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Abstract

We propose a novel approach to point matching under large
viewpoint and illumination changes that is suitable for ac-
curate object pose estimation at a much lower computa-
tional cost than state-of-the-art methods.

Most of these methods rely either on using ad hoc local
descriptors or on estimating local affine deformations. By
contrast, we treat wide baseline matching of keypoints as a
classification problem, in which each class corresponds to
the set of all possible views of such a point. Given one or
more images of a target object, we train the system by syn-
thesizing a large number of views of individual keypoints
and by using statistical classification tools to produce a
compact description of this view set. At run-time, we rely
on this description to decide to which class, if any, an ob-
served feature belongs. This formulation allows us to use
a classification method to reduce matching error rates, and
to move some of the computational burden from matching
to training, which can be performed beforehand.

In the context of pose estimation, we present experimen-
tal results for both planar and non-planar objects in the
presence of occlusions, illumination changes, and cluttered
backgrounds. We will show that our method is both reliable
and suitable for initializing real-time applications.

1. Introduction
While there are many effective approaches to tracking, they
all require an initial pose estimate, which remains difficult
to provide automatically, fast and reliably. Among meth-
ods that can be used for this purpose, those based on feature
point matching have become popular since the pioneering
work of Schmid and Mohr [1] because this approach ap-
pears to be more robust to scale, viewpoint, illumination
changes and partial occlusions than edge or eigen-image
based ones. Recently, impressive wide-baseline matching�
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results have been obtained [2, 3, 4, 5, 6], which make this
approach even more attractive.

These wide baseline matching methods, however, are
typically designed to match two images but not to take
advantage of the fact that, for pose estimation purposes,
both a 3D object model and several training images may
be available. In this paper, we propose a method that al-
lows us to use this additional information to build compact
descriptors that allow recognition of key feature points at a
much reduced computational cost at run-time, without loss
of matching performance. It also allows to relax the locally
planar assumption. We will demonstrate this approach both
on piecewise planar objects, such as books or boxes, and
non-planar objects such as faces.

The key ingredient of our approach is to treat wide base-
line matching of feature points as a classification problem,
in which each class corresponds to the set of all possible
views of such a point. During training, given at least one
image of the target object, we synthesize a large number of
views of individual keypoints. If the object can be assumed
to be locally planar, this is done by simply warping image
patches around the points under affine or homographic de-
formations. Otherwise, given the 3D model, we use stan-
dard Computer Graphics texture-mapping techniques. This
second approach is more complex but relaxes the planarity
assumptions. At run-time, we can then use powerful and
fast classification techniques to decide to which view set,
if any, an observed feature belongs, which is as effective
and much faster than the usual way of computing local de-
scriptors and comparing their responses. Once potential
correspondences have been established between the inter-
est points of the input image and those lying on the object,
we apply a standard RANSAC-based method to estimate
3D pose. In Figure 1, we show how it can be used to initial-
ize a 3D tracker we developed in previous work [7], and to
re-initialize if it loses track.

Here, we do not focus on interest point extraction and
use the Harris corner detector for our experiments. A more
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Figure 1: Automated pose estimation of a box to initialize
a 3D tracker. (a): One of the training images; (b): An in-
put image in which the box is automatically detected and
its pose estimated; (c) and (d): Feature points are tracked
to register the camera, even in case of partial occlusions;
(e): The tracker fails because of a complete occlusion of the
tracked object, the failure is detected and the initialization
procedure is reinvoked; (f): This procedure recognizes the
object when it reappears.

advanced detector such as the one described in [8] could
be used instead. It is therefore noteworthy that we never-
theless obtain excellent results, which can be attributed to
the fact that our method tolerates imprecision in point lo-
calization. In short, this paper introduces a novel approach
to point matching that goes a long way towards reducing the
computational burden, thus making it suitable for fast object
recognition under viewpoint and illumination changes.

In the remainder of the paper, we first discuss related
work. We introduce our approach in Section 3 and present
our results in Section 4. We conclude with our plans for
future work.

2. Related Work
In the area of automated 3D object detection, we can distin-
guish between “Global” and “Local” approaches.

Global ones use statistical classification techniques to
compare an input image to several training images of an
object of interest and decide whether or not it appears in
this input image. The methods used range from relatively

simple methods such as Principal Component Analysis and
Nearest Neighbor search [9] to more sophisticated ones
such as AdaBoost and classifiers cascade to achieve real-
time detection of human faces at varying scales [10]. Such
approaches, however, are not particularly good at handling
occlusions, cluttered backgrounds, or the fact that the pose
of the target object may be very different from the ones in
the training set. Furthermore, these global methods cannot
provide accurate 3D pose estimation.

By contrast, local approaches use simple 2D features
such as corners or edges [11], which makes them resis-
tant to partial occlusions and cluttered backgrounds: Even if
some features are missing, the object can still be detected as
long as enough are found and matched. Spurious matches
can be removed by enforcing geometric constraints, such
as epipolar constraints between different views or full 3D
constraints if an object model is available [12].

For local approaches to be effective, feature point extrac-
tion and characterization should be insensitive to viewpoint
and illumination changes. Scale-invariant feature extraction
can be achieved by using the Harris detector [13] at several
Gaussian derivative scales, or by considering local optima
of pyramidal difference-of-Gaussian filters in scale-space
[8]. Mikolajczyck et al. [4] have also defined an affine in-
variant point detector to handle larger viewpoint changes,
that have been used for 3D object recognition [14], but it
relies on an iterative estimation that would be too slow for
our purposes.

Given the extracted feature points, various local descrip-
tors have been proposed: Schmid and Mohr [1] compute
rotation invariant descriptors as functions of relatively high
order image derivatives to achieve orientation invariance.
Baumberg [3] uses a variant of the Fourier-Mellin transfor-
mation to achieve rotation invariance. He also gives an algo-
rithm to remove stretch and skew and obtain an affine invari-
ant characterization. Allezard et al. [12] represent the key
point neighborhood by a hierarchical sampling, and rotation
invariance is obtained by starting the circular sampling with
respect to the gradient direction. Tuytelaars and al. [2] fit an
ellipse to the texture around local intensity extrema and use
the Generalized Color Moments [15] to obtain correspon-
dences remarkably robust to viewpoint changes. Lowe [6]
introduces a descriptor called SIFT based on several orien-
tation histograms, that is not fully affine invariant but toler-
ates significant local deformations. This last descriptor has
been shown in [16] to be one of the most efficient, which is
why we compare our results against it in the Section 4.

In short, local approaches have been shown to work well
on highly textured objects, to handle partial occlusions, and
to tolerate errors in the correspondences. However, even if
they can be used for object detection and pose estimation,
they rely on relatively expensive point matching between a
sample and an input image. By contrast, our approach is
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geared towards shifting much of the computational burden
to a training phase during which we build descriptors from
the set of sample images and, as a result, reducing the cost
of online matching while increasing its robustness.

3. Feature Point Matching as a Classi-
fication Problem

3.1. Approach
Matching interest points found in an input image against
feature points on a target object � can be naturally formu-
lated as a classification problem as follows. During train-
ing, we construct a set ��� of � prominent feature points
lying on � . Given an input patch 	�
� , the space of all
image patches of a given size, we want to decide whether
or not it can be an image of one of the � interest points.
In other words, we want to assign to 	 a class label in��� 	���
������������ ���"!#�%$ $%$&�'�)( , where the ��� label de-
notes all the points that do not belong to the object — the
background.

�
cannot be directly observed, but our goal is

to construct a classifier *�,+ �.-/� such as 0 �1�32�4*� � is
small.

In other recognitions tasks, such as face or character
recognition, large training sets of labeled data are usually
available. However, for automated pose estimation, it would
be impractical to require very large number of sample im-
ages. Instead, to achieve robustness with respect to pose
and complex illumination changes, we use a small number
of images and synthesize many new views of the feature
points in � � using simple rendering techniques to train our
classifier.

For each feature point, this constitutes a sampling of its
view set, that is the set of all its possible appearances un-
der different viewing conditions. We can then use statistical
classification techniques to describe them compactly and,
finally, use these descriptors to perform the actual classifi-
cation at run-time. This gives us a set of matches that lets
us to estimate the pose.

3.2. Creating View Sets
Constructing the viewset of points is relatively simple, and
we focus here on some of the implementation details that
ensure invariance to illumination changes and also robust-
ness to point localization error that can occur while extract-
ing the feature points.

3.2.1 Construction Under Local Planarity Assump-
tions

For a given point in the training image, if the surface can
be assumed to be locally planar, a new view of its neighbor-
hood can be synthesized by warping using an affine trans-

Figure 2: The patch around a keypoint detected in the train-
ing image of a book cover, and two patches synthesized us-
ing random affine transformations.

formation, that approximates the actual homography:

�65 � 587 �9�;: �1< � <=7 �?>A@ (1)

where
<=7

are the coordinates of the keypoint detected in
the training image,

5B7
are the coordinates of the patch cen-

ter, and
5

the new coordinates of the warped point
<

. The
matrix : can be decomposed as: :C�;DFEGDIHKJLNM D L , whereDOE and D L are two rotation matrices respectively parame-
terized by the angles P and Q , and M � diag R S J �TSVUGW is a
scaling matrix; @X�YR Z\[]�^Z\_%Wa` is a 2D translation vector [17].

The view set is created by generating the views cor-
responding to a regular sampling of the space of the� Pb�TQ8�"S J �TS U �^Z [ �^Z _ � parameters. As discussed below, we
use non null values of @ to handle possible localization error
of the keypoints.

3.2.2 Robustness To Localization Error

When a keypoint is detected in two different images, its pre-
cise location may shift a bit due to image noise or viewpoint
changes. In practice, such a positional shift results in large
errors of direct cross-correlation measures. One solution is
to iteratively refine the point localization [4]. The keypoint
descriptor in [8] handles this problem by carefully assur-
ing that a gradient vector contributes to the same local his-
togram even in case of small positional shifts.

In our case, we simply allow the translation vector @ of
the affine transformation of Equation 1 to vary in the range
of few pixels when generating the view sets. These small
shift corresponds to the noise that arises in corner detection.

3.2.3 Invariance To Illumination Changes

Handling illumination changes can be done by normalizing
the views intensities. After experimenting with many nor-
malization techniques, we concluded that scaling the views
intensities so that all the views have the same minimum and
maximum intensity values is both cheap and effective as
shown in Figure 2: This has the advantage of emphazing
the view contrast. Because the normalization is performed
independently on each keypoint at run-time, it handles cor-
rectly complex illumination changes.
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Figure 3: Three synthetic views of a human face, generated
from the original image on the top left. The patches ex-
tracted from these images to build a viewset of a keypoint
on the nose are represented.

Figure 4: Using two different training images to build the
viewset of the same keypoint.

3.2.4 Relaxing the Planarity Assumptions

In our target applications such as initialization of model-
based 3D tracking, an object model is available. It may
be a precise one, as in the case of the box of Figure 1, or
a generic one as in the case of faces that we use to illus-
trate our technique. Such a model is very useful to capture
complex appearance changes due to changes in pose of a
non convex 3D object, including occlusions and non-affine
warping. For example, as shown in Figure 3, we generate
several views of a keypoint on the left side of the nose by
texture mapping the face in several positions.

This approach also lets us merge the information from
several training images in a natural way: The generated
viewsets can simply be combined when they correspond to
the same 3D point as depicted in Figure 4.

3.3. Classification
The classifier must be carefully designed for our prob-
lem. Even if we eventually use a robust estimator such as
RANSAC to eliminate outliers, the mis-classification rate

should be low. A high rate would slow down the robust es-
timator and the advantage of our fast matching procedure
would be lost.

The classifier should also be able to retrieve a sufficient
number of points to estimate the object pose even in pres-
ence of partial occlusion. On the other hand, not all the
keypoints detected during the training stage have to be con-
sidered: If some keypoints appear not to be characteristic
enough to be matched reliably, it is better to ignore them to
reduce the risk of mis-classification.

Classification should also be performed sufficiently fast
for interactive applications. To achieve all these require-
ments, we perform this task as follows.

First, the viewsets are computed for object points de-
tected in one or more training images. Optionnaly, we can
create a background class by taking patches around points
detected in images of typical background. This step is not
necessary but helps to deal with cluttered background.

To reduce the dimensionality, we perform a Principal
Component Analysis on the set of patches. This is followed
by K-mean estimation on each viewset independently to
handle its potentially complex shape while compacting the
viewset representation. In practice, we compute 20 means
per viewset.

Then the classifier can attribute a class to an input patch
by a Nearest Neighbor search through the set of means and
background points. The keypoints most likely to lead to
mis-classification can be found during training, by estimat-
ing ced1fhgikjfml\n o from the training set. When it is above a
given threshold (say 10%) for a class, this class is removed
from the class set p . This way, we keep the more charac-
teristic object points.

Finally we build an efficient data structure [9] to perform
an efficient run time Nearest Neighbor search in the eigen
space computed by the PCA.

3.4. Why Our Approach Is Fast

First, our method does not involve any time consuming pre-
treatment such as orientation or affine transformation ex-
traction. It is made possible by matching the input points
against the compact representation of the viewsets, that con-
tain the possible views under such transformations.

Next the eigen space allows to reduce the dimensionality
of each input patch, with negligible loss of information: The
eigen images computed by the PCA can be seen as a filter
bank like in previous methods, but they are specialized for
the object to detect, since they are directly computed on the
training set.

Finally, the PCA lets us to build an efficient data struc-
ture for fast Nearest Neighbor search at run-time, since it
sorts dimensions by order of importance.
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Figure 5: Detecting a sail. (a) The model used to detect
the sail. (b and c) Two frames from a 4000 frame video
acquired using a home camcorder during a regatta. Even
though the camera jerks, the zoom changes and the lighting
conditions are poor, the sail is detected in all frames, such
as those shown above, where a sufficient portion of the sail
is seen.

4. Results
4.1. Experiments on a Planar object
Figure 6 depicts a first set of experiments on a planar ob-
ject. About 200 key points have been detected in the train-
ing image using the Harris detector. For each we con-
structed a viewset made of 100 samples, synthesized from
random affine transformations with q�rAd^s�tvubwTtvuxo degrees,y rzd\s|{~}�uVw {%}�u�o degrees, �Arzd6uV� ��w {�� �xo , �Xr�d^s��#wT��o pix-
els. The original size of the patches is �����A��� pixels, it
is then divided by two to reduce the computation cost. We
kept the first 20 dimensions given by the PCA. 1000 feature
points have been detected in the input images, and matched
against the learned features, which lets us robustly estimate
an homography between the two sets. The input images
present perspective, intensity, scale and orientation changes,
and the object pose is nevertheless correctly recovered. The
whole process takes about 200 milliseconds on a 2GHz PC.

We compared our results with those obtained using the
executable that implements the SIFT method [6] and kindly
provided by David Lowe. Our method usually gives a lit-
tle fewer matches, and has a little higher outlier rate (about
10% of about 5%). Nevertheless, it is largely enough
to accurately estimate the object pose after a few tens of
RANSAC samples, and it runs faster: About 0.2 seconds
for our non-optimized executable against 1 second for the
Lowe executable on the same machine.

4.2. Detecting a Sail
We applied our method for the detection of a sail over a
4000 thousand frame video taken with a home camcorder
during a regatta. Despite the bad conditions: the sail is not
well textured as it is shown Figure 5, it moves in and out
of the field of view, the camera motions are very jerky and
the illumination changes all the time, the sail is detected in
all frames, such as those shown Figure 5, where a sufficient
portion of the sail is seen.

4.3. 3D Object Pose Estimation
In the case of a 3D object, the full pose is recovered from
the matches using the POSIT algorithm [18] in tandem with
RANSAC.

A Simple Box The method successfully recovers the pose
of a textured box disposed in almost any position, using
around six very different views for training (Figure 1). In
practice, the pose is recovered in less than a second.

A Human Face We applied the same method to a human
face, using the 3 training images of first row of Figure 7 and
a generic 3D face model. The training images have been
registered by hand, by moving the 3D model to the right
location. Even if the 3D model is far from perfect — it does
not have glasses and its shape does not match exactly — we
are able to recover the pose of a specific human face under
both illumination changes and partial occlusions as depicted
by Figure 7.

Working on faces is much harder than on a textured box
because faces provide far fewer feature points and their 3D
nature produces complex appearance changes. Neverthe-
less, only three training images where is enough to recover
the poses shown in Figure 7. The process is robust enough
to support some occlusion and still work if the subject re-
moves its glasses. It takes around one second.

5. Conclusion and Perspectives
We proposed an approach to point matching for object pose
estimation based on classification. It runs to be faster than
previous methods in the planar case, and, unlike these meth-
ods, still works for the non-planar case.

Our approach is also very general, and lets us relax the
locally planar assumption. In fact, it has the potential to rec-
ognize complex shaped textured objects, under large view-
point and illumination changes even with specular materi-
als, assuming we can generate images of the object under
such changes. This is a realistic assumption since there are
many Computer Graphics methods designed for this pur-
pose, which opens new avenues of research.

We expect that allowing more complex appearance
changes than the ones we have been dealing with so far will
result in the view-sets becoming more difficult to separate.
In pattern recognition it is common to address variability by
normalization. Similarly, our approach can take advantage
of a scale-space based point detector to deal with more sig-
nificant scale changes, without influencing the within class
variation. Additional partial invariance can be introduce by
removing the rotation in the manner of Lowe could also fa-
cilitate the classification. Whether or not this is warranted
depends on finding the optimal compromise between the
computation time of partial invariance and the gain in clas-
sification computation time.
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Figure 6: Comparison between SIFT method (left image) and ours (right) for a planar object. Our method usually gives a
little less matches, and has a little higher outlier rate. Nevertheless, it is largely enough to accurately estimate the object pose
after a few tens of RANSAC samples, with a lower computation cost than SIFT method.

We also intend to replace the simple classification meth-
ods we have described here by more sophisticated one that
can deal with the facts that each class can exhibit huge vari-
ability and thus requires a large number of samples and
interest points can belong to several classes or to none
at all. We will therefore investigate the use of decision
trees [19, 20, 21], which we believe to be most suitable for
our specific problem because they naturally handle multi-
class classification, can be enhanced by using powerful sta-
tistical methods such as bagging [22] and boosting [23, 24].
These methods are very fast, and achieve very good recog-
nition rate, usually more than 90%. Thus, we believe that
our approach is an important step toward much better object
recognition and detection methods, and opens good possi-
bilities for future research.
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