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Abstract

Realisticmergingofvirtual andrealobjectsrequiresthat
theaugmentedpatternsbecorrectlyoccludedbyforeground
objects.In thispaper, weproposea semi-automaticmethod
for resolvingocclusionin augmentedreality which makes
useof key-views. Oncetheuserhasoutlinedtheoccluding
objectsin the key-views, our systemdetectsautomatically
theseoccludingobjectsin theintermediateviews. A region
of interestthat containsthe occludingobjectsis first com-
putedfrom the outlinedsilhouettes.Oneof the main con-
tribution of this paperis that this region takesinto account
the uncertaintyon the computedinterframemotion. Then
a deformableregion-basedapproach is usedto recover the
actualoccludingboundarywithin theregionof interestfrom
thisprediction.

Results and videos are available at the URL:
http://www.loria.fr/˜lepetit/Occlusions.

1. Intr oduction

The objective of augmentedreality (AR) is to addvir-
tual objectsto real video sequences,allowing computer-
generatedobjectsto beoverlaidonthevideoin suchaman-
nerasto appearpartof theviewed3D scene.Applications
include computer-aidedsurgery, tele-operations,and spe-
cial effectsfor the film andthe broadcastindustries. This
paperconcentrateson the particular applicationof video
post-production.

Realisticimagecompositionrequiresthattheaugmented
patternsbecorrectlyoccludedby foregroundobjects.How-
ever, solving the occlusionproblemfor AR is challenging
whenlittle is known aboutthe real world we wish to aug-
ment. Theoretically, resolvingocclusionamountsto com-
parethedepthof thevirtual objectsto thatof therealscene.
However, computingdenseandaccuratedepthmapsfrom
imagesis difficult. This explainswhy the accuracy of the
obtainedoccludingboundaryis generallypoor. Moreover,
in mostAR applications,theinterframemotionis nota pri-

ori known but mustbecomputed.Inacuratemotionestima-
tion thusresultsin possiblylargereconstructionerrors.

In order to overcomeproblemsstemmingfrom possi-
bly large reconstructionerrors,Ong [6] proposeda semi
interactive approachto solve occlusion: the occludingob-
jectsaresegmentedby handin selectedviews calledkey-
frames. Thesesilhouettesareusedto build the 3D model
of the occluding object. The 2D occluding boundaryis
thenobtainedby projectingthe3Dshapein theintermediate
frames. However, dueto the uncertaintyon the computed
interframemotion, the recovered3D shapedo not project
exactly onto theoccludingobjectsin thekey-framesnor in
theintermediateframes.

In this paper, we alsousethe conceptof key-views but
we do not attemptto build the 3D modelof the occluding
objectsfrom all the key-frames.The novelty in this paper
is twofold: (i) we do not attemptto recover the 3D model
of the occludingobjectsfrom all the key-views. We only
computethe3D occludingboundaryfrom two consecutive
key views. The projectionof this 3D curve is a goodpre-
dictionof theactual2D occludingboundaryin theinterme-
diateframes.(ii) we recover theactualoccludingboundary
with a goodaccuracy usingdeformableregion-basedtrack-
ing followedby anadjustmentstagebasedon snakes. This
allowsusto compensateeasilyfor theinterframemotioner-
ror. We thenobtainanaccurateestimationof theoccluding
boundaryover thesequence.

2. Overview of the system

Theoretically, the 3D shapeof the occludingobjectcan
be computedfrom its silhouettesdetectedin an imagese-
quence.For AR applicationshowever, the interframecam-
eramotionis computedfrom image/modelcorrespondences
or with 2D/2Dcorrespondencesovertime[4, 7]. Theerrors
resultingfrom this inaccurateregistrationmakesthe3D re-
constructionuntractable.That is the reasonwhy we only
attemptto recover the 3D occludingboundaryfrom two
consecutivekey-framesinsteadof recoveringthe3D shape
of the occludingobject from the whole sequence.Fig. 1
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explains the way we computea first estimationof the 2D
occludingboundaryin eachframeof the sequence.First,
the userpointsout key-frameswhich correspondto views
whereaspectchangesof theoccludingobjectoccur. These
key-framesareframedin blackin Fig. 1. Theuseralsoout-
lines the occludingobjecton thesekey-frames(in white).
It is well known that the 3D occludingboundarydepends
on the cameraviewpoint. However, the startingpoint for
our methodis to build a goodapproximationof the3D oc-
cludingboundarywhich will beusedfor all theframesbe-
tweentwo kew-views. This 3D curve is built usingstereo-
triangulationfrom the two silhouettesoutlinedby the user
providedthat thetranslationbetweenthetwo framesis not
null (Fig. 1.aandb). The projectionof this approximated
occludingboundaryon the intermediateframesthus pro-
videsa fair estimationof the2D occludingboundary(Fig.
1.cand1.d).

Due to the uncertaintyon thecomputedinterframemo-
tion, this predictioncan be relatively far from the actual
occluding boundaryfor at least two reasons(seefor in-
stanceFig. 5.a): (i) the computed3D occludingbound-
ary is only anapproximationof therealonebecausestereo-
triangulationis performedfrom two occludingcontours.(ii)
moreimportantly, errorson the cameraparametersinduce
reconstructionerrorson the3D curve andconsequentlyer-
rorson its projectionin theconsideredframe.

Oneof the main contributionsof this paperis to show
that the error on the computedcameraparameterscanbe
estimated.The uncertaintyon the 3D occludingboundary
can then be deduced. This allows us to define a region
of interestaroundthe predictedcontourwhich is likely to
containtheactualoccludingboundary(section3). The re-
finementstage(section4) is thencarriedout within this re-
gion: region-basedtrackingis first usedto recover the re-
gion whosesizeandtextureonly differ from thepredicted
shapewith anaffine transformation.Finally, active contour
modelsareusedto adjusttheoccludingboundary.

3. Reconstructingthe 3D occluding boundary

3.1. Computing the cameraparameters

In this sectionwe first briefly recall how we compute
the cameramotion over the sequence. Our approachto
motion computationtakesadvantageof 3D knowledgeon
thesceneaswell as2D/2D correspondencesover time [7].
Given the viewpoint � �����	�
�
� computedin a given frame�
, we computethe viewpoint  in the next frame

�����
using the 3D model points ��� whoseprojectionsare de-
tectedin frame

�����
. In addition,we useinterestpoints

[5] ��� �� �	� �������� �� !�� !" that are automaticallyextractedand
matchedbetweenframes

�
and

�#�$�
. The quality of the

viewpointcanbeassessedby thedistancebetween� ������ and

theepipolarline %& ����� �'� ��(� . Theviewpoint is thereforere-
coveredby minimizing:)+*-,/.10 2354 3687 2:9<;'=&>@? *BA 6DC ,FE�G&HF*�I 6 .KJML?ON 4 N687 29<;'=P> ? *BQ 6RPS 2 C@T , R&S 2 *BQ 6R .U.VJ 9<;'=&> ? *BQ 6R C@T , R *BQ 6RPS 2 .U.

(1)
Let W � and W+X be the occludingobjectoutlined in the

two key-views. We build the3D occludingboundaryusing
stereotriangulation: Let Y � be a point on W � . Its corre-
spondingpoint in the otherkey-view is the intersectionof
theepipolarline with W X . As usual,theorderconstraintis
usedto solvetheambiguityof thecorrespondenceproblem.

3.2. Taking into accountthe error on the estimated
motion

Thecritical role of motionerror in scenereconstruction
hasbeenpointedout in [8]. Recently, CsurkaandFaugeras
[3] attemptedto computethecovarianceonthefundamental
matrix recoveredfrom point correspondencesbetweentwo
frames.Theuncertaintyis computedundertheassumption
thatthematchedpointsareindependent.However, this sta-
tistical assumptionleadsto decreasearbitrarily the uncer-
tainty on thefundamentalmatrix asthenumberof matched
pointsincreases.

Thatis thereasonwhy wepreferto usethe Z indifference
region[1] to investigatethereliability of theestimatedcam-
eraparameters.Thefactthatwehaveelectedto minimizea
function [\�] � meansthatwe setsomestoreby obtaininga
low valueof this function. It is reasonableto supposethat
valuesof [ almostaslow as [_^ would satisfyusalmostas
muchas [_^ . This givesriseto an Z indifferenceregion in 
spacedescribedby theequation:ZP`PaOb �dc	egfih gj�k!lnmpoqmKr:ons [\�] �ut [\�v ^ � sxwyZ�z

In a sufficiently small neighborhoodof {^ we may ap-
proximate[ by meansof its Taylorequation:[\�v �}| [\�] ^ � ��~ [\�] ^ �@�O�  � �� �  �U� �] ^ �q�  (2)

where � ^ is the hessianof [ computedat  f �^ . More
detailson thecomputationof � ^ aregivenin Annex A.

As �^ is the minimum of [ , the gradientis null at the
optimum

~ [\�]�^ � f�� andequation(2) becomes[\�] �}| [\�v ^ � � �� �  �U� �v ^ �@� 
The Z indifferenceregion is thendefinedby:s �  �U� �v ^ �@� usxw � Z
which is theequationof a 6-dimensionalellipsoid.
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Figure 1. Overview of the system.

Figure 2. The indiff erence regions for the
translation parameter s over the Stanislas se-
quence .

Fig.2 shows theseindifferenceregionscomputedalong
theStanislassequence(we use Z f �

). Thebuilding in the
backgroundis the3D modelusedfor registration.For each
frameof thesequence,wedrew the Z indifferenceregionfor
thetranslationparameters.

We cannow computethereconstructionerroron theoc-
cludingboundaryfrom theseindifferenceregions. If point
correspondenceswere available, the reconstructionerror
couldberecoveredin ananalyticalway from viewpointun-
certainties[8]. Unfortunately, aswe only havecurvecorre-
spondences,the matchedpointsdependson the viewpoint
and are computedas the intersectionof the epipolar line
of the point with W X . We thereforeresort to an exhaus-
tiveapproach.Weconsidertheextremalviewpoints, thatare
theverticesof the6-dimensionalindifferenceellipsoid.Let

h  �� �n�d�8�d�� � X� z (resp h  �X �n�d�8�d�� � XX z ) theextremalviewpointsin
thetwo key-views. Let Y�� bea point on W_� . Givenanex-
tremalviewpoint {� , wecancomputethe

� �
possiblerecon-

structionsof Y�� with the
� �

extremalviewsin key-frame2.
Using the

� �
extremalviewpointsin key-frame1, we then

obtain
� � X extremalreconstructionsof Y�� accordingto the

uncertaintycomputedon the two key-views. The convex
hull of these

�n���
pointsis a goodapproximationof the3D

reconstructionerroron Y � .
We can now predict the position of the 2D occluding

boundaryin the in-betweenframesby simply reprojecting
the3D occludingboundary. To estimatethe2D uncertainty
on theprojectedboundaryW , we have to take into account
the3D reconstructionerrorandtheuncertaintyon thecon-
sideredviewpoint.Weagainresortto anexhaustivemethod:
for eachpoint Y � on W , the

� � X possibleextremal recon-
structionsareprojectedontothecurrentframeusingthe

� �
extremalviewpointsof this frame.Wedefinethespatialun-
certaintyon thepredictedoccludingboundaryassociatedtoY�� astheconvex hull of these

� ���
imagepoints.This area

is denoted��� in thefollowing.
The main stagesfor computingthe 2D uncertaintyon

the predictedoccludingboundaryareillustratedin Fig. 3:
Fig. 3.aexhibitsapoint on thepredictedboundaryandFig.
3.b shows theprojectionof thecorresponding3D extremal
points using the extremal viewpointsand the convex hull��� . Finally, Fig. 5.a shows the 2D uncertaintycomputed
for eachpoint of thepredictedboundary(dottedline). The
pointsaredrawn with black circlesor crossesandthe un-
certaintyis drawn in white. Thereadercannoticethatsome
pointson the stepshave no associatedspatialuncertainty.
Indeed,becausethe key silhouettesdo not matchexactly,
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Figure 3. Computation of the spatial uncer -
tainty on the predicted occ luding boundar y.

theepipolarline computedwith someextremalviewpoints
doesnot always intersect W+X . If more than 50% of the
epipolarlines computedwith the

� � X extremalviewpoints
do not intersectW+X , thespatialuncertaintyis not definedat
thispoint.

4. Refining the occludingboundary

As a result of the predictionstagewe get an estimate
of theoccludingboundaryalongwith its 2D uncertaintyin
theconsideredframe. In additionwe computenot only the
boundarybut alsothe textureof theoccludingobjectsoas
to get a predictedtemplateof the occludingobject. The
texture � � a "}���8� � a is computedfrom thenearestkey-view by
using2d local imagetransformation.

We still have to determinetheoccludingobjectfrom the
predictedtemplate. Due to the erroron the computedmo-
tion andalsobecausereconstructionis achieved from oc-
cluding contours,the templateboundarycanbe relatively
far from the actualoccludingobjectand their shapescan
alsodiffer (seefor instanceFig. 5.a). However, it is im-
portantto notethattheactualboundarybelongsto thecom-
puteduncertaintyregion. Following previousworkson de-
formablestructures[2] we usea hierarchicalalgorithm;we
first computea globalestimationof theshapedeformation
betweenthekey-frameandthecurrentframe.Thenwe use
a fine tuning deformationto adjust the details. As affine
transformationsseemto be appropriateto describeshape
variationsdueto motionuncertainties,theaffinemotionthat
bestmatchestheoccludingtemplateon theconsideredim-
ageis searchedfor:oU�<rF��j�� � ��Y � f�� r � Y�� � r�X�Y�� � r �rF��Y�� � r� �Y�� � r�¡
The optimal parameterr is definedas the one that yields
thebestfit betweenthepredictedtemplate� � a "}���8� � a andthe
currentimage� . Thebestmatchis definedastheminimum
of thecorrelationmeasure:¢ ��r � f¤£ �¦¥ � ��§ � (3)

¥ � ��§ � f ¨�©
ª ¨P«�¬u£® � � ® � f t°¯��Y � �±® �³²�´5µ
�'� � a "}���8� � a���Y � �\® ��t �!��oU�<rF��j�� � ��Y � �\® �q�	� X

wherethepredictedcurve W is definedby thesetof ver-
tices h Y � z �P ��� �e , ® f � ® � � ® � � , ¯ is the sizeof the cor-
relationwindow and ´°µ is the region inside W . Note that
only the pointswhich are insidethe occludingobjectsare
consideredin theestimation.This way, pointsbelongingto
thechangingbackgrounddonoaffectthematchingprocess.

In addition, we have slightly modified the correlation
measurein order to take into accountthe 2D uncertainty
on the predictedcurve. A penaltyterm is usedto ensure
that the matchedpoint belongsto �+� . The penaltyhasthe
form ¶ ¯ X where ¶ is a constantvalue.Thefunctionto be
minimizedis thereforedefinedas:

¥ ����§ � f¸·¹ º 4 ¨ �'� � a "}���8� � a ��Y�� �»® �¼t �K��oU�<r:��j��(�/��Y�� �»® �q�	� X§U�½oU�<rF��j��(����Y�� �+² �+�@�¶ ¯ X³¾ oqmV%
��¿À§@j
%F�
Note that if � � is not defined,or equivalently if � �#fÁ , the first item of ¥ � is usedbecausethe assumptionoU�<r:��j��(����Y�� �½² ��� is fullfiled. Thesepointsaretherefore

consideredin the correlationfunctionwithout furthercon-
straints. Finally, fine tuning adjustementof the occluding
boundaryis performedwith snakesfrom oU��rF��j��(���DW � .
5. Resultsand discussion

The effectivenessof our approachis demonstratedon
two sequences.The Stanislassequencewas shot from a
carwhich turnedaroundthesquare.Our aim is to incrusta
virtual planepassingbehindthestatue.Here,the3D model
of theoperais usedfor registration(thebuilding in theback
of thescene)while the3D modelof thestatueis unknown.
Thethreekey-frameschosenby theuserareshown in Fig.
4 (frames66, 118,150). Fig. 4 exhibits the recoveredoc-
cludingboundaryin theframes15,66and130.Theoverall
visualimpressionis verygoodthoughthepredictedbound-
ary is sometimesrelatively far from theactualone.

Fig. 5 clearlyprovestheefficiency of incorporatingmo-
tion errorinto ourprocess.Theuncertaintyonthepredicted
curve is drawn in white. The points Y � that are outside
theuncertaintyregion � � aftertheregionbasedtrackingare
shown black crosses,whereasthe points insidethe region
aredrawn with blackcircles.For bothimages,thepredicted
2D curve is shown in dottedlines. If the2D uncertaintyis
not considered(Fig. 5.a), the recoveredboundaryis erro-
neous,especiallynearthesteps.On thecontrary, if points
areconstrainedto be in theuncertaintyregion, theocclud-
ing boundaryis successfullyrecovered(Fig. 5.b).

Finally, our algorithm is demonstratedon the cow se-
quence. Zoomson thecow andtheuser-definedsilhouettes



Figure 4. (fir st row) : The key-vie ws along with the user -defined silhouette: frame 60, 118 and 150.
(second row): The recovered occ luding boundar y in the frames 15, 66,130 and the augmented scene .

arepresentedin Fig. 6.b,c andd. Thethreekey-viewsare
relatively far. Moreover, theaspectsof thecow areverydif-
ferentin theconsideredkey-frames.Even in this case,the
recoveredoccludingboundarybeforethe snake processis
quite convincing (seeFig. 6.e). Finally, adjustmentwith
snakesallows usto recoveraccuratelytheoccludingobject
(Fig. 6.f) andto augmentthescene(Fig 6.gand6.h).

6. Conclusion

We have presenteda new approachfor resolvingocclu-
sion for AR tasks. The key conceptis that fine detection
of occludingboundarycanbeachievedwith moderateuser
interaction.Oneof themainstrengthsof ouralgorithmcon-
cernsits ability to handleuncertaintieson the computed
motion betweentwo frames. Throughjudiciouschoiceof
key-frames,our approachseemsto bemoreconvenientand
moreaccuratethanmostexisting approaches.

Annex A: Computing the Hessian � ^� ^ is the value of the Hessian � f ÂÂ
Ã � Â
ÄÂ
Ã � � com-
putedat the minimum {^ of [ . [ is definedas

)+*-,/.Å023 4 36d7 2 E 6 ? J L?ON 4 N6d7 2FÆ 6 ? whereE 6 ? 0 9<;'=&>@? *BA 6OC ,�EnGPHF*�I 6 .U.Æ 6 ? 0 9<;'=P> ?}Ç Q 6RPS 2 C@T , RPS 2 *BQ 6R .UÈÉJ 9<;'=&> ?ÊÇ Q 6R C@T , R *BQ 6RPS 2 .UÈ�
� X and Ë(� X can be expressedasan analytical function
of the 6-dimensionalvector  f �'¶}�	ÌÊ�@Í¼�qo � �qo � �qo Ã � using
the fundamentalmatrix. Becausethe analytic expression
of thesecondderivativesof Ë � X with respectto  arereally

untractable,weuseanapproximationto thefirst order: �Î|� 4 �e�Ï Â `@ÐÂ �+Ñ � Ï Â `@ÐÂ �+Ñ �ÓÒX " 4 Ï Â�Ô ÐÂ �³Ñ � Ï Â
Ô ÐÂ �_Ñ .
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Figure 5. The recovered occ luding boundar y without (a) and with (b) the use of the 2D uncer tainty .
The predictedcurve is shown with dottedlines. The pointsthat belongto the uncertaintyregion � � areshown with black
circles,whereasthepointsoutside� � aredrawn with blackcrosses.

a. b. c. d.

e. f. g. h.

Figure 6. The cow sequence .
(a): animageof thecow sequence;(b,c,d)zoomon thekey-viewsandtheuserdefinedsilhouettes(frames0,30,60);(e): the
recoveredoccludingboundarybeforesnake adjustmentin frame46; (f): therecoveredfinal boundary;(g,h): theaugmented
scene.


