of the reprojection errors, that is the
squared distance between the projection of the 3D points and their
measured 2D coordinates. We can therefore write

[R | t] = arg min
[R|t]

∑
i

dist2(PM̃i,mi), (2.9)

which is optimal assuming that the measurement errors are indepen-
dent and Gaussian. This minimization cannot be solved in closed form,
but requires an iterative optimization scheme. As will be discussed in
the next subsection, such a scheme usually requires an initial cam-
era pose estimate, which can be provided by the previously described
methods or, in tracking conditions, by a motion model applied on the
previously estimated pose.

2.4 Least-Squares Minimization Techniques

Most 3D tracking algorithms estimate the camera pose as the solu-
tion of a least-squares minimization problem similar to the one of
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Equation (2.9). More generally, this can be written as finding the pose
that minimizes a sum of residual errors ri, that is

p = arg min
p

∑
i

r2
i . (2.10)

It can also be written in a matrix form as

p = arg min
p

‖f(p) − b‖2,

where p is a vector of parameters that defines the camera pose, as
discussed in Subsection 2.2, b is a vector made of measurements, and f

is some function that relates the camera pose to these measurements.
The linear least-squares is well-known. In the non-linear case,

because objective functions are expressed as sums of squares and there
are few parameters, the Newton-based methods are well-adapted.

2.4.1 Linear Least-Squares

In some cases, the function f is linear, that is the camera pose parame-
ters p can be written as the unknowns of a set of linear equations that
can be written in matrix form as Ap = b. Usually the size of vector b
is larger than the number of parameters in p, and p can be estimated
as p = A+b, where

A+ = (ATA)−1AT

is the pseudo-inverse of A.
Here, the measurements all have the same influence, but one may

want to attribute a different weight to each measurement, for example
according to its quality. Then, the problem becomes a Weighted Least-
Squares, and can be solved as

p = (ATWA)−1ATWb,

where W is a weight matrix, usually taken to be diagonal.
In the Iterative Re-weighted Least-Squares, the estimation is iter-

ated, and the coefficients of matrix W are re-estimated at each iteration
according to the residuals. As will be seen below Subsection 2.5, this
allows robust estimation, even in presence of spurious measurements.
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2.4.2 Newton-Based Minimization Algorithms

When the function f is not linear, which is often the case because
of the non-linear behavior of perspective projection, one may use the
Gauss-Newton or the Levenberg-Marquardt algorithms. We give here
a description of these algorithms, but an in-depth discussion can be
found in [132]. Both algorithms start from an initial estimate p0 of the
minimum and update it iteratively:

pi+1 = pi + ∆i,

where the step ∆i is computed differently depending on the specific
method being used. In the Gauss-Newton algorithm, ∆i is chosen to
minimize the residual at iteration i+1, and estimated by approximating
f to the first order. Writing f(pi + ∆) ≈ f(pi) + J∆i, where J is the
Jacobian matrix of f computed at pi leads to solving

∆i = arg min
∆

‖f(pi + ∆) − b‖
= arg min

∆
‖f(pi) + J∆ − b‖

= arg min
∆

‖εi + J∆‖
= −J+εi

(2.11)

where εi = f(pi) − b denotes the residual at iteration i, and J+ is the
pseudo-inverse of J. We can therefore write

∆i = −(JTJ)−1JT εi. (2.12)

In the Levenberg-Marquardt (LM) algorithm, ∆i is computed in a
slightly different way and it is taken to be

∆i = −(JTJ + λI)−1JT εi. (2.13)

The additional term λI stabilizes the behavior of the Gauss-Newton
algorithm: If the value of ∆i obtained with the previous equation leads
to a reduction in the error, then this increment is accepted, and the
value of λ is reduced. If not, the value of λ is raised instead, and a new
∆i is computed. This process is iterated until a value of ∆i is found
that decreases the objective function. The algorithm stops when no
such value can be found. When λ is small, the LM algorithm behaves
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similarly to the Gauss-Newton algorithm. When λ becomes large, it
starts behaving more like a conventional steepest gradient descent to
guarantee convergence.

Both algorithms involve the computation of the Jacobian matrix
of the function to minimize. This can be carried out by a numerical
differentiation, but whenever possible, it is preferable both for speed
and convergence to use an analytical expression for the derivatives.

A more sophisticated alternative would be to use a full Newton
method [132], which relies on a second order approximation. For small
problems, this sometimes yields better results. However, for larger ones,
the improvement is rarely worth the increase in both algorithmic and
computational complexity.

Of course, there is no guarantee that a numerical optimization will
converge to the actual solution as it can get trapped in a spurious
local minimum. That is why it should be initialized with as “good” an
estimate as possible which can be expected to be close to the global
minimum.

2.5 Robust Estimation

Robust estimation is usually indispensable in 3D tracking to counter the
influence of spurious data. For example, if the camera pose is directly
estimated using Equation (2.9) from a set of correspondences Mi ↔ mi

that contains even a single gross error, the recovered pose may be far
away the actual pose. RANSAC and the M-estimators are two popular
techniques to avoid this.

These two methods are complementary. The M-estimators are good
at finding accurate solutions but require an initial estimate to con-
verge correctly. RANSAC does not require such an initial estimate, but
provides a solution that does not take into account all the available
data, and thus lacks precision. Therefore, when an initial estimate is
available, one should use M-estimators. Otherwise, RANSAC can be
used to provide the required estimate, which can then be refined using
M-estimators.
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2.5.1 M-Estimators

It is well known that least-squares estimation can also be seen as the
maximization of the log-likelihood under the assumption that the obser-
vations are independent and have a Gaussian distribution. Because this
distribution does not account for potential outliers, the least-squares
formulation is very sensitive to gross errors. More realistic error models
have been introduced by statisticians [59], and this leads to the follow-
ing reformulation of the objective functions. Instead of minimizing∑

i

r2
i ,

where ri are residual errors as in Equation (2.10), one can minimize its
robust version ∑

i

ρ(ri), (2.14)

where ρ is an M-estimator that reduce the influence of outliers. Many
such functions have been proposed. Two of the most popular ones are
depicted by Figure 2.4. They are the

• Huber estimator

ρHub(x) =
{

x2/2 if |x| ≤ c

c(|x| − c/2) otherwise.
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Fig. 2.4 Examples of robust estimators. Left: Graph of the Huber estimator for c = 1; Right:
Graph of the Tukey estimator for c = 3. On both graphs, the graph of the least-squares
estimator x2

2 is also drawn in dash line for comparison.
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• Tukey estimator

ρTuk(x) =




c2

6

[
1 −

(
1 − (x

c

)2)3
]

if |x| ≤ c

c2/6 otherwise.

Both of these functions behave like the ordinary least-squares estimator
x2

2 when x is small. When ‖x‖ is larger than c, the Huber estimator
becomes linear to reduce the influence of large residual errors, while
the Tukey estimator becomes flat so that large residual errors have
no influence at all. Since the Huber estimator is convex, it makes the
convergence to a global minimum more reliable. On the other hand, the
Tukey estimator can be preferred to remove the influence of outliers
when the minimization can be initialized close enough to the actual
minimum.

The threshold c is usually taken to be proportional to the measured
standard deviation of the residual errors for inlier data.

The Gauss-Newton and Levenberg-Marquardt algorithms can still
be applied to minimize the sum (2.14) of residual errors after the intro-
duction of M-estimators, even if the M-estimators can be complex func-
tions. This is simply done by weighting the residuals ri at each iteration
step: Each ri is replaced by r′

i = wiri such that:

(r′
i)

2 = w2
i r

2
i = ρ(ri),

therefore the weight wi should be chosen as:

wi =
ρ(ri)1/2

ri
.

In the re-weighted least-squares estimation scheme, the matrix W can
then be taken as W = diag(...wi...). In the case of the Levenberg-
Marquardt algorithm, ∆i can be computed as be changed as:

∆i = −(JTWJ + λI)−1JTWεi.

In-depth details on using Gauss-Newton with robust cost functions can
be found in Sections 10 and 11 of [132].
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2.5.2 RANSAC

Even though it is a general method for robust estimation, RANSAC [38]
has actually been developed in the context of camera pose estimation.
It is very simple to implement, and has the advantage not to require an
initial guess of the parameters to be estimated. On the other hand, it is
usually slower than the minimization using M-estimators. By itself, it
is also less accurate but can be followed by such minimization to refine
the solution.

From the set of available data, RANSAC randomly extracts
the smallest possible subsets required to generate model parameter
hypotheses. This maximizes the odds that at least one subset will con-
tain no gross errors and therefore produce a valid hypothesis. For exam-
ple, the original RANSAC article uses a P3P algorithm to compute
camera poses from randomly selected triplets of correspondences. For
each pose, the number of 3D points that are reprojected close enough to
their corresponding 2D points are treated as inliers. RANSAC retains
the pose that gives rise to the largest number of inliers.

More formally, we want to estimate the parameters p of a model
from a set S of measurements, some of them being erroneous. Assum-
ing that the model parameters require a minimum of n measurements
to be computed, N samples of n data points are randomly selected.
Each sample is used to estimate model parameters pi and to find the
subset Si ⊆ S of points that are consistent with the estimate. The one
that gives rise to the largest Si is retained and refined by least-squares
minimization using all the points in Si. Alternatively, and even more
effectively, one can perform a robust least-squares minimization using
all the points in S, and use the estimate discussed above to initialize
it: This allows to use inliers that may have initially been labeled as
outliers.

Several parameters are involved in RANSAC. The error tolerance
that is used to decide if a data point is consistent with a parameter
estimate can be set as several times the standard deviations of the
measurement errors. [38] provides a formula for the number of trials
N : To ensure with a probability p that at least one of the sample is
free from gross errors, N should be larger than log(1− p)/ log(1−wn),
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where w is the proportion of inlier data points. This value increases
with the size of the subsets, and the outlier rate, but it is easy to see
that it remains surprisingly small for reasonable values of p, w, and n.

2.6 Bayesian Tracking

Tracking algorithms, either explicitely or implicitely, aim at estimating
the density of successive states st in the space of possible camera poses.
In addition to the rotation and translation parameters, the st state
vectors often include additional variables such as the translational and
angular velocities. The state density that we note pt(st) in the following
is conditioned on the image measurements zt performed up to time t i.e.
we have pt(st) = p(st | ztzt−1 · · · z0). The measurements zt depend on
image features, such as the image locations at time t of specific feature
points.

A common assumption is that the zt measurements are mutually
independent. Adding the natural assumption that the measurements
have no influence on the dynamics of the states, it can be shown [61]
that

pt(st) ∝ p(zt | st)p(st | zt−1 · · · z0). (2.15)

This gives us a propagation rule for the state density because it can be
proven that the term p(st | zt−1 · · · z0) only depends on the previous
density pt−1(st−1) and on the dynamics of the system [61]:

p(st | zt−1 · · · z0) =
∫
st−1

p(st | st−1)pt−1(st−1), (2.16)

where
∫
st−1

is the integration over the set of possible values for the pre-
vious state st−1. This term p(st | zt−1 · · · z0) can thus be interpreted as
a prediction on pt(st) made by applying the motion model on the pre-
vious density pt−1(st−1). This prediction is weighted in Equation (2.15)
by the term p(zt | st), which is the observation density, and allows for
taking into account the features observed in the incoming image.

Equation 2.15 is the equivalent of Bayes’ rule for the discrete-
time varying case. Therefore, formulating the problem in this generic
manner is often referred to as “Bayesian tracking.” In practice, many
tracking systems ignore the probability density function altogether and
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retain one single hypothesis for the camera pose, usually the maximum-
likelihood one. However the Bayesian formulation can be useful to
enforce temporal consistency, to provide error estimates, and to pre-
dict camera pose and feature locations in incoming frames. As we will
see below, it also allows the fusion of multiple image cues in a statisti-
cally well-grounded manner.

This has most often been done in one of two ways characterized
by the way the densities are represented. The first is Kalman filtering,
which has a long history in 3D tracking but only considers Gaussian
distributions. The other involves so-called Particle Filters. It allows for
more general distributions but, while having largely been used in other
tracking applications, it remains relatively marginal in the context of
3D tracking.

It should also be noted that, while the Bayesian formulation
described here allows for recursive estimation of the current state den-
sity, it critically depends on the state density for the previous frame.
This rescursive estimation is highly susceptible to error accumulation,
especially when dealing with long sequences. [106, 105] derive a more
general Bayesian framework to take into account not only one previous
frame but a whole set of previous frames, in particular those with poses
close to the current pose. [137] uses a similar idea but in a deterministic
way.

2.6.1 Kalman Filtering

Kalman filtering is a generic tool for recursively estimating the state of
a process and it has been often applied to 3D tracking. In fact, most of
the algorithms described in the next sections can be used in conjunction
with a Kalman filter. There are many extensive references to Kalman
filtering [18, 140], and we only introduce it here in its most basic form.
[45] is also a good reference dedicated to 3D tracking.

Linear Case The successive states st ∈ Rn of a discrete-time con-
trolled process are assumed to evolve according to a dynamics model
of the form

st = A st−1 + wt , (2.17)
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where matrix A is called the state transition matrix, and wt represents
the process noise, taken to be normally distributed with zero mean.
For tracking purposes, this relation is used to enforce a motion model,
and is directly related to the term p(st | st−1) of Equation (2.16). For
example, if the motion of the camera is assumed to have random, white
noise accelerations with zero mean, the state vectors will comprise the
6 parameters of the camera pose, plus the translational and angular
velocities.

The measurements zt, such as image location at time t of some
feature points, are assumed to be related to the state st by a linear
measurement model:

zt = C st + vt, (2.18)

where vt represents the measurement noise. This equation typically
relates the camera pose stored in st to the considered image features,
and corresponds to the term p(zt | st) in Equation (2.15). Note that, in
fact, this relation is often non-linear, especially when modeling the cam-
era as fully projective. As will be discussed in the next subsection, this
can be handled by a natural extension of the approach presented here.

At each time step, the Kalman filter makes a first estimate of the
current state called the a priori state estimate and that we denote
s−
t . It is then refined by incorporating the measurements to yield the

a posteriori estimate st. s−
t , as well as its covariance matrix S−

t , are
computed during a “time update” or prediction stage. Given knowledge
of the process prior to time t and using the dynamic model, we can write

s−
t =A st−1,

S−
t =ASt−1AT + Λw,

where St−1 is the a posteriori estimate error covariance for the previous
time step, and Λw is the process covariance noise that measures how
well the motion model is respected in reality. The above expression of
S−

t is derived from the classical propagation formula. Next, the Kalman
filter proceeds to a “measurement update” or correction. The a poste-
riori state estimate st and its covariance matrix St are now generated
by incorporating the measurements zt by writing

st = s−
t + Gt(zt − Cs−

t ),
St =S−

t − GtCS−
t ,
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where the Kalman gain Gt is computed as

Gt = S−
t CT

(
CS−

t CT + Λv
)−1

,

with Λv being the covariance matrix of the measurements.
In the context of 3D tracking, the a priori state estimate s−

t can
be used to predict the location of an image feature. The predicted
measurement vector z−

t is indeed simply

z−
t = Cs−

t .

The uncertainty on this prediction can be represented by the covariance
matrix Λz estimated by propagating the uncertainty, which gives us

Λz = CS−
t CT + Λv.

z−
t and Λz are useful to restrict the search for image features to a

region of the image, as will be discussed in Subsection 4.1.3 and Sub-
section 4.5.2.

Extended and Iterated Extended Kalman Filter In the previ-
ous subsection, we assumed that the relationship between the state and
the measurements was linear. As already noted, it is rarely the case in
3D tracking applications. The relationship should be expressed as

zt = c(st,vt),

where c is a non-linear function. The Extended Kalman Filter (EKF)
approximates this function c by its first order Taylor expansion, which
allows the use of the formalism introduced below. This yields the fol-
lowing update equations

Gt =S−
t CT (CS−

t CT + VΛvVT )−1,

st = s−
t + Gt

(
zt − c(s−

t , 0)
)
,

(2.19)

where C is now the Jacobian of c with respect to the state s computed
at s−

t . V is the Jacobian of c with respect to v and is often taken to be
the Identity matrix in practice. The last update equation evaluates St

with C computed at the updated state st, which is usually considered
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to be the best linearization point, giving self-consistent linearization
estimates:

St =S−
t − GtCS−

t , (2.20)

The Iterated Extended Kalman Filter (IEKF) involves iterating the
updates of Equations (2.19) several times. It can be seen as the Gauss-
Newton iterative method applied to the objective function the Kalman
filter aims to minimize, whereas the EKF corresponds to performing
only one Gauss-Newton step [70]. This reduces the inaccuracy resulting
from the linearization of the function c.

Limitations The Kalman filter is a powerful and popular tool to
combine noisy measurements from different image cues in a statistically
well-grounded way. It is also useful to stabilize the camera trajectory
using a motion model. However, this has a price. A simple motion
model, such as one that assumes constant velocity, is fully justified
in some applications such as visual servoing. But, as mentioned by
several authors [6, 107], for applications that involve human motion
that can be jerky, a low-order dynamical model is not very realistic.
For Augmented Reality applications, this may result in some “lag” of
the inserted virtual objects.

Another limitation comes from the fact that the measurements are
often assumed to be mutually independent. While this assumption is
not inherent to the Kalman filter formulation, it is difficult to avoid
in practice without greatly increasing the complexity of the computa-
tion. In reality, the measurements are rarely independent, for example
because they are projections in the image of points that all lie on the
same 3D plane. This unwarranted assumption tends to result in an
artificial reduction of the covariance of the a posteriori state estimate,
thus making them unreliable.

2.6.2 Particle Filters

The probability distribution of states in Kalman filtering is restricted
to be Gaussian, which is not optimal in ambiguous cases when multiple
hypotheses may have to be considered.
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One way out of this predicament is to use multiple Kalman filters [9]
that represent the state density as a Mixture of Gaussiana. Particle
Filters, such as Condensation [61, 16] or Monte Carlo filters [34], have
been introduced as a more general representation by a set of weighted
hypotheses, or particles. Another advantage is that they do not require
the linearization of the relation between the state and the measure-
ments. Each particle can be seen as an hypothesis for the state esti-
mate. In other words particle filters can maintain several hypotheses
over time, which gives them increased robustness.

Nevertheless, despite their strengths and even though they are pop-
ular for applications such as human body 3D tracking, there are sur-
prisingly few papers on particle based 3D pose estimation. Exceptions
are [115] that combines 2D alignment and 3D pose estimation and [128]
that considers robot localization in mainly 2D environments.

We attribute this relative lack of popularity to two different causes.
First a large number of particles – perhaps as many as several thousands
when the motion is poorly defined – can be required, which slows down
the tracking process. Next, for online applications, the system must
provide a state estimate in each frame, usually taken to be the mean or
the median of the particles. While robust, this estimate is not particu-
larly accurate. This results in motion estimates that are not as smooth
as they should be, which is a major drawback for many applications.
However, maintaining several pose hypotheses in and representing the
state density by a mixture of Gaussians certainly remains interesting,
even if references are missing in rigid object 3D tracking.



3
Fiducial-Based Tracking

Vision-based 3D tracking can be decomposed into two main steps: first
image processing to extract some information from the images, and
second pose estimation itself. The addition in the scene of fiducials, also
called landmarks or markers, greatly helps both steps: they constitute
image features easy to extract, and they provide reliable, easy to exploit
measurements for the pose estimation.

Here, we distinguish two types of fiducials. The first type is what
we call “point fiducials” because each fiducial of this type give one
point correspondence between the scene and the image. To obtain more
information from each fiducial, it is possible to turn it into a planar
shape with identifiable corners and we will refer to those as “planar
fiducials”: A single planar fiducial provides all six spatial constraints
needed to define a coordinate frame.

3.1 Point Fiducials

Fiducials have been used for many years by close-range photogram-
metrists. They can be designed in such a way that they can be easily
detected and identified with an ad hoc method. Their image locations

32
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can also be measured to a much higher accuracy than natural features.
In particular, circular fiducials work best, because the appearance of cir-
cular patterns is relatively invariant under perspective distortion, and
because their centroid provides a stable 2D position that can easily be
determined with sub-pixel accuracy. The 3D positions of the fiducials
in the world coordinate system are assumed to be precisely known:
This can be achieved by hand, with a laser, or with a structure-from-
motion algorithm. To facilitate their identification, the fiducials can
be arranged in a distinctive geometric pattern. Once the fiducials are
identified in the image, they provide a set of correspondences Mi ↔ mi

and techniques similar to the ones we described in Subsection 2.3 can
be applied to retrieve the camera pose.

For high-end applications, as found by close-range photogramme-
ters who have a long experience in this area, fiducial locations should
be estimated carefully. In particular, there should be uniform lighting
and a strong foreground-background contrast. Most of the professional
solutions use circular or spherical fiducials made from retro reflective
material, and cameras instrumented with a ring flash or other symmet-
ric lighting coming from within a few degrees. Images are exposed so
that the background is suppressed and the fiducials can be detected
automatically due to their high contrast. It then become easier to esti-
mate their center of gravity with subpixel accuracy. The targets should
be at least 4-5 pixels across in the image and appear against a clear
background with diameter at least 3 times the foreground diameter.
Larger targets give similar, but not better results. All forms of satura-
tion, blooming, and camera nonlinearities, as well as electronics that
attempt to make the image look sharper, should be avoided. A small
amount of optical defocus is best - say 0.5 pixel, just enough to remove
visible jaggies. In these conditions one can easily get 1/10 pixel accu-
racy, and 1/100 is achievable with care and a good photogrammetric-
quality camera. For high-end results, these requirements are not super-
fluous. For example, a jitter of amplitude as small as 1/10 of a pixel is
easily visible in AR applications. Companies such as Geodetic services,
Advanced Real-time Tracking, Metronor, ViconPeak, and AICON 3D
Systems all propose commercial products based on this approach.
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Low-cost, and lower-accuracy solutions, have also been proposed by
the Computer Vision community. For example, the Concentric Con-
trasting Circle (CCC) fiducial [56] is formed by placing a black ring
on a white background, or vice-versa. To detect these fiducials, the
image is first thresholded, morphological operations are then applied
to eliminate too small regions, finally a connected component labeling
operation is performed to find white and black regions, as well as their
centroids. In [56], four CCC’s are placed in a flat rectangular pattern,
and a fifth CCC is added on a side of the rectangle to remove ambigu-
ities. The three collinear CCC’s can be found by testing each subset of
three points for collinearity.

[123] uses color-coded fiducials for a more reliable identification.
Each fiducial consists of an inner dot and a surrounding outer ring, four
different colors are used, and thus 12 unique fiducials can be created and
identified based on their two colors. Some heuristics are also introduced:
During tracking the fiducials should remain close to their predicted
position; if the centroids of the outer and the inner regions are not
close enough, the fiducial may be partially occluded, and is not taken
into account in the pose computation.

Because the tracking range is constrained by the detectability of
fiducials in input images, [23] introduces a system that uses several
sizes for the fiducials. They are composed of several colored concentric
rings, where large fiducials have more rings than smaller ones, and
diameters of the rings are proportional to their distance to the fiducial
center, to facilitate their identification. When the camera is close to
fiducials, only small size fiducials are detected. When it is far from
them, only large size fiducials are detected.

The previous extraction methods involve thresholds to segment the
images, and can usually not be used under different lighting conditions
without adjusting them. To handle variable lighting, [23] uses a rule-
based approach that groups samples of similar color that are likely to all
belong to the same fiducial. [98] uses homomorphic image processing,
which is designed to eliminate the effect of non-uniform lighting. The
thresholding operation is applied not on the image itself, but on the
gradient of the logarithm of the image. This allows a robust detection
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of the fiducials, even in presence of very non-uniform lighting, including
blooming effects.

In order to expand the number of uniquely identifiable fiducials,
[98] adds “data rings” between the traditional outer and inner rings.
These additional rings are composed of sectors that are black or white,
and can be used as a bar code, to encode the fiducial index. With this
design, they can have as many as 3 × 215 different fiducials.

While all the previous methods for fiducial detection use ad hoc
schemes, [24] uses a machine learning approach which delivers signifi-
cant improvements in reliability. The fiducials are made of black disks
on white background, and sample fiducial images are collected under
varying perspective, scale and lighting conditions, as well as negative
training images. A cascade of classifiers is then trained on these data:
The first step is a fast Bayes decision rule classification, the second one
a powerful but slower nearest neighbor classifier on the subset passed by
the first stage. At run-time, all the possible sub-windows in the image
are classified using this cascade. This results in a remarkably reliable
fiducial detection method.

3.2 Planar Fiducials

The fiducials presented above were all circular and only their center
was used. By contrast, [71] introduces squared, black on white, fidu-
cials, which contain small red squares for identification purposes. The
corners are found by fitting straight line segments to the maximum
gradient points on the border of the fiducial. Each of the four corners
of such fiducials provides one correspondence Mi ↔ mi, and the pose
is estimated using an Extended Kalman filter.

[108, 67, 68] also use planar, rectangular fiducials, and show that
a single fiducial is enough to estimate the pose. Their approach has
become popular, both because it yields a robust, low-cost solution for
real-time 3D tracking, and because a software library called ARToolKit
is publicly available [3].

As most of the fiducials seen before, the fiducials of ARToolKit
have a black border on a white background to facilitate the detection.
An inner pattern allows the identification of the different fiducials. As
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Fig. 3.1 Processing flow of ARToolKit: The marker is detected in the thresholded image,
and then used to estimate the camera pose. (From [68], figure courtesy of H. Kato, M.
Billinghurst, I. Poupyrev, K. Imamoto and K. Tachibana.)

before, the image is first thresholded, and the system looks for con-
nected regions of black pixels. Regions whose outline contour can be
fitted by four line segments are kept. Then each region is corrected to
remove the perspective distortion and compare it by template match-
ing with the known patterns. The correction is done by estimating the
homography H that maps the pattern coordinates m̃p on the screen
coordinates m̃s

m̃s = Hm̃p

The coefficients of H can be estimated from the fiducial corners
detected in the image and their coordinates in the pattern coordinate
system [54]. If the internal parameters of the camera are known, the
camera pose can be recovered from H as described in Subsection 2.3.4.

The whole process, the detection of the fiducials and the pose esti-
mation, runs at a reported 30 frames-per-second, and therefore can
be applied in every frame: The 3D tracking system does not require
any hand-initialization, and is robust to fiducial occlusion. In prac-
tice, under good lighting conditions, the recovered pose is also accurate
enough for Augmented Reality applications. These characteristics make
ARToolKit a good solution for 3D tracking whenever engineering the
scene is possible. Because it has a low CPU requirement, such markers-
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based applications begin to be implemented on mobile devices such as
PDA and mobile phones [139]. Free Computer Vision libraries on Sym-
bian OS, which is the dominant operating system for smart phones are
also in development [94], and lets hope for the development on such
techniques on mobile devices.



4
Natural Features, Model-Based Tracking

Using markers to simplify the 3D tracking task requires engineering
the environment, which end-users of tracking technology do not like
or is sometimes even impossible, for example in outdoor environments.
Whenever possible, it is therefore much better to be able to rely on
features naturally present in the images. Of course, this approach makes
tracking much more challenging and some 3D knowledge is often used
to make things easier. The 3D knowledge can come in the form of a
CAD model of a scene object, a set of planar parts, or even a rough
3D model such as an ellipsoid. Such models can be created using either
automated techniques or commercially available products.

For completeness sake, we also present methods that do not require
3D scene models and simultaneously recover both camera trajectory
and 3D structure. We will see that these methods can be make to work
reliably in-real time. However, they cannot eliminate error accumu-
lation and are not adequate in cases where the model semantics are
important. For example, for automated grasping purposes, one must
not only recover camera trajectory but also decide where exactly to
grasp. Furthermore, the model-based techniques can usually be made
to be more robust and fail-safe. In short there exists a trade-off between

38
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the inconvenience of building the 3D model and the increased reliabil-
ity it affords and choosing one approach over the other depends on the
application at hand.

To organize the massive literature on the subject, we distinguish
here two families of approaches depending on the nature of the image
features being used. The first one is formed by edge-based methods
that match the projections of the target object 3D edges to area of
high image gradient. The second family includes all the techniques that
rely on information provided by pixels inside the object’s projection. It
can be derived from optical flow, template matching or interest point
correspondences.

Of course, during tracking, knowledge of the pose in the previous
frames considerably simplifies the task: Once initialized, usually by
hand or using an ad hoc method, a motion model is often used to
predict the pose in the coming frame to help look for image features.
The simplest such model is to assume that the camera does not move
very much from one frame to the next one.

4.1 Edge-Based Methods

Historically, the early approaches to tracking were all edge-based mostly
because these methods are both computationally efficient, and rela-
tively easy to implement. They are also naturally stable to lighting
changes, even for specular materials, which is not necessarily true of
methods that consider the internal pixels, as will be discussed later.
These methods can be grouped into two categories:

• One approach is to look for strong gradients in the image
around a first estimation of the object pose, without explic-
itly extracting the contours [52, 2, 84, 35, 27, 136]. This is
fast and general.

• Another approach is to first extract image contours, such as
straight line segments and to fit the model outlines to these
image contours [79, 45, 70, 73, 109]. The loss in generality
can be compensated by a gain in robustness.

We discuss both kinds of approach below.
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4.1.1 RAPiD

Because of its low computational complexity, RAPiD [52] was one of
the first 3D tracker to successfully run in real-time. Even though many
improvements have been proposed since, we describe it here in detail
because many of its basic components have been retained in more recent
systems. The key idea is to consider a set of 3D object points, called
control points, that are most likely to project on high-contrast image
edges. As shown in Figure 4.1, the control points can be sampled along
the 3D model edges and in the areas of rapid albedo change. They can
also be generated on the fly as points on occluding contours. The 3D
motion of the object between two consecutive frames can be recovered
from the 2D displacement of the control points.

Once initialized, the system performs a simple loop: For each frame,
the predicted pose, which can simply be the pose estimated for the pre-
vious frame, is used to predict which control points will be visible and
what their new locations should be. The control points are matched
to the image contours, and the new pose estimated from these corre-
spondences. For each control point, the system looks for its projection
m′ in the new image around m, its projection in the previous frame.
Because of the aperture problem, the position m′ cannot be completely
determined. As depicted by Figure 4.2 only the perpendicular distance
l of m from the appropriate image edge is measured. Assuming that the
orientations of the image edge and the model edge are nearly the same,
a one-dimensional search for the image edge is conducted by looking in

Fig. 4.1 In RAPiD-like approaches, control points are sampled along the model edges. The
small white segments in the left image join the control points in the previous image to their
found position in the new image. The pose can be inferred from these matches, even in
presence of occlusions by introducing robust estimators. (From [35], figure courtesy of T.
Drummond and R. Cipolla).
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the direction of a vector �n from m where �n is a unit vector orthogonal
to the projected object contour at point m. For a fast implementation,
the search is often performed in the horizontal, vertical, or diagonal
direction, closest to the actual edge normal. [27] uses a precomputed
convolution kernel function of the contour orientation to find only edges
with an orientation similar to the reprojected contour orientation, as
opposed to all edges in the scan-line.

In the original RAPiD formulation, the motion is estimated in the
object coordinate system whose origin is located at T = (Tx, Ty, Tz)T

in camera coordinates, and whose axes are aligned with the camera
coordinate system. A control point P = (Px, Py, Pz)T in object coordi-
nates is expressed as M = T + P = (X, Y, Z)T in the camera frame.
Its projection in the image is then m = KM. For simplicity, its pro-
jection is expressed in the following into the normalized image, that is
one corrected to have focal length and aspect ratio unity, and origin at
the optical center, as m =

(
X
Z , X

Z

)T .
After a motion δp rotating the object about the object origin by

∆R and translating it by δt, the control point location in camera coor-
dinates becomes M′ = T + δt + ∆RP. RAPiD assumes that the new
image is acquired after a small motion, which makes it possible to
linearize the object projection with respect to motion. As shown Sub-
section 2.7, the rotation ∆R is approximated as ∆R ≈ I+Ω, where Ω
is a skew-symmetric matrix. Thus, we have M′ ≈ M + δt + ΩP. The
expression of the projection m′ of M′ can then be expanded in Ωx, Ωy,
Ωz and δt and, by retaining only terms up to first order, becomes

u′ = u + 1
Tz+Pz

(δtx + ΩyPz − ΩzPy − u (δtz + ΩxPy − ΩyPx)) ,

v′ = v + 1
Tz+Pz

(δty + ΩzPx − ΩxPz − v (δtz + ΩxPy − ΩyPx)) .

(4.1)

This can be written in matrix form as

m′ = m + Wδp, (4.2)

where δp = (Ωx,Ωy,Ωz, δtx, δty, δtz)T is a six-vector made of the rota-
tion coefficients and the translation components, and W a 2 ×6 matrix
that is a function of the coordinates of T and P.
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m

n

l
m’

Fig. 4.2 Searching for the new control point position in RAPiD-like approaches. m is the
predicted control point position, m′ the actual control point position. The search is per-
formed along the direction of vector �n, and only the perpendicular distance l is measured.

The distance l of Figure 4.2 can be written as

l = ñT
(
m′ − m

)
. (4.3)

From Equations (4.3) and (4.2), each control point Mi then yields one
equation of the form

ñiWiδp = li.

Given enough control points, δp can then be computed by minimizing
the sum of squares of the perpendicular distances, which we write as

δp = arg min
δp

∑
i

(ñiWiδp − li)
2 . (4.4)

Therefore, it can be recovered by solving a least-squares problem of the
form

l = Aδp,

where l is the vector made of the distances li and A depends on the
ñi and Wi. The solution can then be found using the pseudo-inverse
of matrix A, and taking δp to be

δp = (ATA)−1Al.

Finally the pose p is incremented by δp, which yields pt = pt−1 + δp.
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In [52], some enhancements to this basic approach are proposed.
When the edge response at a control point becomes too weak, it is not
taken into account into the motion computation, as it may subsequently
incorrectly latch on to a stronger nearby edge. As we will see below, this
can also be handled using a robust estimator. An additional clue that
can be used to reject incorrect edges is their polarity, that is whether
they correspond to a transition from dark to light or from light to dark.
A way to use occluding contours of the object is also given. In [36],
integrating a Kalman filter into RAPiD is proposed.

The control points can be defined on the fly. [52] shows how profile
edge points can be created along occluding contours defined by the
model projection. [84] also discusses the discretization of the model
edges visible at time t to produce the control points for the estimation
of the pose at time t + 1.

4.1.2 Making RAPiD Robust

The main drawback of of the original RAPiD formulation is its lack
of robustness. The weak contours heuristics is not enough to prevent
incorrectly detected edges from disturbing the pose computation. In
practice, such errors are frequent. They arise from occlusions, shadows,
texture on the object itself, or background clutter.

Several methods have been proposed to make the RAPiD compu-
tation more robust. [35] uses a robust estimator and replaces the least-
squares estimation by an iterative re weighted least-squares to solve the
new problem. [84] uses a framework similar to RAPiD to estimate a
2D affine transformation between consecutive frames, but substitutes a
robust estimator for the least-squares estimator of Equation (4.4). The
affine transformation is used to infer an approximate 3D pose, which
is then refined as will be discussed Subsection 4.1.4.

In fact, when using a more powerful minimization algorithm, lin-
earizing the problem is not required, instead one can minimize the
actual distances between the detected features and the reprojected 3D
primitives. Let the Mi be those primitives, and let

{
m′

i,j

}
be the set
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of associated image features, the pose can now be estimated as:

p = arg min
p

∑
i,j

ρ
(
dist

(
PpMi,m′

ij

))
, (4.5)

where Pp is the projection defined by parameters p and PpMi denotes
the 2D curve obtained projecting Mi. For example, [86] discusses the
computation of the relevant Jacobian matrices when the 3D primitives
such as straight lines segments, circles or occluding boundaries of cylin-
ders can be defined analytically. [117] considers free-form curves and
uses an approximation of the distance.

In the approaches described above, the control points were treated
individually, without taking into account that several control points
are often placed on the same edge, and hence their measurements are
correlated. By contrast, in [2, 117] control points lying on the same
object edge are grouped into primitives, and a whole primitive can be
rejected from the pose estimation. In [2], a RANSAC methodology is
used to detect outliers among the control points forming a primitive.
If the number of remaining control points falls below a threshold after
elimination of the outliers, the primitive is ignored in the pose update.
Using RANSAC implies that the primitives have an analytic expres-
sion, and precludes tracking free-form curves. By contrast, [117] uses
a robust estimator to compute a local residual for each primitive. The
pose estimator then takes into account all the primitives using a robust
estimation on the above residuals.

When the tracker finds multiple edges within its search range, it may
end-up choosing the wrong one. To overcome this problem, in [35], the
influence of a control point is inversely proportional to the number of
edge strength maxima visible within the search path. [136] introduces
another robust estimator to handle multiple hypotheses and retain all
the maxima as possible correspondents in the pose estimation.

4.1.3 Explicit Edge Extraction

The previous approaches rely on matching points sampled on edges.
An alternative approach is to globally match model primitives with
primitives extracted from the image [79, 45, 70, 73, 109], as depicted
by Figure 4.3. In these specific examples, the primitives are straight
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Fig. 4.3 Pose estimation from correspondences between 3D model edge segments Mi and
2D image segments Di. (From Figure 13 from [70], reproducted with kind permission of
Springer Science and Business Media).

line segments, but, in theory, they could be more complex parametric
curves.

For each image, straight line edge segments are extracted, while
the model edge segments are projected with respect to the predicted
pose. The matching is based on the Mahalanobis distance of line seg-
ment attributes. For example, in [70] segments are represented by
X = (cx, cy, θ, l) defined by the coordinates of the middle point, the
orientation and the length of the segment [32]. Given the attribute vec-
tor Xm of a model segment and the attribute vector Xd of an extracted
segment, the Mahalanobis distance between Xm and Xd can be then
defined as

d = (Xm − Xd)T (Λm + Λd)−1(Xm − Xd), (4.6)

where Λd is the covariance matrix of Xd, and depends on the extrac-
tion procedure. The covariance matrix Λm of a model segment depends
on the covariance matrix of the predicted pose estimation. [73] also
integrates the uncertainty in the Hough transform used for segment
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extraction and limits its search to the uncertainty region predicted by
the Λm matrices.

An iterative procedure is used to find the best correspondences
between 3D model edge segments Mi and 2D image segments Di, while
estimating the pose. In [70], a model segment Mi is matched with the
closest data segment Di according to the Mahalanobis distance of Equa-
tion (4.6), if this distance is lower than a threshold. The pose p is then
estimated by minimizing∑

i

(
Xi

d − Xi
m(p)

)T Λi
d

(
Xi

d − Xi
m(p)

)
, (4.7)

with respect to p where Xi
m(p) is the attribute vector of the model

segment Mi projected with respect to the pose p. An additional term
can be added to the criterion of Equation (4.7) to account for a motion
model. The minimization is performed using the Levenberg-Marquardt
algorithm. The process is repeated until a stable pose is found.

Such approaches, which are only adapted to polyhedral object track-
ing, have been applied to vehicle and robot arm tracking, but they seem
to have fallen out of use and been replaced by RAPiD like algorithms.
We believe this can be attributed to bottom-up nature of the edge-
extraction process, which makes it unreliable. The RAPiD approach
both avoids this drawback thanks to the local search around an a pri-
ori pose and tends to be significantly faster.

4.1.4 Direct Optimization on Gradients

[72, 84, 8] propose to recover the pose by fitting the model projection
directly to the image gradients. A simple approach is to maximize the
gradient norm along the model reprojection but there is no guaran-
tee that the model edges should correspond to high intensity gradient
values.

It is better to take into account the expected direction of the pro-
jected contour: [84] proposes to minimize the sum of the values ∇I.�n

‖∇I‖2 ,
where ∇I denotes the spatial gradient of the image I, and �n the
expected direction. This measure tends to support locations where the
gradient is both strong and in the expected direction. [72] maximizes
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the correlation between the predicted and the measured gradient norm
plus an additional term to constrain the motion.

Such approaches require a very good initial estimate to converge to
the correct pose. Therefore, they are best used as a refinement step.

4.2 Optical Flow-Based Methods

Optical flow is the apparent motion of the image projection of a physical
point in an image sequence, where the velocity at each pixel location
is computed under the assumption that projection’s intensity remains
constant. It can be expressed as

m′ = m +
(

u̇

v̇

)
dt,

where m the projection of a point in an image I at time t, m′ its
corresponding location in the next image, captured at time t + dt, and
(u̇, v̇)T the apparent speed of the 2D motion at m. The vector field
of the (u̇, v̇)T is the optical flow. It can be computed using the Lucas-
Kanade method [83] for example, which adopts a multiscale approach
and assumes that the optical flow varies smoothly.

4.2.1 Using Optical Flow Alone

An early attempt to use optical flow as a cue for 3D tracking relied on
the well-known normal optical flow constraint [75](

∂I

∂u
,

∂I

∂v

)(
m′ − m

)
+

∂I

∂t
= 0 , (4.8)

where ∂I
∂u and ∂I

∂v , and ∂I
∂t are respectively the spatial and temporal

derivatives of the image computed at location m. Equation (4.8) is
similar to Equation (4.3) used by RAPiD. That means that if we know
the 3D correspondent M for some m on the model projection, we can
infer the model displacement using the same approach as in RAPiD by
simply replacing Equation (4.3) by Equation (4.8).

Nevertheless, this approach has two important drawbacks: First, for
large motions, there exists a large linearizing error in the normal optical
flow constraint that affects the estimation. Second, while the control
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points on edges provide absolute information and act as anchors, relying
on optical flow causes error accumulation, which quickly results in drift
and tracking failure.

To avoid error accumulation, [75] uses a render-feedback loop.
Instead of applying the previous method to the actual image, it applies
it to a synthetic image of the object rendered under a pose predicted
using a motion model. If the motion model is valid, the synthetic image
is closer to the new image, the error due to the linearity assumption
is smaller and the computed motion more reliable. The process can
then be iterated to suppress the drift effect. Unfortunately, this method
requires a motion model to handle fast motion and is sensitive to light-
ing effects, since it is difficult to render a synthetic image that takes
illumination into account. It is also relatively slow since several image
synthesis per frame are required. Nevertheless, it was one of the first
successful methods to use Computer Graphics techniques to solve a
Computer Vision problem.

[10] applies the regularized optical-flow method developed in [15] to
3D tracking to handle fast motion. The optical flow is computed using
a generic algorithm, the displacement δp of the model between images
t and t + 1 is taken to be the best displacement that best matches the
optical flow in a least-squares sense. It is taken to be

δp = arg min
δp

∑
i

ρ(‖FM(mi, δp) − FI(mi)‖), (4.9)

where the mi are pixel locations on the model reprojection, FI(mi)
is the optical flow computed at mi, and FM(m, δp) is the expected
flow at m for an object displacement δp from pose p. This approach
handles faster motion, and can run at several frames per second, but
is still prone to drift.

4.2.2 Combining Optical Flow and Edges

Several authors combine edge and optical flow information to avoid
error accumulation. For example, [49] uses a Kalman filter to combine
the two cues. The edges are taken into account by a term similar to the
one of Equation (4.5), the optical flow by a term analogous to the one
of Equation (4.9).
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A different combination is proposed in [29], where the optical flow
information is treated as a hard constraint. In this work, the deforma-
tions of the tracked shape, a human face, are also estimated but we will
drop here the deformation terms. Equation (4.8) is applied at several
locations to obtain a linear system that can be written compactly as

Bδp + It = 0, (4.10)

where matrix B depends of the pose p and the image spatial gradients
at time t, and It is a vector made of the temporal gradient at the chosen
locations. A similar linear system is derived from the edges in image
locations expected to have high gradient values. It is written as

δp = Lf , (4.11)

where vector f is made of image forces directly related to the image
gradients at these locations. Instead of solving simultaneously Equa-
tions (4.10) and (4.11), which is problematic since it would require
estimating relative weights for the two contributions, Equation (4.10)
is treated as a hard constraint, resulting in the constrained system

δp = Lf , subject to Bδp + It = 0.

This is solved by using Lagrange multipliers, which transforms the
problem into a new, larger, unconstrained linear system. This method
is not naturally robust because it relies on matrix B that depends on
possibly noisy image gradients. Robustness is obtained by reformulat-
ing the new system using an iterated extended Kalman filter.

This approach yields impressive results especially because it esti-
mates not only the motion but also the deformations of a face model.
Nevertheless, it still depends on the brightness constancy assumption
during optical flow computation, and major lighting changes can cause
tracking failure. Because of the linearization in the optical flow equation
cue, the range of acceptable speeds is also limited.

4.3 Template Matching

The Lucas-Kanade algorithm [83, 7] was originally designed to compute
the optical flow at some image locations, but in fact has a more general
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purpose and can be used to register a 2D template to an image under
a family of deformations. It does not necessarily rely on local features
such as edges or interest points, but on global region tracking, which
means using the whole pattern of the object to be tracked. Such a
method can be useful to treat complex objects that are difficult to
model using local features. While it can be computationally expensive,
[50] showed that under some conditions, it can be effectively formulated.
Since then it has been extended by several authors and applied to 3D
tracking [19, 65, 66].

4.3.1 2D Tracking

The general goal of the Lucas-Kanade algorithm is to find the param-
eters p of some deformation f that warps a template T into the input
image It, where the f deformation can be a simple affine warp as well
as a much more complex one. This is done by minimizing

O(p) =
∑

j

(It(f(mj ;p)) − T (mj))
2, (4.12)

the sum of squared errors computed at several mi locations.
The Lucas-Kanade algorithm assumes that a current estimate of p

is known, which is reasonable for tracking purposes. It iteratively solves
for p by computing ∆i steps that minimize∑

j

(It(f(mj ;pj + ∆)) − T (mj))
2.

As in the Gauss-Newton algorithm of Subsection 2.4.2, the It(f(mj ;p+
∆) term is linearized by performing a first order Taylor expansion. This
lets us write

∆i = Aδi, (4.13)

where A is the pseudo-inverse of the Jacobian matrix J of It(f(mj ;p))
computed at pj , and δi = [T (mj) − It(f(mj ;p)] is the vector of inten-
sity differences between the template and the warped input image.
J depends both on the image gradients computed at pixel locations
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f(mj ;p) and on the Jacobian of the warping function. It can be com-
puted as

J =
∑

j

(
∂It

∂f

)(
∂f
∂p

)
(mj).

In this derivation, the function f can be arbitrarly complex. In the gen-
eral case, this means that the the pseudo-inverse of J must be recom-
puted at each iteration, which is computationally expensive. As we
will see below, the method can be made to be much more efficient by
restricting f to a specific class.

4.3.2 Jacobian Formulation

[50] shows that for some classes of displacements, including linear mod-
els, the previous iteration step can be replaced by

∆′
j = A′δi,

∆ = Σ(p)−1∆′
j ,

where Σ(p) is a matrix that only depends on the displacement p. This
time, the matrix A′ does not depend on time-varying quantities and can
be computed beforehand. [50] restricts the estimation to a single step,
but it could be iterated as in the Gauss-Newton algorithm. The final
algorithm requires about a hundred image accesses and subtractions to
compute δi, a few hundred of multiplications and a matrix inversion to
compute the displacement ∆.

[30] gives a similar derivation but also proposes an efficient sam-
pling of the target region to reduce even further the online compu-
tation cost without losing too much image information. Ideally the
subset that reduces the expected variance of recovered motion should
be retained. In practice, the combinatorics are too large, and [30] pro-
poses to compute the expected for individual pixels and constructs a
random subset of the best pixels, constrained to be well spread on the
target image.

A limitation of the formulation given above is sensitive to changes
in illumination of the target region. To handle such variations, [50] adds
a linear combination of basis vectors to the expression of It(p + ∆j).
These basis vectors can be learned from a set of training images of the
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target region, taken under varying illumination. It is shown that the
motion can still be computed using no more online computation than
before.

Another drawback is that it does not handle potential partial occlu-
sions of the tracked regions, which could result in tracking failure. To
solve this problem, [50] turns the least-squares formulation of Equa-
tion (4.12) into a robust one by introducing a robust estimator. The
motion is then recovered using an iteratively re-weighted least-squares
approach.

This method was originally used to track in real-time human faces
assuming a 2D affine transformation for the motion model.

4.3.3 Hyperplane Approximation

The approach presented in [66] relies on a reinterpretation of Equa-
tion (4.13) that yields a faster implementation than the Jacobian for-
mulation discussed above. It treats the equation as an approximation
by hyperplanes. This allows the estimation of the A′ matrix during a
learning stage. It is done by producing random small disturbances ∆
around the reference position, for which the change of brightness δi can
be measured by virtually moving the region of interest. A matrix δp
that maps the δi to the δp can then be estimated in the least-squares
sense. The paper [66] experimentally shows that such a matrix gives a
more reliable approximation of the relation between image differences
and the motion. This can be explained by the fact that the objec-
tive function of Equation (4.12) has many local minima, which this
approach allows the algorithm to skip.

4.3.4 From 2D to 3D Tracking

The template matching approach of Subsection 4.3.3 has been used to
track 3D objects. As depicted by Figure 4.4, [65] uses a homography
to model the object pose p to track 3D planar objects. A homogra-
phy maps two views of the same 3D plane seen from different camera
positions and can be represented by a 3×3 matrix. As shown in Sub-
section 2.3.4, once the homography is known for a view of the plane,
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Fig. 4.4 The book cover is modeled as a plane, and tracked using a template matching-based
approach. (From [66], figure courtesy of F. Jurie and M. Dhome.)

the camera position with respect to that plane can be recovered if the
internal camera parameters are known.

A few improvements can be added to the original method described
in [66]. The locations considered to compute the pose should be taken
following the method described in [30]. At least a simple heuristics is
to retain locations to strong gradients, with some care to take well
spread locations. These locations cannot be taken on the border of the
object: in the contrary case, they could lie on the background once the
object has moved, and disturb the intensity difference computation.
The locations intensities should be normalized to be robust to most of
lighting changes. Finally, while the original paper only discusses single
iteration step estimation, several iterations can be performed to allow
for fast motion. It can be done using a cascade of A′ matrices instead
of a single one, where the first matrices of the cascade are trained from
large motions, and the last ones capture finer and finer motions.

[19] also uses this approach to track the position and orientation of
a human head using a non-planar surface model. The head is modeled
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as a generalized cylinder. It can thus be described as a parametric
surface, where a 3D point M on the model surface is a function of
two coordinates (s, t) in the surface’s parametric coordinate system
M̃ = x(s, t). This allows the definition of a relatively simple warp-
ing between the image and the texture map on the head model, and
a template matching approach similar to the one of [50] is used to
recover the six degrees of freedom of the 3D model. A confidence map
is also introduced is to account for the fact that pixels are not equally
informative due to perspective distortion. They are assigned a confi-
dence level proportional to the image area of the triangle they belong
to. A motion model is also used to regularize the recovered motion.
The resulting tracker overcomes the biggest problem of using a planar
approximation for the face, that is instability in presence of out of plane
rotations.

4.4 Interest Point-Based Methods

We now turn to methods that use localized features instead of global
ones, which has several advantages. In the same way as edge-based
methods, they rely on matching individual features across images and
are therefore easy to robustify against partial occlusions or matching
errors. Illumination invariance is also simple to achieve. But, unlike
edges methods, they do not get confused by background clutter and
exploit more of the image information, which tends to make them more
robust. They are similar in some ways to optical flow approaches, but
they allow faster motions since no small inter-frame motion assumption
is made.

The local features can be patches manually selected in several reg-
istered views of the target object during a preliminary stage [107, 135].
An object feature is then defined by its 3D object location and by a
template image that captures its image appearance. Once initialized,
the algorithms perform a simple loop similar to the one of edge-based
methods. For each frame, the object features are matched by localiz-
ing feature templates in search windows around hypothesized locations
using steerable filters to compensate for image-plane rotations, and
normalized cross-correlation for insensitivity to lighting changes. The
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pose is then obtained from these model to image correspondences. Note
that in [107], aspect changes are handled by initially building an aspect
table that associates object features with discrete viewpoints in which
they can be expected to be seen.

Of course, the above algorithms require both manual intervention
and actual expertise to select appropriate patches. A far more effective
and practical approach is to have the system itself choose the features
for optimal performance. We refer to these automatically chosen fea-
tures as interest points. In the remainder of this subsection, we first
discuss their extraction and matching. We then present ways of using
them for 3D tracking.

4.4.1 Interest Point Detection

Matching only a subset of the image pixels reduces computational com-
plexity while increasing reliability if they have been correctly chosen.
This task usually falls on an “interest operator,” which should select
points with the following properties [40]: The patches surrounding them
should be textured so that they can be easily matched. They should
be different from their immediate neighbors to eliminate edge-points
that can give rise to erroneous matches. Similarly, pixels on repet-
itive patterns should also be rejected or at least given less impor-
tance to avoid ambiguous matches. Finally, the selection should be
repeatable, which means that the same points should be selected in
different images of the same scene, despite perspective distortion or
image noise. This last property is important because the precision and
the pose estimation directly depends on the invariance of the selected
position.

Such operator were already in use in the 1970’s for tracking pur-
poses [97, 96]. In these early works, pixels with the largest minimum
variance of intensity differences in the four directions were retained.
Numerous other methods have been proposed since and [33, 122] give
good surveys. Most of these techniques involve second order derivatives,
and results can be strongly affected by noise. Currently popular inter-
est point detectors, sometimes called the Förstner operator [40], the
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Plessey operator, the Harris-Stephen detector [53], or the Shi-Tomasi
detector [116], all rely on the auto-correlation matrix

Z =
( ∑

I2
u

∑
IuIv∑

IuIv
∑

I2
v

)
,

computed at each pixel location. The coefficients of Z are the sums
over a window of the first derivatives Iu and Iv of image intensi-
ties with respect to (u, v) pixel coordinates. The derivatives can be
weighted using a Gaussian kernel to increase robustness to noise [111].
The derivatives should also be computed using a first order Gau-
sian kernel. This comes at a price since it can reduce localization
accuracy.

As discussed in [40], the pixels can be classified from the behavior
of the eigen values of Z: Pixels with two large, approximately equal
eigen values are good candidates for selection. [53] defines a “texture-
ness” measure from the trace and the determinant of Z to avoid explicit
computation of the eigen values. [116] shows that locations with two
large eigenvalues of Z can be tracked reliably especially under affine
deformations. It therefore focuses on locations where the smallest eigen
value is higher than a threshold. Interest points can then taken to be
the locations mi that are local maxima of the chosen measure above
a predefined threshold. It should be noted that these measures have a
relatively poor localization accuracy and are computationally demand-
ing. However they are widely used they have proved effective and are
easy to implement.

4.4.2 Interest Point Matching

To estimate motion, one can then match sets of interest points {mi}
and {m′

j} extracted from two images taken from similar, and often
successive, viewpoints. A classical procedure [145] runs as follows. For
each point mi in the first image, search in a region of the second image
around location mi for point m′

j . The search is based on the similar-
ity of the local image windows centered on the points, which strongly
characterizes the points when the images are sufficiently close. The
similarity can be measured using the zero-normalized cross-correlation
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that is invariant to affine changes of the local image intensities, and
make the procedure robust to illumination changes. To obtain a more
reliable set of matches, one can reverse the role of the two images, and
repeat the previous procedure. Only the correspondences mi ↔ m′

j

between points that chose each other are kept. For matching purposes
we typically detect 500 interest points per image in 320 × 240 images.
A good choice is often to use 7×7 correlation windows. This represents
a reasonable trade-off between being large enough to be statistically
significant and small enough to be able to ignore undesirable variations
due to perspective, occlusions, or background changes. Zero-normalized
cross-correlation makes the matching procedure very robust to illumi-
nation changes. In practice, we reject matches for which this measure
is less than 0.8 as unreliable matches. We also limit the search of cor-
respondents for a maximum image movement of 50 pixels. In terms of
code optimization, [100] discusses some efficient implementations using
MMX instructions for both point extraction and matching.

An alternative to matching points across images is to use the
Kanade-Lucas-Tomasi (KLT) tracker [83, 129, 116], which extracts
points from an initial image and then tracks them in the follow-
ing images by mostly relying on the optical flow. Both approaches
have their strengths: KLT handles continuity better and keeps track-
ing points that cannot be detected as interest points. By contrast,
performing detection in every frame naturally handles the appear-
ance and disappearance of interest points due to aspect changes and
occlusions.

Since these phenomena are perennial causes of tracking failure,
many authors, including ourselves, give preference to the detection-
in-every-frame approaches. In essence, the interest points replace the
patches of [107, 135] and serve much the same purpose [97, 40,
116, 119, 44, 21, 131, 76, 137]. The 3D coordinates of correspond-
ing points can be obtained by back-projecting them to the 3D model.
Alternatively, the transfer function that will be introduced in Subsec-
tion 4.4.4 can be used to avoid having to compute them explicitly.
This results in implementations that are both robust and fast because
extraction and matching can now be achieved in real-time on modern
computers.
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4.4.3 Pose Estimation by Tracking Planes

An alternative way [119] to use interest points is to track 3D planar
structures as opposed to full 3D models. This choice is justified by
the fact that it is a common special case that makes the 3D model
acquisition problem trivial. For example, in man-made environments
such as the one of Figure 4.5, the ground plane and one or more walls are
often visible throughout the scene. Furthermore, the resulting method
is efficient and precise.

The homography H0
w that relates the tracked plane with its projec-

tion in the first image is estimated from several correspondences, which
can be given by hand. The idea of [119] is to exploit the fact that the
relation between two views of the same plane is also an homography.
The relation between the plane and a frame of the sequence can be
retrieved by chaining the homographies, and used to estimate the cam-
era pose as shown in Subsection 2.3.4.

For each incoming frame, captured at time t, the homography Ht
t−1

that maps the plane projection in frame at time t − 1 to frame at time
t is computed from interest point matches between these frames. The

Fig. 4.5 Tracking planar structures using interest points. (From [118], figure courtesy of G.
Simon and M.-O. Berger.)
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computation is performed robustly using RANSAC and considering
subsets of four matches to generate hypotheses on the actual homog-
raphy as discussed in Subsection 2.5. Then, the homography Ht

w that
maps the tracked plane to the new frame is obtained by chaining the
successive transformations, which can be written as

Ht
w = Ht

t−1H
t−1
t−2 . . .H1

0H
0
w.

Here, the formulas were derived for one single plane, but this method
has been extended to multiple planes in [118].

In this approach the jittering effect is minimal because the homo-
graphies between consecutive, close views can be computed very accu-
rately. Nonetheless, because the motion is computed recursively by
chaining transformations, one can expect error accumulation and drift
after a while, even if this is delayed by the accuracy of the computed
homographies.

4.4.4 Eliminating Drift

In the absence of points whose coordinates are known a priori, all
methods are subject to error accumulation, which eventually results in
tracking failure and precludes of truly long sequences.

A solution to this problem is to introduce one or more keyframes
such as the one in the upper left corner of Figure 4.6, that is images

Fig. 4.6 Face tracking using interest points and one reference image shown on the top left.
(From [137].)
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of the target object or scene for which the camera has been registered
beforehand. At runtime, incoming images can be matched against the
keyframes to provide a position estimate that is drift-free [107, 44, 131].
This, however, is more difficult than matching against immediately pre-
ceding frames as the difference in viewpoint is likely to be much larger.
The algorithm used to establish point correspondences must therefore
both be fast and relatively insensitive to large perspective distortions,
which is not usually the case for those used by the algorithms of Sub-
sections 4.4.2 and 4.4.3 that need only handle small distortions between
consecutive frames.

In [137], this is handled as follows. During a training stage, the sys-
tem extracts interest points from each keyframe, back-projects them
to the object surface to compute their 3D position, and stores image
patches centered around their location. During tracking, for each new
incoming image, the system picks the keyframe whose viewpoint is
closest to that of the last known viewpoint. It synthesizes an interme-
diate image from that keyframe by warping the stored image patches
to the last known viewpoint, which is typically the one correspond-
ing to the previous image. The intermediate and the incoming images
are now close enough that matching can be performed using simple,
conventional, and fast correlation methods. Since the 3D position of
keyframe interest has been precomputed, the pose can then be esti-
mated by robustly minimizing the reprojection error of Equation (2.9).
This approach handles perspective distortion, complex aspect changes,
and self-occlusion. Furthermore, it is very efficient because it takes
advantage of the large graphics capabilities of modern CPUs and GPUs.

However, as noticed by several authors [107, 21, 131, 137], matching
only against keyframes does not, by itself, yield directly exploitable
results. This has two main causes. First, wide-baseline matching as
described in the previous paragraph, is inherently less accurate than
the short-baseline matching involved in frame-to-frame tracking, which
is compounded by the fact that the number of correspondences that
can be established is usually less. Second, if the pose is computed for
each frame independently, no temporal consistency is enforced and the
recovered motion can appear to be jerky. If it were used as is by an
Augmented Reality application, the virtual objects inserted in the scene
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would appear to jitter, or to tremble, as opposed to remaining solidly
attached to the scene.

Temporal consistency can be enforced by some dynamical smooth-
ing using a motion model. Another way proposed in [137] is to combine
the information provided by the keyframes, which provides robustness,
with that coming from preceding frames, which enforces temporal con-
sistency. This does not make any assumption on the camera motion and
improves the accuracy of the recovered pose. It is still compatible with
the use of dynamical smoothing that can be useful to in case where
the pose estimation remains unstable, for example when the object is
essentially fronto-parallel.

The tracking problem is reformulated in [137] in terms of bundle-
adjustment. In theory, this could be done by minimizing a weighted sum
of the reprojection errors computed both for the 3D keyframe interest
points and for points Ni tracked from frame to frame, with respect to
the camera poses up to time t, and to the 3D locations of the points
Ni. In practice, this would be too time consuming and [137] restricts
the estimation to the current and previous frames. The problem then
becomes minimizing

min
Pt,Pt−1,Ni

(
rt + rt−1 +

∑
i

st
i

)
, (4.14)

with rt and rt−1 being the total residuals of the points from the
keyframes reprojected in frames at time t and t−1. In Equation (4.14),

st
i = dist2(Pt−1Ñi,nt−1

i ) + dist2(PtÑi,nt
i)

is the residual for point Ni in frames t − 1 and t, with the interest
point nt

i detected in the current frame is matched against the point
nt−1

i detected in the previous frame. This formulation would still result
in a computationally intensive algorithm if the 3D coordinates of the
Ni are treated as optimization variables. However, as shown in [114],
one can exploit the fact that the Ni are on the surface of the 3D model
and approximate the st

i terms using a transfer function that involves
only the point projections. Given a point n in the first frame and the
poses P and P′ of the two frames, such a transfer function Ψ(n,P,P′)
returns the point n′ such that there is a 3D point N belonging to the
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model surface that satisfies ñ = PÑ and ñ′ = P′Ñ. st
i can then be

approximated as

dist2
(
Ψ
(
nt−1

i ,Pt−1,Pt
)
,nt

i

)
+ dist2

(
Ψ
(
nt

i,P
t,Pt−1) ,nt−1

i

)
, (4.15)

where the actual 3D position Ni does not appear anymore. Finally, the
combination of the information from wide baseline matching and from
preceding frames in Equation (4.14) results in a real-time tracker that
does not jitter or drift and can deal with significant aspect changes.
In [136], this method has been extended so that it can also take advan-
tage of edge information, still in real-time.

4.5 Tracking Without 3D Models

All the methods presented up to here estimate the pose given an a
priori 3D model. However, it is possible to simultaneously estimate
both camera motion and scene geometry, without any such model. The
recovered trajectory and 3D structure are expressed in an arbitrary
coordinate system, for example the one corresponding to the initial
camera position. This problem is known as Simultaneous Localiza-
tion and Mapping (SLAM) by roboticists who are mainly interested in
the self-localization of a moving robot. By contrast to Structure from
Motion (SFM) that focuses more on local reconstruction issues, SLAM
is usually more about hand-off between local reconstructions and how
to merge them to produce a global representation. This involves finding
effective approximations to the huge fully connected covariance matri-
ces that would result from a naive “all frames at once” batch bundle
adjustment.

We present here two different classes of approaches that both rely
on interest points.

4.5.1 n-Images Methods

The first class of approaches relies on projective properties that pro-
vide constraints on camera motion and 3D point locations from 2D
correspondences. While such approaches have long been used for offline
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camera registration in image sequences [130, 39, 103, 54], only recent
improvements in both algorithms and available computational power
have made them practical for real-time estimation.

For example, [100] shows how to recover in real-time the trajectory
of a moving calibrated camera over a long period of time and with very
little drift. The algorithm first estimates the relative poses between
three consecutive frames from point correspondences established as
described in Subsection 4.4.2. This is done by robustly estimating the
essential matrix E between image pairs. The essential matrix is a 3 ×3
matrix that relates corresponding points m and m′ in two images:

m′TK−TEK−1m = 0.

When the camera calibration matrix K is known, E can be computed
from 5 point correspondences, and RANSAC is used to handle spurious
matches. The relative motion between the two images can then be
extracted from E. Using two images only yields up to ten solutions and
the third image is used to choose the correct one. Furthermore, the
translation can be recovered up to a scale factor only. However, this
relative motion must still be expressed in the same coordinate system
as the previously recovered camera trajectory, which means keeping
the scale consistent. To this end, the 2D point matches are linked into
tracks over time and the tracks are then triangulated into 3D points
using the estimated motion. The scale is then taken to be the one that
best aligns these points against the current reconstruction.

As direct application of this approach would quickly in drift, two
techniques are used in [100] to mitigate this problem. First, the pose
is refined once in a while by minimizing the reprojection error of the
already reconstructed 3D points over sets of frames. Second, the system
is made to occasionally “forget” the 3D coordinates and to recompute
them from scratch to avoid error accumulation.

This system has been tested with a vehicle-mounted camera and
yields results very close to that of a GPS, even for trajectories of sev-
eral hundreds of meters. In other words, error accumulation is not com-
pletely avoided, but considerably reduced.
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4.5.2 Filter-Based Methods

Pose and structure can also be recursively estimated using the Extended
Kalman filter [5, 12, 22, 63, 28] discussed in Subsection 2.6.1. In par-
ticular, [28] shows that it can yield very good results in real-time.

While [100] proposes a bottom-up approach – interest points are
tracked in 2D then reconstructed to 3D, here the pose estimation is
done in a top-down manner. The camera is supposed to move smoothly,
with unlikely large accelerations. The filter state therefore contains the
camera pose parameters, and the linear and angular velocities used to
predict the camera pose over time. The filter state also contains the 3D
locations of some points detected in the images. In each coming frame,
the position of a feature point is predicted and its uncertainty is esti-
mated using uncertainty propagation, using the 3D location stored in
the filter state, the predicted camera pose and its uncertainty. This con-
straints the search for the point position in the current image, retrieved
using sum-of-squared difference correlation. This position is then given
to the Kalman filter to update the point 3D location. These hypotheses
are tested in subsequent images by matching them against the images,
and their probabilities are re-weighted

One issue is the initialization in the filter of appearing feature
points, since the depth of such a point cannot be estimated from one
measurement. [28] proposes to represent the initial probability den-
sity over point depth by a equally-weighted particle set. Discrete depth
hypotheses are made along the semi-infinite line stated at the esti-
mated camera position heading along the point viewing direction. The
hypotheses are tested in the subsequent time steps by projecting them
into the images, and re-weighted according to their likelihood. After
some times, the distribution becomes closely Gaussian. A covariance
matrix can then be enough to represent the distribution, and the fea-
ture point can be integrated into the filter.

To handle the distortion on the point appearances due to perspec-
tive, this method was extended in [95] to also estimate the orientation of
the local surface. The orientation is initialized to be parallel to the cur-
rent viewing direction. For each coming frame, the current orientation
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estimate is used to predict the point appearance to help finding the
point projection, and updated from the actual image.

4.6 Natural Features Methods in Short

Edge-based methods have a fairly low computational complexity
because they only work for a small fraction of the image pixels. How-
ever, they can become confused in the presence of texture or of a clut-
tered background. In such cases, area-based methods come into their
own and justify their increased computational requirements, which
remain quite manageable on modern computers. Nevertheless, optical
flow-based methods depend on brightness constancy assumption during
optical flow computation, and major lighting changes can cause track-
ing failure. Because of the linearization in the optical flow equation
cue, the range of acceptable speeds is also limited. The template-based
approach is attractive because it has low computational requirements,
and is simple to implement. But it has some disadvantages. It loses
some of its elegance when occlusions must be taken into account, and
handling illumination changes requires an offline stage where appear-
ance variations are learned. The class of objects that can be tracked is
also limited and a 3D object of general shape under general perspec-
tive view have never been handled in this way. All these drawbacks
disappear when using a local, feature-based approach. Interest points
give information similar to optical flow, but with no need for assump-
tion on the brightness constancy or linearity assumptions. Computers
have now become powerful enough to make them practical for real-time
applications. As a result, they are now popular and yield the most suc-
cessful 3D tracking techniques. As the next section shows, they are also
a powerful tool for object detection in individual images.
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Tracking by Detection

The recursive nature of traditional 3D tracking approaches provides a
strong prior on the pose for each new frame and makes image feature
identifications relatively easy. However, it comes at a price: First, the
system must either be initialized by hand or require the camera to be
very close to a specified position. Second, it makes the system very
fragile. If something goes wrong between two consecutive frames, for
example due to a complete occlusion of the target object or a very fast
motion, the system can be lost and must be re-initialized in the same
fashion. In practice, such weaknesses make purely recursive systems
nearly unusable, and the popularity of ARToolKit [68] in the Aug-
mented Reality community should come as no surprise: It is the first
vision-based system to really overcome these limitations by being able
to detect the markers in every frame without constraints on the camera
pose.

However, achieving the same level of performance without having
to engineer the environment remains a desirable goal. Pose estimation
from natural features without prior on the actual position is closely
related to object detection and recognition. Object detection has a long
history in Computer Vision, mostly focused on 2D detection even for

66
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3D objects [99, 138]. Nevertheless, there has been longstanding interest
in simultaneous object detection and pose estimation. Early approaches
were edge-based [78, 64], but methods based on feature points match-
ing have become popular since [111] shows that local invariants work
better than raw patches for such purpose. [111] uses invariants based
on rotation invariant combination of image derivatives but other local
invariants have been proposed. Considering feature point appear to be
a better approach to achieve robustness to scale, viewpoint, illumina-
tion changes and partial occlusions than edge- or eigen-image- based
techniques.

During an offline training stage, one builds a database of interest
points lying on the object and whose position on the object surface
can be computed. A few images in which the object has been man-
ually registered are often used for this purpose. At runtime, feature
points are first extracted from individual images and matched against
the database. The object pose can then be estimated from such corre-
spondences, for example using RANSAC to eliminate spurious corre-
spondences.

The difficulty in implementing such approaches comes from the fact
that the database images and the input ones may have been acquired
from very different viewpoints. As discussed in Subsection 4.4.2, unless
the motion is very quick, this problem does not arise in conven-
tional recursive tracking approaches because the images are close to
each other. However, for tracking-by-detection purposes, the so-called
wide baseline matching problem becomes a critical issue that must be
addressed.

In the remainder of this subsection, we discuss in more detail the
extraction and matching of feature points in this context. We conclude
by discussing the relative merits of tracking-by-detection and recursive
tracking.

5.1 Feature Point Extraction

To handle as wide as possible a range of viewing conditions, feature
point extraction should be insensitive to scale, viewpoint, and illumi-
nation changes.



68 Tracking by Detection

As proposed in [77], scale-invariant extraction can be achieved by
taking feature points to be local extrema of a Laplacian-of-Gaussian
pyramid in scale-space. To increase computational efficiency, the Lapla-
cian can be approximated by a Difference-of-Gaussians [80]. Research
has then focused on affine invariant region detection to handle more
perspective changes. [11, 110, 91] used an affine invariant point detec-
tor based on the Harris detector, where the affine transformation that
makes equal the two eigen values of the auto correlation matrix is eval-
uated to rectify the patch appearance. [134] achieves such invariance
by fitting an ellipse to the local texture. [87] proposes a fast algo-
rithm to extract Maximally Stable Extremal Regions demonstrated in
a live demo. [92] gives a good summary and comparisons of the existing
affine invariant regions detectors. The reader interested in experiment-
ing with such methods can find some code or executable available for
research purposes on the web pages of David Lowe and Krystian Miko-
lajczyk. Our own method [74] is also easy to reimplement, and the
reader is encouraged to try it. Remember that all these approaches
mostly depend on the object texture, and would work better on plain,
textured, Lambertian target.

5.2 Wide Baseline Matching

Once a feature point has been extracted, the most popular approach
to matching it is first to characterize it in terms of its image neigh-
borhood and then to compare this characterization to those present in
the database. Such characterization, or local descriptor, should be not
only invariant to viewpoint and illumination changes but also highly
distinctive. We briefly review some of the most representative below.

5.2.1 Local Descriptors

Many such descriptors have been proposed over the years. For example,
[111] computes rotation invariant descriptors as functions of relatively
high order image derivatives to achieve orientation invariance; [134]
fits an ellipse to the texture around local intensity extrema and uses
the Generalized Color Moments [93] as a descriptor. [82] introduces a
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(a) (b) (c)

Fig. 5.1 Using SIFT for tracking-by-detection. (a) Detected SIFT features [81]. (b,c) They
have been used to track the pose of the camera and add the virtual teapot [120]. (Courtesy
of D.G. Lowe and I. Gordon).

descriptor called SIFT based on multiple orientation histograms, which
tolerates significant local deformations. This last descriptor has been
shown in [90] to be one of the most efficient. As illustrated by Figure 5.1,
it has been successfully applied to 3D tracking in [113, 120] and we now
describe it in more detail.

The remarkable invariance of the SIFT descriptor is achieved by a
succession of carefully designed techniques. First the location and scale
of the keypoints are determined precisely by interpolating the pyra-
mid of Difference-of-Gaussians used for the detection. To achieve image
rotation invariance, an orientation is also assigned to the keypoint. It is
taken to be the one corresponding to a peak in the histogram of the gra-
dient orientations within a region around the keypoint. This method is
quite stable under viewpoint changes, and achieves an accuracy of a few
degrees. The image neighborhood of the feature point is then corrected
according to the estimated scale and orientation, and a local descrip-
tor is computed on the resulting image region to achieve invariance
to the remaining variations, such as illumination or out-of-plane vari-
ation. The point neighborhood is divided into several, typically 4×4,
subregions and the contents of each subregion is summarized by an
height-bin histogram of gradient orientations. The keypoint descriptor
becomes a vector with 128 dimensions, built by concatenating the dif-
ferent histograms. Finally, this vector is normalized to unit length to
reduce the effects of illumination changes.
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5.2.2 Statistical Classification

The SIFT descriptor has been empirically shown to be both very dis-
tinctive and computationally cheaper than those based on filter banks.
To shift even more of the computational burden from matching to
training, which can be performed beforehand, we have proposed in
our own work an alternative approach based on machine learning tech-
niques [74]. We treat wide baseline matching of keypoints as a classifi-
cation problem, in which each class corresponds to the set of all possible
views of such a point. Given one or more images of a target object, the
system synthesizes a large number of views, or image patches, of indi-
vidual keypoints to automatically build the training set. If the object
can be assumed to be locally planar, this is done by simply warping
image patches around the points under affine deformations, otherwise,
given the 3D model, standard Computer Graphics texture-mapping
techniques can be used. This second approach relaxes the planarity
assumptions.

The classification itself is performed using randomized trees [1].
Each non-terminal node of a tree contains a test of the type: “Is this
pixel brighter than this one?” that splits the image space. Each leaf con-
tains an estimate based on training data of the conditional distribution
over the classes given that a patch reaches that leaf. A new image is
classified by simply dropping it down the tree. Since only pixel inten-
sities comparisons are involved, this procedure is very fast and robust
to illumination changes. Thanks to the efficiency of randomized trees,
it yields reliable classification results.

Fig. 5.2 Detection and computation in real-time of the 3D pose of a planar object, a full
3D object, and a deformable object. (From [74] and [102].)
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As depicted by Figure 5.2, this method has been successfully used
to detect and compute the 3D pose of planar, non-planar, and even
deformable objects [74, 102].

5.3 From Wide Baseline Matching to 3D Tracking

As mentioned before, wide baseline matching techniques can be used
to perform 3D tracking. To illustrate this, we briefly describe here the
SIFT-based implementation reported in [120].

First, during a learning stage, a database of scene feature points is
built by extracting SIFT keypoints in some reference images. Because
the keypoints are detected in scale-space, the scene does not nec-
essarily have to be well-textured. Their 3D positions are recovered
using a structure-from-motion algorithm. Two-view correspondences
are first established based on the SIFT descriptors, and chained to
construct multi-view correspondences while avoiding prohibitive com-
plexity. Then the 3D positions are recovered by a global optimization
over all camera parameters and these point coordinates, which is ini-
tialized as suggested in [127].

At run-time, SIFT features are extracted from the current frame,
matched against the database, resulting in a set of 2D / 3D correspon-
dences. The camera pose can be recovered using RANSAC and a P3P
algorithm, as described in Subsection 2.3.3.

The best candidate match for a SIFT feature extracted from the
current frame is assumed to be its nearest neighbor, in the sense of
the Euclidean distance of the descriptor vectors, in the point database.
The size of the database and the high dimensionality of these vectors
would make the exhaustive search intractable, especially for real-time
applications. To allow for fast search, the database is organized as a
k-d tree. The search is performed so that bins are explored in the order
of their closest distance from the query description vector, and stopped
after a given number of data points has been considered, as described
in [13]. In practice, this approach returns the actual nearest neighbor
with high probability.

Because the performance of RANSAC degrades rapidly when the
percentage of outliers in the set of 2D / 3D correspondences increases,
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the query point is matched only if it is close enough to its nearest-
neighbor. This greatly reduces the number of false matches that may
result from cluttered background. A good idea at this point is that
matches based on feature point recognition should be refined by a local
image-patch based search for improved matching accuracy before being
used for tracking.

As discussed Subsection 4.4.4, recovering the camera positions in
each frame independently and from noisy data typically results in jit-
ter. To stabilize the pose, a regularization term that smoothes camera
motion across consecutive frames is introduced. Its weight is iteratively
estimated to eliminate as much jitter as possible without introducing
drift when the motion is fast. The full method runs at four frames per
second on a 1.8 GHz ThinkPad.

5.4 The End of Recursive Tracking?

Since real-time tracking-by-detection has become a practical possibil-
ity, one must wonder if the conventional recursive tracking methods
that have been presented in the previous subsections of this survey are
obsolescent.

We do not believe this to be the case. As illustrated by the case
of the SIFT-based tracking system [120] discussed above, treating each
frame independently has its problems. Imposing temporal continuity
constraints across frames can help increase the robustness and quality of
the results. Furthermore, wide baseline matching tends to be both less
accurate and more computationally intensive than the short baseline
variety.

As shown in Subsection 4.4.4, combining both kinds of approaches
can yield the best of both worlds: Robustness from tracking-by-
detection, and accuracy from recursive tracking. In our opinion, this is
where the future of tracking lies. The challenge will be to become able,
perhaps by taking advantage of recursive techniques that do not require
prior training, to learn object descriptions online so that a tracker can
operate in a complex environment with minimal a priori knowledge.



6
Conclusion

To conclude this survey, we first attempt to offer some practical advice
to the reader who may be wondering what method to use in a given
situation. We then discuss what we see as the future of the 3D tracking
research.

6.1 Choosing the Appropriate Approach to 3D Tracking

Such a choice crucially depends on the target application and the envi-
ronment in which it is expected to work. Table 6.1 summarizes the
possibilities that we discuss in more detail below.

Even after more than twenty years of research, practical vision-
based 3–D tracking systems still rely on fiducials because this remains
the only approach that is sufficiently fast, robust, and accurate. There-
fore, if it is practical to introduce them in the environment the sys-
tem inhabits, this solution surely must be retained. If expense is not a
major issue, commercial products such as the ones proposed by the
Advanced Real-time Tracking or Geodetic services, Inc., Advanced
Real-time Tracking GmbH, Metronor, ViconPeak, AICON 3D Sys-
tems GmbH companies provide the accuracy, reliability, and speed

73
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required by industrial or medical applications. Their drawback is that
they require retro-reflective spheres and infrared cameras, which makes
their deployment relatively expensive and cumbersome. ARToolkit [3]
is a freely available alternative that uses planar fiducials that may be
printed on pieces of paper. While less accurate, it remains robust and
allows for fast development of low-cost applications. As a result, it has
become popular in the Augmented Reality Community.

However, this state of affairs may be about to change as computers
have just now become fast enough to reliably handle natural features
in real-time, thereby making it possible to completely do away with
fiducials. This is especially true when dealing with objects that are
polygonal, textured, or both.

Polygonal Objects For objects that have strong contours and
are silhouetted against relatively simple backgrounds, the RAPiD-like
methods of Subsection 4.1 are a good place to start. They give good
results while being fast and relatively simple to implement. By relying
on fast optimization techniques and on a fast and reliable top-down
feature extraction, it is possible to process images at more then 50 Hz
on a modern PC [69]. They are also naturally robust to light and scales
changes, and specular effects. They run very fast even on older, slower
computers. As a result, they have actually been used for visual servoing
in industrial environments where reliable edges can be found.

Note, however, that these trackers are prone to catastrophic fail-
ures resulting in complete loss of track. This is particularly true when
the background becomes cluttered or when an aspect change occurs,
making it easy to confuse a true object edge with another one. This
can be minimized by careful implementation but not completely elimi-
nated. Note that such failures are more frequent when tracking simple
objects, such as a rectangular box, than more complex ones. This makes
sense because the latter provide a richer sampling of the set of possible
orientations. Therefore, if some of the data is corrupted by noise, it is
usually easier for a robust estimator to ignore it and use the rest.

Textured Objects If the target object is textured, such image cue
can replace, or complement, the contour information.
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If the target object is planar and occlusions are unlikely to occur,
template-based methods such as those discussed in Subsection 4.3.3
have been reported [66] to perform very accurately in the presence of an
agile motion. This method was reported to take less than 10 ms on a by
now old computer (an O2 Silicon Graphics workstation with a 150 MHz
R5000 processor). It is unfortunately very sensitive to occlusions and
hard to extend to fully 3–Dimensional objects.

By contrast, the interest point-based approaches discussed in Sub-
sections 4.4.4 and 4.4.3 do not suffer from these limitations, at least
when the scene is sufficiently textured. However, they entail both a
much more involved implementation and a larger computational bur-
den. They entail both a much more involved implementation and a
larger computational burden. They run at frame-rate on modern PCs
but still require the full CPU to do so. We therefore expect to have
to wait for a few more years to have them use only a fraction of the
available CPU, as contour-based methods already do. We neverthe-
less believe the wait to be worthwhile because these methods can be
made to be very robust to partial occlusions as well as to lighting,
aspect, and background changes. Among the many existing methods,
the choice can be made on the basis of the available models for the
target object. In the absence of such a model, one can rely on a fully
bottom-up approach [28, 100] or on one that treats the scene as a set
of planar patches [119], but with no explicit 3–D model management.
[100] reports a 13 frame-per-second on a 1 GHz computer. [28] reaches
30 frame-per-second rate on a Pentium M 1.6 GHz laptop, by consid-
ering fewer but stronger interest points.

If a full 3–D model is available, or even required as is usually the
case for AR applications, it can be effectively used to eliminate jitter
and ensure accurate reprojection into the images [137]. Furthermore, if
a few keyframes – that is, views of the target object for which the pose
known – can be created during a training phase, they can be used in
conjunction with the 3–D model to complement the information pro-
vided by matching against previous frames. This results in an algorithm
that does not drift and can recover from tracking failures [137]. It runs
at 20 frame-per-second on a 2.8 GHz.



6.2. Implementation Issues 77

6.2 Implementation Issues

In their basic principles, most of the approaches discussed here are
fairly easy to understand. However, their performance is often critically
connected to the quality of the implementation. Those implementation
details are often buried towards the end of the papers, if mentioned at
all. To give the reader a flavor of what to look for, we give here a short
and non-exhaustive list of such details.

For all these methods, while a rough calibration of the internal
parameters camera can suffice for reasonable results, an accurate, care-
fully performed calibration can yield to surprising improvements. A
wide-angle camera generally helps by providing more constraints. As
shown Subsection 2.1.5, the distortions can easily be corrected. When
possible, one can also use new omnidirectional cameras [46, 126] that
provide even more image constraints and improve both accuracy and
robustness.

6.2.1 Contour Based Methods

As discussed in [85], it seems preferable to sample the projected con-
tours rather than the 3–D model contours. The use of first order Gaus-
sian kernels also helps a lot to find the corresponding image contour,
even with a mask that is kept as small as 3 × 3 or 5 × 5 to preserve
accuracy and the computation speed. When looking along a scan-line
for an image edge in cases where several may be found, the criterion
used to pick the best has to balance gradient-strength against proxim-
ity to the previous position in a way that prevents fast divergence of
the tracker. One such way is to endow the algorithm with the ability
to consider several hypotheses simultaneously [136].

6.2.2 Interest Point Based Methods

As discussed in [54], in an effective DLT-style approach to estimating a
homography between images, the point coordinates should be normal-
ized to improve the accuracy. The Harris detector [53, 116] is a valid
choice for point detection. However, to reduce the risk of producing
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ill-conditioned configuration, the points should be well spread on the
visible surface of the object. An effective way to do this is to first
divide the input images into subregions, and then to apply an adap-
tive threshold per subregion. This ensures that some points will be
detected in low textured regions while reducing the number of points
detected in highly textured ones. Once detected, the points could be
tracked using the Kanade-Lucas-Tomasi tracker [129, 116], for which
an implementation can be found in the OpenCv library [60] and on the
website of Stan Birchfield [14]. However, in our experience, it is better
to detect and match points in successive images, as described in Sub-
sections 4.4.1 and 4.4.2. It seems to be less prone to drift, and allows
for aspect changes.

6.3 The Future of 3D Tracking

Even though 3D tracking algorithms are on the verge of becoming
practical without requiring fiducials, the reader must be aware that
the recursive nature of most of these algorithms makes them inherently
fragile: They must be initialized manually and cannot recover if the
process fails for any reason. In practice, even the best methods suffer
such failures all too often, for example because the motion is too fast,
a complete occlusion occurs, or simply because the target object moves
momentarily out of the field of view.

This can be addressed by combining image data with dynamics
data provided by inertial sensors or gyroscopes [123, 41]. The sensors
allow a prediction of the camera position or relative motion that can
then be refined using vision techniques similar to the ones described
in this survey. Such combination is possible for applications, such as
Augmented Reality, that require tracking of the camera with respect to
a static scene, assuming one is willing to instrument the camera. How-
ever, instrumenting the camera is not always an option. For example,
it would be of no use to track moving cars with a static camera.

A more generic and desirable approach is therefore to develop purely
image-based methods that can detect the target object and compute
its 3D pose from a single image. If they are fast enough, they can then
be used to initialize and re-initialize the system as often as needed,
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even if they cannot provide the same accuracy as traditional recursive
approaches that use temporal continuity constraints to refine their esti-
mates. Techniques able to do just this are just beginning to come online.
And, since they are the last missing part of the puzzle, we expect that
we will not have to wait for another twenty years for purely vision-based
commercial systems to become a reality.
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