
Randomized Trees for Real-Time Keypoint Recognition

Vincent Lepetit Pascal Lagger Pascal Fua
Computer Vision Laboratory
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Abstract
In earlier work, we proposed treating wide baseline

matching of feature points as a classification problem, in
which each class corresponds to the set of all possible views
of such a point. We used a K-mean plus Nearest Neighbor
classifier to validate our approach, mostly because it was
simple to implement. It has proved effective but still too
slow for real-time use.

In this paper, we advocate instead the use of randomized
trees as the classification technique. It is both fast enough
for real-time performance and more robust. It also gives us
a principled way not only to match keypoints but to select
during a training phase those that are the most recogniz-
able ones. This results in a real-time system able to detect
and position in 3D planar, non-planar, and even deformable
objects. It is robust to illuminations changes, scale changes
and occlusions.

1. Introduction
Wide baseline keypoint matching has proved to be an effec-
tive tool for applications ranging from camera registration
to object detection. Since the pioneering work by Schmid
and Mohr [1], the algorithms have become ever more robust
to scale, viewpoint, illumination changes and partial occlu-
sions [2, 3, 4, 5, 6, 7].

These wide baseline matching methods, however, are
typically designed to match two images but do not take ad-
vantage of the fact that, for object detection and pose esti-
mation purposes, both a 3D object model and several train-
ing images may be available. As shown in Figs 1 and 2,
our goal is to incorporate this additional information into
a keypoint recognizer that is both robust and fast enough
for real-time object detection, whether or not the object is
planar.

The key ingredient of our approach is to treat wide base-
line matching of feature points as a classification problem,
in which each class corresponds to the set of all possible
views of such a point. During training, given at least one
image of the target object, we synthesize a large number

of views of individual keypoints. If the object can be as-
sumed to be locally planar, this is done by simply warp-
ing image patches around the points under affine or ho-
mographic deformations. Otherwise, given the 3D model,
we use standard Computer Graphics texture-mapping tech-
niques. This second approach relaxes the planarity assump-
tions. At run-time, we can then use a powerful and fast
classification technique to decide to which view set, if any,
an observed feature belongs. This method is as effective
and much faster than the usual way of computing local de-
scriptors and comparing their responses. Once potential
correspondences have been established between the inter-
est points of the input image and those lying on the object,
we apply a standard RANSAC-based method to estimate
the 3D pose.

In previous work [8], we used a K-mean plus Nearest
Neighbor classifier to validate our approach, mostly be-
cause it was simple to implement. It has proved effective
but still too slow for real-time use. Here, we advocate in-
stead the use of randomized trees [9] as the classification
technique. It is both faster and more robust, at the possi-
ble expense of additional training time. Furthermore, it also
gives us a principled way, not only to recognize keypoints,
but also to select during the training phase those that yield
the best recognition rate. As a result, even though we use
a monoscale algorithm for keypoint extraction [10], we can
achieve scale-invariance across a range of scales by using
training images at different resolutions and retaining only
those keypoints that are stable within the range.

In short, the contribution of this paper is not only a faster
algorithm but also one that is more robust through the ap-
propriate selection of keypoints to be recognized.

In the remainder of the paper, we first discuss related
work and recall how wide baseline matching can be stated
as a classification problem. We then present the proposed
keypoint selection method, detail our new classification
method based on randomized trees, and comment the re-
sults.



Figure 1. Detection of a book in a video sequence: The book is detected independently and suc-
cessfully in all subsequent frames at 25Hz in 640×480 images on a standard PC, in spite of partial
occlusion, cluttered background, motion blur, large illumination and pose changes. In the last two
frames, we add the inevitable virtual teapot to show we also recover 3D pose. A video sequence is
available at http://cvlab.epfl.ch/research/augm/detect.html

Figure 2. The method is just as effective for 3D objects. In this experiment, we detected the teddy
tiger using a 3D model reconstructed from several views such as the two first images on the left.

2. Related Work

In the area of automated 3D object detection, we can distin-
guish between “Global” and “Local” approaches.

Global ones use statistical classification techniques to
compare an input image to several training images of an
object of interest and decide whether or not it appears in
this input image. The methods used range from relatively
simple methods such as Principal Component Analysis and
Nearest Neighbor search [11] to more sophisticated ones
such as AdaBoost and classifiers cascade to achieve real-
time detection of human faces at varying scales [12]. Such
approaches, however, are not particularly good at handling
occlusions, cluttered backgrounds, or the fact that the pose
of the target object may be very different from those in the
training set. Furthermore, these global methods cannot pro-
vide accurate 3D pose estimation.

By contrast, local approaches use simple 2D features
such as corners or edges, which makes them resistant to
partial occlusions and cluttered backgrounds: Even if some
features are missing, the object can still be detected as
long as enough are found and matched. Spurious matches
can be removed by enforcing geometric constraints, such
as epipolar constraints between different views or full 3D
constraints if an object model is available. For local ap-

proaches to be effective, feature point extraction and char-
acterization should be insensitive to viewpoint and illumi-
nation changes. Scale-invariant feature extraction can be
achieved by using Harris detector [13] at several Gaussian
derivative scales, or by considering local optima of pyrami-
dal difference-of-Gaussian filters in scale-space [7]. Miko-
lajczyck et al. [4] have also defined an affine invariant point
detector to handle larger viewpoint changes, that has been
used for 3D object recognition [14], but it relies on an iter-
ative estimation that would be too slow for our purposes.

Given the extracted feature points, various local descrip-
tors have been proposed: Schmid and Mohr [1] compute
rotation invariant descriptors as functions of relatively high
order image derivatives to achieve orientation invariance.
Baumberg [3] uses a variant of the Fourier-Mellin transfor-
mation to achieve rotation invariance. He also gives an al-
gorithm to remove stretch and skew and obtain an affine
invariant characterization. Allezard et al. [15] represent
the keypoint neighborhood by a hierarchical sampling, and
rotation invariance is obtained by starting the circular sam-
pling with respect to the gradient direction. Tuytelaars and
al. [2] fit an ellipse to the texture around local intensity ex-
trema to obtain correspondences remarkably robust to view-
point changes. Lowe [7] introduces a descriptor called SIFT
based on several orientation histograms, that is not fully
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affine invariant but tolerates significant local deformations.
Most of these methods are too slow for real-time processing,
except for [5] that introduces Maximally Stable Extremal
Regions to achieve near frame rate matching of stable re-
gions. By contrast, our classification-based method runs
easily at frame rate, because it shifts much of the compu-
tational burden to a training phase and, as a result, reduces
the cost of online matching while increasing its robustness.

Classification as a technique for wide baseline matching
has also been explored by [16] in parallel to our previous
work. In this approach, the training set is iteratively built
from incoming frames, and kernel PCA is used for classi-
fication. While this is interesting for applications when a
training stage is not possible, our own method allows to de-
tect the object under unseen positions since we synthesize
new views. The classification method described in this pa-
per also has a lower complexity than their approach.

3. Keypoint Matching as Classification

Let us first recall how matching keypoints found in an in-
put image against keypoints on a target object O can be
naturally formulated as a classification problem [8]. Dur-
ing training, we construct a set K = {k1 . . .kN} of N

prominent keypoints lying on the object. At runtime, given
an input patch p(kinput) centered at a keypoint kinput ex-
tracted in the input image, we want to decide whether or
not it can be an view of one of the N keypoints ki. In other
words, we want to assign to p a class label Y (p) ∈ C =
{−1, 1, 2, . . . , N}, where the −1 label denotes all the points
that do not belong to the object. Y cannot be directly ob-
served and we aim at constructing a classifier Ŷ such as
P (Y 6= Ŷ ) is small.

In other recognition tasks, such as face or character
recognition, large training sets of labeled data are usually
available. However, for automated pose estimation, it would
be impractical to require a very large number of sample im-
ages. Instead, to achieve robustness with respect to pose
and complex illumination changes, we use a small number
of images and synthesize many new views of the object us-
ing simple rendering techniques to train our classifier: This
approach gives us a virtually infinite training set to perform
the classification.

For each keypoint, we can then constitute a sampling of
its view set, that is the set of all its possible appearances
under different viewing conditions. This sampling allows
us to use statistical classification techniques to learn them
during an offline stage, and, finally, to perform the actual
classification at run-time. This gives us a set of matches
that lets us estimate the pose.

Figure 3. The most stable keypoints selected
by our method on the book cover and the
teddy tiger.

Figure 4. An example of generated views for
the book cover and the teddy tiger, and the
extracted keypoints for these views.

4. Building the Training Set
In [8], we built the view sets by first extracting the keypoints
ki in the given original images then generating new views
of each keypoint independently. As depicted in Fig.4, it is
more effective to generate new views of the whole object,
and extract keypoints in these views. This approach allows
us to solve in a simple way several fundamental problems
at no additional computation cost at run-time: We can eas-
ily determine stable keypoints under noise and perspective
distortion, which helps making the matching robust to noise
and cluttered background.

4.1. Local Planarity Assumptions
If the object can be assumed to be locally planar, a new
view can be synthesized by warping a training image of the
object using an affine transformation that approximates the
actual homography. The affine transformations can be de-
composed as: A = RθR

−1

φ SRφ, where Rθ and Rφ are
two rotation matrices respectively parameterized by the an-
gles θ and φ, and S = diag [λ1, λ2] is a scaling matrix. In
this paper, we use a random sampling of the affine trans-
formations space, the angles θ and φ varying in the range
[−π; +π], and the scales λ1 and λ2 varying in the range
[0.2; 1.8]. Those ranges are much larger than the ones used
in our earlier work, and can be handled because we now de-
termine the most stable points and thanks to our new classi-
fication method.
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4.2. Relaxing the Planarity Assumptions
One advantage of our approach is that we can exploit the
knowledge of a 3D model if available. Such a model is
very useful to capture complex appearance changes due to
changes in the pose of a non convex 3D object, including
occlusions and non-affine warping. Given the 3D model,
we use standard Computer Graphics texture-mapping tech-
niques to generate new views under perspective transforma-
tions.

In the case of the teddy tiger of Fig.2, we used Image
Modeler1 to reconstruct its 3D model. An automated recon-
struction method could also have been used, another alter-
native would have been to use image-based rendering tech-
niques to generate the new views.

4.3. Keypoint Selection
We are looking for a set of keypoints K = {ki} lying on
the object to detect, and expressed in a reference system
related to this object. We should retain the keypoints with a
good probability P (k) to be extracted in the input views at
run-time.

4.3.1. Finding Stable Keypoints

Let T denote the geometric transformation used to generate
a new view, and k̃ a keypoint extracted in this view. T is
an affine transformation, or a projection if the 3D model is
available. By applying T −1 to k̃, we can recover its corre-
sponding keypoint k in the reference system. Thus, P (k)
can be estimated for keypoints lying on the objects from
several generated views. The set K is then constructed by
retaining keypoints ki with a high P (ki). In our experi-
ments, we retain the 200 first keypoints according to this
measure. Fig. 3 shows the keypoints selected on the book
cover and the teddy tiger.

The training set for keypoint ki is then built by collecting
the neighborhood p of the corresponding k̃ in the generated
images, as shown in Figs. 5 and 6.

4.3.2. Robustness to Image Noise

When a keypoint is detected in two different images, its pre-
cise location may shift a bit due to image noise or viewpoint
changes. In practice, such a positional shift results in large
errors of direct cross-correlation measures. One solution is
to iteratively refine the point localization [4], which can be
costly.

In our method, this problem is directly handled by the
fact that we extract the keypoints k̃ in the synthesized views:
These images should be as close as possible to actual im-
ages captured from a camera, and we add white noise to the

1ImageModeler is a commercial product from Realviz(tm) that allows
3D reconstruction from several views with manual intervention.

Figure 5. First row: Patches centered at
a keypoint extracted in several new views,
synthesized using random affine transfor-
mations and white noise addition. Second
row: Same patches after orientation correc-
tion and Gaussian smoothing. These prepro-
cessed patches are used to train the keypoint
classifier. Third and fourth rows: Same as be-
fore for another keypoint located on the bor-
der of the book.

Figure 6. In the case of the teddy tiger, we
restricted the range of acceptable poses and
the orientation correction was not used.

generated views. To simulate a cluttered background, the
new object view is rendered over a complex random back-
ground. That way, the system is trained with images similar
to those at run-time.

5. Keypoint Recognition
In [8], we used a K-mean plus Nearest Neighbor classifier
to validate our approach, because it is simple to implement
and it gives good results. Nevertheless, such classifier is
known to be one of the less efficient classification meth-
ods. We show in this section that randomized trees are bet-
ter suited to our keypoint recognition problem, because they
allow very fast recognition and they naturally handle multi-
class problems.

5.1. Randomized Trees
Randomized trees are simple but powerful tools for clas-
sification, introduced and applied to recognition of hand-
written digits in [9]. [17] also applied them to recognition
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of 3–D objects. We quickly recall here the principles of
randomized trees for the unfamiliar reader. As depicted by
Fig. 7, each non-terminal node of a tree contains a simple
test that splits the image space. In our experiments, we use
tests of the type: “Is this pixel brighter than this one ?”.
Each leaf contains an estimate based on training data of the
conditional distribution over the classes given that an image
reaches that leaf. A new image is classified by dropping it
down the tree, and, in the one tree case, attributing it the
class with the maximal conditional probability stored in the
leaf it reaches.

We construct the trees in the classical, top-down man-
ner, where the tests are chosen by a greedy algorithm to
best separate the given examples, according to the expected
gain of information. The process of selecting a test is re-
peated for each non-terminal descendant node, using only
the training examples falling in that node. The recursion is
stopped when the node receives too few examples, or when
it reaches a given depth.

Since the numbers of classes, training examples and pos-
sible tests are large in our case, building the optimal tree be-
comes quickly intractable. Instead we grow multiple, ran-
domized trees: For each tree, we retain a small random sub-
set of training examples and only a limited random sample
of tests at each node, to obtain weak dependency between
the trees. More details about the trees construction can be
found in [10].

5.2. Preprocessing

In order to make the classification task easier, the patches p

of the training set or at run-time are preprocessed to remove
some variations within the classes attributable to perspec-
tive and noise.

The generated views are first smoothed using a Gaussian
filter. We also use the method of [7] to attribute a 2D ori-
entation to the keypoints and achieve some normalization.
The orientation is estimated from the histogram of gradient
directions in a patch centered at the keypoint. Note that we
do not require a particularly stable method, since the same
method is used for training and run-time recognition. We
just want it to be reliable enough to reduce the variability
within the same class. Once the orientation of an extracted
keypoint is estimated, its neighborhood is rectified as shown
Fig. 5.

Illumination changes are usually handled by normaliz-
ing the views intensities in some way, for example by nor-
malizing by the L2 norm of the intensities. We show be-
low that our randomized trees allow to skip this step. The
classification indeed relies on tests comparing intensities of
pixels. This avoids the use of an arbitrary normalization
method and makes the classification very robust to illumi-
nation changes.

m

m m m

~
><

Figure 7. Type of tree used for keypoint recog-
nition. The nodes contain tests comparing
two pixels in the keypoint neighborhood; the
leaves contain the dl posterior distributions.

5.3. Node Tests
In practice, we use ternary tests based on the difference of
intensities of two pixels taken in the neighborhood of the
keypoint:

If I(p,m1) − I(p,m2) < −τ go to child 1;
If |I(p,m1) − I(p,m2)| ≤ +τ go to child 2;
If I(p,m1) − I(p,m2) > +τ go to child 3.

I(p,m) is the intensity of patch p after the preprocessing
step described in Section 5.2, at pixel location m. m1 and
m2 are two pixel locations chosen to optimize the expected
gain of information as described above. τ is a threshold de-
ciding in which range two intensities should be considered
as similar. In the results presented in this paper, we take τ

to be equal to 10.
This test is very simple and requires only pixel intensi-

ties comparisons. Nevertheless, because of the efficiency
of randomized trees, it yields reliable classification results.
We tried other tests based on weighted sums of intensities
a la Adaboost, on gradients or on Haar wavelets without
significant improvements on the classification rate.

5.4. Run Time Keypoint Recognition
Once the randomized trees T1, . . . , TL are built, the pos-
terior distributions P (Y = c|T = Tl, reached leaf = η)
can be estimated for each terminal node η from the train-
ing set. At runtime, the patches p centered at the keypoints
extracted in the input image are preprocessed and dropped
down the trees. Following [9], if dl(p) denotes the posterior
distribution in the node of tree Tl reached by a patch p, p is
classified considering the average of the distributions dl(p):

Ŷ (p) = argmax
c

dc(p) = argmax
c

1

L

∑

l=1...L

dl(p)

dc(p) is the average of the posterior probabilities of class
c and constitutes a good measure of the match confidence.
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Figure 8. Percentage of correctly classified
views with respect to the number of trees,
using trees of depth 5, 10, and 15.

We can estimate during training a threshold Dc to decide if
the match is correct or not with a given confidence s:

P (Y (p) = c|Ŷ (p) = c, dc(p) > Dc) > s

In practice we take s = 90%. Keypoints giving dc(p)
lower than Dc are considered as keypoints detected on the
background, or misclassified keypoints, and are therefore
rejected. It leaves a small number of outlier matches, and
the pose of the object is found by RANSAC after few itera-
tions.

5.5. Performance
The correct classification rate P (Ŷ (p) = c|Y (p) = c)
of our classifier can then be measured using new random
views. The graph of Fig. 8 represents the percentage of
keypoints correctly classified, with respect to the number
of trees, for several maximal depths for the trees. The graph
shows no real differences between taking trees of depth 10
or 15, so we can use trees with limited depth. It also shows
that 20 trees are enough to reach a recognition rate of 80%.
Growing 20 trees of depth 10 takes about 15 minutes on a
standard PC.

Since the classifier works by combining the responses
of sub-optimal trees, we tried to re-use trees grown for a
first object for another object, as shown Fig. 9: We updated
the posterior probabilities in the terminal nodes, but kept
the same tests in the non-terminal nodes. We experienced
a slight drop of performance, but not enough to prevent the
system from recognizing the new object. In this case, the
time required for training drops to less than one minute.

6. Results
6.1. Planar Objects
We first tried our algorithm on planar objects. Fig. 11 shows
matches between the training image and input images estab-

Figure 9. Re-usability of the set of trees: A
new object is presented to the system, and
the posterior probabilities are updated. The
new object can then be detected.

Figure 10. Comparison with SIFT. When too
much perspective distorts the object image,
the SIFT approach gives only few matches
(left), while our approach is not perturbed
(right).

lished in real-time. The estimated pose is then accurate and
stable enough for Augmented Reality as shown Fig. 1.

We compared our results with those obtained using the
executable that implements the SIFT method [7] kindly pro-
vided by David Lowe. As shown in Fig. 10, when too much
perspective distorts the object view, this method gives only
few matches, while ours is not perturbed. Ours is also much
faster. For a fair comparison, remember that we take advan-
tage of a training stage possible in object detection applica-
tions, while the SIFT method can also be used to match two
given images. Another difference is that we cannot handle

Figure 11. Detection of the book: Inlier
matches established in real-time under sev-
eral poses.
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Figure 12. Deformable objects: the object is
detected and its deformation estimated, us-
ing the method described in [18].

as much scale changes as SIFT because we do not use (yet)
a multi-scale keypoint detection.

6.2. Detecting a 3D Object

Fig. 2 shows results of the detection of a teddy tiger. As
mentioned above, its 3D textured model was reconstructed
from several views with the help of ImageModeler. It can
be detected from different sides, and front and up views.

6.3. Detecting Deformable Objects

Our method is also used in [18] to detect deformable objects
and estimate their deformation in real-time. The matches
are used not only to detect but also to compute a precise
mapping from a model image to the input image as shown
Fig. 12.

7. Conclusion and Perspectives

We proposed an approach to keypoint matching for object
pose estimation based on classification. We showed that
using randomized trees yields a powerful matching method
well adapted to object detection.

Our current approach to keypoint recognition relies on
comparing pixel values in small neighborhoods around
these keypoints. It works very well for textured objects,
but loses its effectiveness in the absence of texture. To in-
crease the range of applicability of our approach, we will
investigate the use of other additional image features, such
as spread gradient [19]. We believe our randomized tree ap-
proach to keypoint matching to be ideal to find out those
that are most informative in any given situation and, thus,
to allow us to mix different image features in a natural way.
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