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Abstract

Realisticmeging of virtual andreal objectsrequiresthat
theaugmentegbatternsbecorrectlyoccludedoyforeground
objects.In this paper we proposea semi-automatienethod
for resolvingocclusionin augmentedeality which males
useof key-views. Oncethe userhasoutlinedthe occluding
objectsin the key-views, our systendetectsautomatically
theseoccludingobjectsin theintermediateviews. A region
of interestthat containsthe occludingobjectsis first com-
putedfrom the outlined silhouettes.One of the main con-
tribution of this paperis that this region takesinto account
the uncertaintyon the computednterframemotion. Then
a deformableregion-basedapproad is usedto recover the
actualoccludingboundarywithin theregion of interestfrom
this prediction.

Results and videos are available at the URL:
http://wwwloria.fr/"lepetit/Occlusions

1. Intr oduction

The objective of augmentedeality (AR) is to add vir-
tual objectsto real video sequencesallowing computer
generateabjectsto beoverlaidonthevideoin suchaman-
nerasto appearpartof theviewed 3D scene.Applications
include computeraidedsumgery, tele-operationsand spe-
cial effectsfor the film andthe broadcasindustries. This
paperconcentrate®n the particular applicationof video
post-production.

Realisticimagecompositiorrequireghattheaugmented
patternsecorrectlyoccludedby foregroundobjects.How-
ever, solving the occlusionproblemfor AR is challenging
whenlittle is known aboutthe real world we wish to aug-
ment. Theoretically resolvingocclusionamountsto com-
parethedepthof thevirtual objectsto thatof therealscene.
However, computingdenseand accuratedepthmapsfrom
imagesis difficult. This explainswhy the accurayg of the
obtainedoccludingboundaryis generallypoor. Moreover,
in mostAR applicationstheinterframemotionis nota pri-

ori known but mustbe computedInacuratenotionestima-
tion thusresultsin possiblylargereconstructiorerrors.

In orderto overcomeproblemsstemmingfrom possi-
bly large reconstructiorerrors, Ong [6] proposeda semi
interactve approacho solve occlusion: the occludingob-
jectsare sgmentedby handin selectedviews called key-
frames. Thesesilhouettesare usedto build the 3D model
of the occluding object. The 2D occluding boundaryis
thenobtainedy projectingthe 3D shapen theintermediate
frames. However, dueto the uncertaintyon the computed
interframemotion, the recovered3D shapedo not project
exactly ontothe occludingobjectsin the key-framesnor in
theintermediatdrames.

In this paper we alsousethe conceptof key-views but
we do not attemptto build the 3D modelof the occluding
objectsfrom all the key-frames. The novelty in this paper
is twofold: (i) we do not attemptto recover the 3D model
of the occludingobjectsfrom all the key-views. We only
computethe 3D occludingboundaryfrom two consecutie
key views. The projectionof this 3D curve is a good pre-
diction of theactual2D occludingboundaryin theinterme-
diateframes.(ii) we recovertheactualoccludingboundary
with agoodaccurag usingdeformableregion-basedrack-
ing followedby anadjustmenstagebasedon snales This
allowsusto compensateasilyfor theinterframemotioner-
ror. We thenobtainanaccurateestimationof the occluding
boundaryoverthesequence.

2. Overview of the system

Theoretically the 3D shapeof the occludingobjectcan
be computedfrom its silhouettesdetectedn animagese-
guence.For AR applicationshowever, the interframecam-
eramotionis computedrom image/modetorrespondences
orwith 2D/2D correspondencewertime[4, 7]. Theerrors
resultingfrom this inaccurateegistrationmakesthe 3D re-
constructionuntractable. That is the reasonwhy we only
attemptto recover the 3D occluding boundaryfrom two
consecutre key-framesinsteadof recoveringthe 3D shape
of the occludingobjectfrom the whole sequence Fig. 1



explainsthe way we computea first estimationof the 2D
occludingboundaryin eachframe of the sequence First,
the userpoints out key-frameswhich correspondo views
whereaspecthangef the occludingobjectoccut These
key-framesareframedin blackin Fig. 1. Theuseralsoout-
lines the occludingobjecton thesekey-frames(in white).
It is well known that the 3D occludingboundarydepends
on the cameraviewpoint. However, the startingpoint for
our methodis to build a goodapproximationof the 3D oc-
cluding boundarywhich will be usedfor all the framesbe-
tweentwo kew-views. This 3D curve is built usingstereo-
triangulationfrom the two silhouettesoutlined by the user
providedthatthetranslationbetweerthe two framesis not
null (Fig. 1.aandb). The projectionof this approximated
occludingboundaryon the intermediateframesthus pro-
videsa fair estimationof the 2D occludingboundary(Fig.
1.candl.d).

Dueto the uncertaintyon the computednterframemo-
tion, this predictioncan be relatively far from the actual
occluding boundaryfor at leasttwo reasons(seefor in-
stanceFig. 5.a): (i) the computed3D occludingbound-
aryis only anapproximatiorof therealonebecausetereo-
triangulationis performedrom two occludingcontours (ii)
moreimportantly errorson the cameraparametersnduce
reconstructiorerrorson the 3D curve andconsequenther
rorsonits projectionin theconsideredrame.

One of the main contrikbutions of this paperis to shov
that the error on the computedcameraparametersan be
estimated.The uncertaintyon the 3D occludingboundary
can then be deduced. This allows us to define a region
of interestaroundthe predictedcontourwhich is likely to
containthe actualoccludingboundary(section3). There-
finementstage(sectiond) is thencarriedout within this re-
gion: region-basedrackingis first usedto recover the re-
gion whosesizeandtexture only differ from the predicted
shapewith anaffine transformation Finally, active contour
modelsareusedto adjustthe occludingboundary

3. Reconstructingthe 3D occluding boundary
3.1 Computing the cameraparameters

In this sectionwe first briefly recall how we compute
the cameramotion over the sequence. Our approachto
motion computationtakes advantageof 3D knowledgeon
the sceneaswell as2D/2D correspondences/er time [7].
Given the viewpoint [Ry, t;] computedin a given frame
k, we computethe viewpoint p in the next framek + 1
using the 3D model points M; whoseprojectionsare de-
tectedin framek + 1. In addition, we useinterestpoints
[5] (¢}, 4k1)1<i<m thatare automaticallyextractedand
matchedbetweenframesk andk + 1. The quality of the
viewpointcanbeassessebly thedistancebetweeny’, 41 and

the epipolarline epy.+1(q}). Theviewpointis thereforere-
coveredby minimizing:

®(p) = %.2:;:1 distz(mi,proj(Mi? -|; ﬁ ZZ’;I
dist”(gk 11, epr+1(qx)) + dist (q/i,epk(qiﬂ)z )
1

Let C; and C; be the occludingobjectoutlinedin the
two key-views. We build the 3D occludingboundaryusing
stereotriangulation: Let m, be a pointon C;. Its corre-
spondingpoint in the otherkey-view is the intersectionof
the epipolarline with C>. As usual,the orderconstraintis
usedto solve theambiguityof the correspondencgroblem.

3.2 Taking into accountthe error on the estimated
motion

The critical role of motion errorin scenereconstruction
hasbeenpointedoutin [8]. Recently CsurkaandFaugeras
[3] attemptedo computethecovarianceonthefundamental
matrix recoveredfrom point correspondencdsetweenwo
frames.The uncertaintyis computedunderthe assumption
thatthe matchedointsareindependentHowever, this sta-
tistical assumptioreadsto decreasarbitrarily the uncer
tainty on thefundamentamatrix asthe numberof matched
pointsincreases.

Thatis thereasorwhy we preferto usethee indifference
region[1] to investigatehereliability of theestimatedam-
eraparametersThefactthatwe have electedo minimizea
function ®(p) meanghatwe setsomestoreby obtaininga
low value of this function. It is reasonabléo supposehat
valuesof ¢ almostaslow as®* would satisfyusalmostas
muchas®*. This givesriseto ane indifferenceregionin p
spacedescribedy the equation:

€region = {p such thatl(I)(p) - @(p*)l S 6}

In a suficiently small neighborhoodf p* we may ap-
proximate® by meanof its Taylor equation:

* * 1 *
®(p) ~ B(p") + VO(p*)'op+ S0p' Hp")p ()
where H* is the hessiarmof ® computedat p = p*. More
detailson thecomputatiorof H* aregivenin Annex A.

As p* is the minimum of &, the gradientis null at the
optimumV®(p*) = 0 andequation(2) becomes

* 1 *
®(p) ~ B(p") + 50p"H(p*)0p
Thee indifferenceregion is thendefinedby:
|0p"H (p*)dp| < 2¢

which is the equationof a 6-dimensionakllipsoid.
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Figure 1. Overview of the system.

Figure 2. The indiff erence regions for the
translation parameter s over the Stanislas se-
quence .

Fig.2 shaws theseindifferenceregions computedalong
the Stanislassequencéwe usee = 1). Thebuilding in the
backgrounds the 3D modelusedfor registration.For each
frameof thesequencewe drew thee indifferenceregion for
thetranslationparameters.

We cannow computethe reconstructiorerroron theoc-
cluding boundaryfrom theseindifferenceregions. If point
correspondencewere available, the reconstructionerror
couldberecoveredin ananalyticalway from viewpointun-
certaintied8]. Unfortunately aswe only have curve corre-
spondenceghe matchedpoints dependsn the viewpoint
and are computedas the intersectionof the epipolarline
of the point with Cy. We thereforeresortto an exhaus-
tiveapproachWe considetheextremalviewpoints thatare
theverticesof the 6-dimensionaindifferenceellipsoid. Let

{p}, ..., pi%} (resp{pi, ..., pi?}) theextremalviewpointsin
thetwo key-views. Let m; beapointon C;. Givenanex-
tremalviewpointp,, we cancomputethe 12 possiblerecon-
structionsof m; with the12 extremalviewsin key-frame?2.
Usingthe 12 extremalviewpointsin key-framel, we then
obtain12? extremalreconstructionsf m,; accordingto the
uncertaintycomputedon the two key-views. The convex
hull of thesel44 pointsis a goodapproximatiorof the 3D
reconstructiorerroronm; .

We can now predictthe position of the 2D occluding
boundaryin thein-betweenframesby simply reprojecting
the 3D occludingboundary To estimatethe 2D uncertainty
on the projectedboundaryC, we have to take into account
the 3D reconstructiorerrorandthe uncertaintyon the con-
sideredviewpoint. We againresortto anexhaustvemethod:
for eachpoint m; on C, the 122 possibleextremalrecon-
structionsareprojectedontothe currentframeusingthe 12
extremalviewpointsof this frame.We definethe spatialun-
certaintyon the predictedoccludingboundaryassociatedo
m; asthe corvex hull of thesel22 imagepoints. This area
is denoted\; in thefollowing.

The main stagesfor computingthe 2D uncertaintyon
the predictedoccludingboundaryareillustratedin Fig. 3:
Fig. 3.aexhibits a pointonthe predictedboundaryandFig.
3.b shows the projectionof the correspondin@D extremal
points using the extremal viewpoints and the corvex hull
A;. Finally, Fig. 5.ashaws the 2D uncertaintycomputed
for eachpoint of the predictedboundary(dottedline). The
pointsare dravn with black circlesor crossesandthe un-
certaintyis drawvn in white. Thereadercannoticethatsome
points on the stepshave no associatedpatialuncertainty
Indeed,becausdhe key silhouettesdo not matchexactly,



Figure 3. Computation of the spatial uncer -
tainty on the predicted occluding boundar y.

the epipolarline computedwith someextremalviewpoints
doesnot always intersectCs. If more than 50% of the
epipolarlines computedwith the 122 extremalviewpoints
do notintersectC,, the spatialuncertaintyis not definedat
this point.

4. Refining the occluding boundary

As a resultof the predictionstagewe get an estimate
of the occludingboundaryalongwith its 2D uncertaintyin
the consideredrame. In additionwe computenot only the
boundarybut alsothe texture of the occludingobjectso as
to get a predictedtemplateof the occludingobject. The
texture Itempiate 1S cOMputedrom the neareskey-view by
using2d localimagetransformation.

We still have to determinethe occludingobjectfrom the
predictedtemplate Dueto the erroron the computedmo-
tion and also becauseeconstructioris achiezed from oc-
cluding contours,the templateboundarycan be relatively
far from the actualoccluding objectand their shapescan
alsodiffer (seefor instanceFig. 5.a). However, it is im-
portantto notethatthe actualboundarybelongso the com-
puteduncertaintyregion. Following previousworkson de-
formablestructure§2] we usea hierarchicaklgorithm;we
first computea global estimationof the shapedeformation
betweerthe key-frameandthe currentframe. Thenwe use
a fine tuning deformationto adjustthe details. As affine
transformationsseemto be appropriateto describeshape
variationsdueto motionuncertaintiestheaffine motionthat
bestmatcheghe occludingtemplateon the consideredm-
ageis searchedor:

_ ) aimg +axmy + a3
trans fa(m) = { asMg + asmy + ag

The optimal parametew is definedasthe one that yields
thebestfit betweerthe predictedemplatel;e,, piqte @andthe
currentimagel. Thebestmatchis definedastheminimum
of the correlationmeasure:

U(a) = Z Ya(4) (3)

d®,d¥=w
Z (Itemplate (mz+d) —I(transfa (mi+d)))2
d*,dvy = -Ww
(m,- + d) € Re

wherethe predictedcurve C' is definedby the setof ver-
tices{m;}i<i<n, d = (d*,d¥), W is the size of the cor
relationwindow and R is theregion inside C'. Note that
only the pointswhich areinside the occludingobjectsare
consideredn theestimation.This way, pointsbelongingto
thechangingoackgroundio noaffectthematchingprocess.

In addition, we have slightly modified the correlation
measurdn orderto take into accountthe 2D uncertainty
on the predictedcurve. A penaltytermis usedto ensure
thatthe matchedpoint belongsto A;. The penaltyhasthe
form aW?2 whereq is a constantwvalue. Thefunctionto be
minimizedis thereforedefinedas:

Ed(ltemplate (mz + d) - I(transfa (mz + d)))z
if transf,(m;) € Ay,
aW? otherwise.

Yo (i) =

Note thatif A; is not defined,or equivalentlyif A; =
oo, the first item of 4, is usedbecausehe assumption
transf,(m;) € A; is fullfiled. Thesepointsaretherefore
consideredn the correlationfunction without further con-
straints. Finally, fine tuning adjustemenbf the occluding
boundaryis performedwith snalesfrom transf,(C).

5. Resultsand discussion

The effectivenessof our approachis demonstratean
two sequences.The Stanislassequencevas shotfrom a
carwhich turnedaroundthe square Our aimis to incrusta
virtual planepassingbehindthe statue.Here,the 3D model
of theoperais usedfor registration(thebuilding in theback
of the scene)while the 3D modelof the statueis unknown.
Thethreekey-frameschoserby the userareshawn in Fig.
4 (frames66, 118, 150). Fig. 4 exhibits the recoseredoc-
cludingboundaryin theframesl5, 66 and130. The overall
visualimpressioris very goodthoughthe predictedoound-
ary is sometimeselatively far from theactualone.

Fig. 5 clearly provesthe efficiency of incorporatingmo-
tion errorinto our processTheuncertaintyon the predicted
curve is drawn in white. The pointsm; that are outside
theuncertaintyregion A; aftertheregion basedrackingare
shavn black crosseswhereaghe pointsinside the region
aredrawn with blackcircles. For bothimagesthepredicted
2D cunveis shawvn in dottedlines. If the 2D uncertaintyis
not consideredFig. 5.a),the recoveredboundaryis erro-
neous,especiallynearthe steps.On the contrary if points
areconstrainedo bein the uncertaintyregion, the occlud-
ing boundanryis successfullyecovered(Fig. 5.b).

Finally, our algorithm is demonstratedn the cow se-
guence Zoomson the cow andthe userdefinedsilhouettes



Figure 4. (first row) : The key-views along with the user-defined silhouette:

frame 60, 118 and 150.

(second row): The recovered occluding boundar y in the frames 15, 66,130 and the augmented scene.

arepresentedn Fig. 6.b,c andd. Thethreekey-views are
relatively far. Moreover, theaspect®f thecow arevery dif-
ferentin the consideredey-frames. Evenin this case the
recoveredoccludingboundarybeforethe snale processs
quite corvincing (seeFig. 6.e). Finally, adjustmentwith
shalesallows usto recover accuratelythe occludingobject
(Fig. 6.f) andto augmenthe scengFig 6.gand6.h).

6. Conclusion

We have presented new approachor resolvingocclu-
sion for AR tasks. The key conceptis that fine detection
of occludingboundarycanbe achiezedwith moderatauser
interaction.Oneof the mainstrength®of ouralgorithmcon-
cernsits ability to handleuncertaintieson the computed
motion betweentwo frames. Throughjudicious choiceof
key-frames,our approactseemso be morecornvenientand
moreaccuratehanmostexisting approaches.

Annex A: Computing the HessianH *

H* is the value of the HessianH = Z(42)¢ com-
puted at the minimum p* of ®. & is definedas ®(p) =
% E?:l ri? + ﬁ Z,";l v;® where

ri® = dist®(ms, proj(M;))

v:i? = dist® (qhy1, epr+1(al)) + dist? (qk, epi(aii1))

r;2 andv;2 canbe expressedas an analyticalfunction
of the 6-dimensionalectorp = (a, 3,7, ts,ty,t.) using
the fundamentalmatrix. Becausethe analytic expression
of the secondderivativesof v;2 with respecto p arereally

untractableywe useanapproximatiorto thefirstorder: H ~
t t
or; or; A Qv Ov;
255 (%) (%) + 22 (%) (5)
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Figure 5. The recovered occluding boundar y without (a) and with (b) the use of the 2D uncer tainty .
The predictedcurve is shavn with dottedlines. The pointsthat belongto the uncertaintyregion A; areshavn with black
circles,whereaghepointsoutsideA; aredravn with blackcrosses.

Figure 6. The cow sequence .
(a): animageof the cow sequence(b,c,d)zoomon the key-views andthe userdefinedsilhouettegframes0,30,60);(e): the
recoveredoccludingboundarybeforesnale adjustmentn frame46; (f): therecoveredfinal boundary;g,h): theaugmented
scene.



