
Point-and-Shoot for Ubiquitous Tagging on Mobile Phones∗

Wonwoo Lee†

GIST U-VR Lab
Youngmin Park‡

GIST U-VR Lab
Vincent Lepetit§

CVLab, EPFL
Woontack Woo¶

GIST U-VR Lab

ABSTRACT

We propose a novel way to augment a real scene with minimalist
user intervention on a mobile phone: The user only has to point
the phone camera to the desired location of the augmentation. Our
method is valid for vertical or horizontal surfaces only, but this is
not a restriction in practice in man-made environments, and avoids
to go through any reconstruction of the 3D scene, which is still a
delicate process. Our approach is inspired by recent work on per-
spective patch recognition [5] and we show how to modify it for
better performances on mobile phones and how to exploit the phone
accelerometers to relax the need for fronto-parallel views. In addi-
tion, our implementation allows to share the augmentations and the
required data over peer-to-peer communication to build a shared
AR space on mobile phones.

1 INTRODUCTION

Mobile phones have become a very popular platform for Aug-
mented Reality (AR) applications. They are wide-spread, often
equipped with hardware useful for localization and good compu-
tational capacities. Several recent great works showed that it is
possible to develop Computer Vision techniques for AR on mobile
phones [9, 16, 18].

In this paper, we present a novel Computer Vision-based ap-
proach that makes it easy to add augmentations to the real world,
even for a non-expert user. As shown in Figure 1, we avoid going
through a 3D reconstruction phase, which is still delicate to per-
form correctly, and using feature points, as they are not available in
every scene. To do that, we combine a recent technique to recog-
nize patches and estimate their spatial orientations [5] adapted for
the mobile phone and the use of the built-in accelerometers.

In our approach, the user simply has to point the phone camera
toward the location he wants to augment. Using the accelerome-
ters, we can correct for the surface orientation, and insert the virtual
objects coherently. This is possible only for horizontal or vertical
surfaces only, however in man-made environments, that is not a re-
striction in practice. Our algorithm can guess most of the time the
real surface orientation—horizontal or vertical—otherwise the user
can correct it very easily. The scale factor can be defined by mov-
ing the phone toward or away from the surface, before fine-tuning.
This mode of operation results in a very intuitive interaction.

Once the user defined the virtual content, its location in the real
world can be recognized even under new viewpoints and tracked in
3D for consistent rendering. For detection, we adapted Gepard, a
template-based approach proposed in [5] to a mobile phone plat-
form, because it works even on low-textured surfaces. The main

∗This research is supported by Ministry of culture, Sports and Tourism
(MCST) and Korea Creative Content Agency (KOCCA), under the Culture
Technology(CT) Research & Development Program 2010.

†e-mail: wlee@gist.ac.kr
‡e-mail: ypark@gist.ac.kr
§e-mail: vincent.lepetit@epfl.ch
¶e-mail: wwoo@gist.ac.kr

Figure 1: Overview of our approach. The user simply has to point to
the desired location for the augmentation. Our method guesses the
surface orientation for a coherent insertion. It can then recognize
the location even under new viewpoints, and track it for real-time
augmentation.

idea behind Gepard is to compare a set of templates, each tem-
plate corresponding to the average appearance of the surface from
a viewpoint when the camera pose is slightly changed, with the tex-
ture around feature points.

Here, we skip this the feature point detection step and use larger
patches instead for better robustness. We also replaced the way the
templates are computed, which consumes large amount of mem-
ory in Gepard, by rendering and blurring operations. This is more
suitable to the phone architecture, and requires only a few seconds.
Finally, while Gepard requires a fronto-parallel view to build the
set of templates, we can exploit the phone accelerometers to rectify
the captured image into a fronto-parallel view.

Moreover, in our implementation, the data associated with the
augmentation and required for detection, tracking and rendering,
can be shared with nearby mobile phones through peer-to-peer
communication. Then, other users can share augmentations on their
mobile phones even from different viewpoints. This way, the users
can easily collaborate in the same AR space through their mobile
phones.

In the remainder of the paper, we first review related work in

Section 2. Section 3 details how the set of templates are built and
used for detection and tracking. Experimental results are given in
Section 4. We provide conclusions in Section 5.

2 RELATED WORK

Several recent works showed that it is possible to run Computer
Vision algorithms for localization and 3D tracking on mobile
phones [9, 15, 16, 17, 18]. They are all based on feature points
and therefore require a fair amount of texture to work correctly.
Moreover, mobile phones often have relatively low-quality cam-
eras, which tend to blur the images under fast motion and make the
feature points difficult to detect.

We therefore considered Gepard, an alternative method based
on template matching, which was proved to be adapted to poorly
textured objects and blurry images [5]. Given an image patch to de-
tect, Gepard generates a set of “mean patches”. Each mean patch is
computed as the average of the patches seen over a limited range of
viewpoints, and the ranges over all the mean patches cover all possi-
ble views. Then, by comparing an input patch to the mean patches,
one can recognize it and get an estimate of the camera viewpoint.
PTAM [9] relies on a related method as it compares downscaled,
blurred images for camera relocalization [8], but cannot be gener-
alized to unseen points of view.

However, Gepard is not directly adapted to mobile phone ap-
plications. It considers only patches centered on feature points.
Since we wanted to avoid feature point detection, we skip the fea-
ture points detection and use comparatively much larger patches,
for better robustness. Gepard also computes the mean patches as a
linear combination of eigenpatches, unfortunately this requires a lot
of memory to store all the precomputed data. We therefore propose
a way to simulate the computation of the mean patches that does
not require precomputed data.

Another restriction of Gepard is to require a fronto-parallel view
of the original patch to detect, or equivalently, knowledge on the
3D orientation of the patch. This could be avoided with an auto-
mated 3D reconstruction of the scene for example, but that is still
difficult to perform by a non-expert user, and would require camera
motion before augmenting the scene anyway. Other works have de-
veloped interactive 3D reconstruction using AR [3, 11, 12, 14], but
still require some time and expertise.

In this work we take an approach much more drastic but which
appears to be very convenient in practice. We assume the real sur-
face is planar and either horizontal and vertical, and we try to guess
its relative orientation with the phone using the phone accelerom-
eters. This results in a very intuitive and quick method, which is
very desirable on a mobile phone.

3 PATCH LEARNING AND TRACKING ON MOBILE PHONES

3.1 Gepard [5]
Given a reference image patch p in a frontal view, Gepard computes
a set of “mean patches”. The original expression of a mean patch
ph is:

ph =
1
|Ph| ∑

P∈Ph

w(p,P) , (1)

where P represents a camera pose, and w(p,P) is patch p seen under
pose P. Each set Ph is made of poses around a pose we will denote
by Ph. The poses Ph are regularly sampled, and together all the Ph’s
span the set of all possible poses.

In Gepard, learning a patch simply means computing the corre-
sponding ph. Then, for an input patch q, one can compute:

e = min
h
‖q−ph‖2 , and ĥ = argmin

h
‖q−ph‖2 . (2)

If the patch difference e is small, q is the same patch as p but seen
from a pose close to Pĥ. That gives a good estimate of the patch

Y

Z

c

Virtual
frontal
view

Captured
view

Patch
surface

θP Z = d0

Figure 2: Defining the camera pose in the case of a vertical surface.
Without loss of generality the pose of the frontal view is defined as
[I|0]. Then in the case of a vertical surface, the coordinates of the
camera center c are [0,d0 sinθp,d0(1− cosθp)]

>.

spatial orientation, which is further refined using template matching
techniques.

In practice, Eq. (1) is not used directly as this would be very
costly. Instead, Gepard uses an approximation that can be summa-
rized as:

a = PPCAp , and (3)
∀h ph = Vha , (4)

where PPCA and the Vh are matrices that can be precomputed. PPCA
first projects the patch into an eigenspace to obtain a relatively
short vector and speed up the product with the Vh matrices, which
columns are the corresponding eigenvectors after the transforma-
tion described by Eq. (1). These matrices are very large, and cannot
easily be stored in the memory of a mobile phone. We give below
another approximation that does not use these memory consuming
precomputations.

3.2 Guessing the Camera Pose
As shown in the first column of Figure 1, we can relax the need for
a fronto-parallel view by estimating the orientation of the surface
and its distance to the camera.

Since we are looking for an orientation in the 3D space, we have
three degrees-of-freedom to estimate. We first assume that the patch
lies on a surface that is horizontal or vertical. This is very often
the case in man-made environments, where floors, ceilings, walls,
tables, ... compose most of the geometry. Using the phone ac-
celerometers, we can estimate the angle the phone makes with the
gravity force, which provides another degree of freedom. Finally,
to predict the surface orientation, we assume the phone can only
rotates in pitch, setting the remaining angle to estimate to 0. This
angle can be modified by the user later on.

We use a heuristics to determine if the surface is either horizon-
tal or vertical. Let denote θp the angle the phone makes with a
horizontal plane as provided by the accelerometers, so that θp = 0
when the camera points toward the horizon. Then, the following
predictions are often true in practice:

• If − π

4 < θp <+ π

4 then the surface is vertical,

• otherwise the surface is horizontal.

In case our guess is wrong, the user can correct it by directly choos-
ing a surface model, either horizontal or vertical.

This gives us the camera orientation with respect to the surface.
To define a full pose, we still need its translation. Unfortunately,
it is not possible to get the distance between the camera and the
surface from a single image. Instead we use an arbitrary value d0.
Thus, the user can define the scale of the augmentation by simply
moving the phone toward or away from the surface: As shown in

Input patch 1st pass:
patch warping

2nd pass:
radial blurring

3rd pass:
Gaussian blurring

4th pass:
Accumulation

Figure 3: Creation of the mean patches by blurring. To compute each mean patch, the reference patch is first warped, and radial blur and
Gaussian blur are then applied. The resulting patches are accumulated into a texture on the GPU to send them to the CPU in one single read.

θ

θ

The patch is on the ground The patch is on a ceiling

The patch and camera are
at the same level

The patch is above
the camera

θ

The patch is below
the camera

θ

Patch

Camera

θ

View
hemisphere

Patch
normal

Figure 4: Sampling the likely camera poses only. The regions
marked in dark grey represent the range of poses sampled by the
Phs. These regions vary depending on the relative positions of the
phone and patch as determined by the accelerometers.

the third row of Figure 11, the augmentation will correspond to a
large object if the camera is far away from the surface; conversely,
as shown in the fourth row, the augmentation will correspond to
a small object if the camera is close to the surface. This is very
intuitive but limited to some range of scale within which the user
can move the phone, and the interface lets the user adjust the scale
if needed.

As illustrated in Figure 2, we can finally describe how we gener-
ate a virtual fronto-parallel view of the target from the input image.
Without loss of generality we set the pose of the virtual camera
in the fronto-parallel location as [I|0]. The orientation obtained as
explained above gives us the rotation matrix R for the captured im-
age, which is a rotation around the X-axis in this coordinate sys-
tem. It is easy to see that the coordinates of the camera center c
are [0,d0 sinθp,d0(1− cosθp)]

>, and the translation vector for the
captured image is t =−Rc. From [4], the expression of the homog-
raphy H f←c that warps the captured image to the virtual frontal
view is then:

H f←c = K

(
R− tn>

d0

)−1

K−1 , (5)

where K is the camera calibration matrix and n the vector
[0,0,−1]>.

c

rh

(1, 0)(0, 0)

(0, 1)

m

Figure 5: Applying radial blur to a warped image. The pixels inten-
sities are replaced by the average intensity along an arc of a circle.
The length l of the arc varies linearly with the distance to the center
of the patch.

3.3 Generating the Mean Patches with Blurring
As can be seen in [5], the mean patches look like the reference patch
after some non-uniform blur. This is related to Geometric Blur [2],
which also blurs images for recognition and matching, however Ge-
ometric Blur relies on Gaussian smoothing with a spatially varying
standard deviation, which is slow. We propose here an alternative
to generate the mean patches, which is also based on blurring but is
more efficient. As shown in Figure 3, we use a combination of ra-
dial blur and Gaussian blur, performed on the mobile phone’s GPU,
to compute the mean patches.

Warping In order to approximate a mean patch ph, the refer-
ence image—corresponding to a frontal view—is first rendered into
a new patch we denote by ph to correspond to pose Ph. Rendering
a 320× 426 image on the phone’s GPU takes only about 0.3 ms,
whereas CPU-based patch warping took about 100 ms in our exper-
iments.

Using many poses Ph would slow down the computation times
during learning and detection, and would be a waste of memory us-
age. On the other hand, too sparse poses would result in detection
failures. Therefore, we sample a limited range of the poses, avoid-
ing unlikely poses where the surface would be too slanted. Figure 4
summarizes the different configurations.

To generate the poses, we regularly sample every 20 degrees the
rotations around the three axes over the range given by Figure 4. We
also use 3 scale factors (0.5, 1, 2) we apply to d0 before computing
the translation as in Section 3.2 in order to detect the surface from
a range of distances. We then directly use OpenGL to render ph.

Radial blur In the second pass, radial blur is applied to ph to
get a new patch rh. As depicted by Figure 5, the intensity of each
pixel m of rh is computed as the average of the pixel intensities over
an arc of a circle centered on the patch center c and going through

 60

 70

 80

 90

 100

 10 20 30 40

D
et

ec
tio

n
pe

rfo
rm

an
ce

 (%
)

Sampling step (degrees)

r= 5°
r=10°
r=15°
r=20°
r=25°
r=30°

Figure 6: Detection performance with varying pose sampling steps
and maximum blur ranges.

m. The length l of the arc varies linearly with the distance between
c and m:

l = θr‖c−m‖ . (6)

In this formula, θr is a parameter expressed in radians and we use
the value θr = 0.17 in practice, about 10 degrees. The pose sam-
pling step and the maximum radial blur range are experimentally
determined to guarantee reasonable detection performance. Ac-
cording to results shown in Figure 6, our algorithm achieves good
performance with the selected parameters.

To confirm the effectiveness of the radial blur, we measured
the patch detection performance against viewpoint changes on the
Graffiti image set 1 with different blurring schemes. In the experi-
ment, we changed the viewpoint by rotating the reference image by
0 to 70 degrees and measured the similarity to the reference patch
through NCC. Patch detection is considered successful if the simi-
larity exceeds 0.9. Figure 7 shows the results, where R and G(m)
represent the radial blur and the Gaussian blur with a m×m kernel,
respectively: The mean patches computed by combining the radial
blur with Gaussian blur outperform those generated with Gaussian
blur only.

Gaussian blur Gaussian blur is then applied to rh, and the re-
sulting patch approximates a mean patch ph as given by Eq. (1).
The Gaussian filter is separable, and therefore is implemented with
two 1D filters for efficiency. In practice, we use σ = 11 for the
Gaussian kernel standard deviation.

Downsampling and Accumulation As in Gepard, ph is
downsampled from 128×128 to 32×32 and normalized to be ro-
bust to light changes. It is finally stored in a texture buffer of the
GPU with the other generated mean patches. The accumulation of
multiple patches in a texture reduces the number of readbacks from
the GPU.

3.4 Detection and Tracking

Once a patch has been learned, it can be detected in new images to
initialize a tracking algorithm based on template matching.

To detect the patch if a known patch is visible in the captured
image and estimate its orientation, we first extract the patch in the
image center. By contrast with Gepard, we apply to this patch the
transformation detailed in Section 3.3, that is, we apply the same
radial and Gaussian blurs and downscaling. This gives us more

1Available at http://www.robots.ox.ac.uk/~vgg/research/affine

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70

Si
m

ila
rit

y
(N

CC
)

Angle (degrees)

G(11)+R
G(7)

G(11)
G(17)
G(21)

Figure 7: Effectiveness of radial blur. Combining the radial blur
and the Gaussian blur outperforms simple Gaussian blurring.

tolerance to translation and rotation, and the small additional com-
putational burden is possible as it is done on only one patch for each
captured image.

This gives us an input patch q, and we can proceed as in Eq. (2):
If e is small enough, we assume the input patch is one of the learned
patches, and we use the corresponding pose Pĥ to initialize a track-
ing algorithm. We chose to use the ESM-Blur algorithm [13], as
it is robust to motion blur, which is frequent with mobile phones’
low-quality cameras. ESM-Blur is used to first refine the pose pro-
vided by the detection, and then track the patch in the subsequent
captured images. When tracking fails, we re-run the detection pro-
cedure.

An obstacle to template matching-based tracking methods on
mobile phones is the computations of large matrices, which takes
most of the time required for tracking. Since it is relatively slow
on mobile phones, we use NEON, a set of SIMD (Single Instruc-
tion Multiple Data) instructions of ARM CPUs, for faster compu-
tations. The matrix computation code written in NEON runs about
3-5 times faster than standard C code.

4 EXPERIMENTAL RESULTS

We implemented our method on both a mobile phone and a PC.
We used the Apple iPhone 3GS, which has a 600 MHz CPU and a
PowerVR SGX GPU, and a PC with a 2.4 GHz CPU and a GeForce
8800GTX GPU. Cameras capture videos in 640× 480 on the PC
and 480× 360 on the iPhone 3GS. Note that the speed of our ap-
proach is independent on the size of the input images. In both plat-
forms, cameras are calibrated in advance. We assume the phone
camera’s focal length is fixed although it has an auto-focus func-
tion. We always set the focus of the camera at the center of image,
where we take a patch to learn.

We set the size of an input patch to 128× 128 and the number
of views for patch learning to 225, which provides good detection
performance with reasonable speed. Currently, the algorithm is im-
plemented for single target detection. The amount of memory re-
quired for the data learned from a target depends on the sampled
patch size and the number of views to learn. In our experiments,
each mean patch is downsampled to 32×32 and it requires 4 kilo-
bytes for pixel intensities and 36 bytes for a 3×3 pose matrix. For
overall data with 225 views, about 900 kilobytes are required to
store the data learned from a target.

148.9 	
 169.2 	

238.6 	

324.3 	

420.5 	

547.6 	

0	

100	

200	

300	

400	

500	

600	

108	
 135	
 210	
 300	
 420	
 540	

Le
ar

ni
ng

 t
im

e
(m

s)
	

Number of views	

Postproc.	

Readback	

Accumulation	

Gaussian blur	

Radial blur	

Warping	

Series7	

2,746.3	

3,396.6	

5,396.2	

7,993.0	

11,019.2	

14,162.6	

0	

3000	

6000	

9000	

12000	

15000	

108	
 135	
 210	
 300	
 420	
 540	

Le
ar

ni
ng

 t
im

e
(m

s)
	

Number of views	

Postproc.	

Readback	

Accumulation	

Gaussian blur	

Radial blur	

Warping	

Series7	

3396.6	

3912	
 4084.62	

4308.5	

4910.5	

167.1	
 168.4	
 168.79	
 169.2	
 171.3	

0	

1000	

2000	

3000	

4000	

5000	

3	
 7	
 9	
 11	
 17	

Le
ar

ni
ng

 t
im

e
(m

s)
	

Gaussian kernel size	

iPhone 3GS	

PC	

(a) (b) (c)

Figure 8: Learning times. The overall time increases on both (a) the PC and (b) the mobile phone as the number of views increases. (c) On
the PC, the size of the Gaussian kernel does not have much effect, while larger kernels result in slower computations on the mobile phone.

4.1 Learning Speed
Figure 8 compares the time required for learning on both PC and
mobile phone platforms. While the four main steps—warping, ra-
dial blur, Gaussian blur, and accumulation—take approximately the
same time on a PC, on the mobile phone, radial blur clearly be-
comes the bottleneck. This can be explained by the fact that only
horizontal and vertical memory accesses are needed for Gaussian
blurring, while radial blur needs more complex accesses and the
phone’s GPU is not adapted yet to this type of access. Another dif-
ference is that increasing the size of the Gaussian blur kernel hardly
affects the computation time on the PC, while it increases propor-
tionally on the mobile phone.

Given the improvements in terms of recognition rates radial blur
provides, it is worth using the radial blur despite its relatively im-
portant computational burden. For the number of mean patches of
225, the mean patch computation time required is about 5 seconds,
which is a good trade-off between the time for learning and the
recognition performance.

4.2 Patch Detection Performance
Figure 9 shows the patch detection results against viewpoint
changes and image noise. We used 10 planar targets with different
textures in this experiment2. Apart from the viewpoint changes, we
add zero-mean Gaussian noises with a standard deviation σ ranging
from 0 to 30 to pixel intensities.

The first two targets (Sign-1 and Sign-2) are low-textured ob-
jects, which are common in the real world. The proposed algorithm
successfully detects those two targets under viewpoint changes up
to 60 degrees, regardless of the amount of noise. The next 5 targets
are more textured. Our detection method is robust to viewpoint
changes up to 60 degrees and noises up to σ = 30. The last 3 tar-
gets (Grass, MacMini, and Board) have rich but repetitive textures,
with thin structures. This case is the worse for our approach and the
NCC score drops more quickly.

The comparison between our algorithm and Gepard [5] is shown
in Figure 10. In all data sets, Gepard outperforms our method but
the performance loss is not large with the targets having rich tex-
tures. Gepard also reveals weakness to repeated textures although it
is still better than ours. We expect that it is because Gepard exploits
the two-step pose optimization based on [1, 7], while we use only
one [13].

4.3 Patch Detection Speed
The speed of patch detection is shown in Table 1. Patch detection
consists of two main parts, mean patches comparison and pose es-

2Some image data is available at http://www.metaio.com/research. See
[10] for details.

Gepard Proposed
Sign-1 96.400002 93
Sign-2 84 76
Car 96.3 86.8
Wall 91.199997 74
City 90.599998 90.2
Cafe 97 95
Book 98.56 92.67
Grass 73.199997 57.8
Macmini 51.59 41.2
Board 93.400002 68.2

graf1 93.800003 95.2
stop_sign_f 69.199997 82.2
book_SMALL2 94.599998 98.6

0

25

50

75

100

Sign-1 Sign-2 Car Wall City Cafe Book Grass Macmini Board

D
et

ec
tio

n
Pe

rf
or

m
an

ce
 (%

)

Data set

Gepard Proposed

Figure 10: Performance comparison with Gepard.

Table 1: Patch detection speed on a mobile phone in milliseconds

Mean StDev Min Max
Mean patches comparison 3.06 0.25 2.76 3.4

Pose estimation 64.0 30.9 11.1 98.3

timation. The mean patches comparison takes about 3 ms with 225
views. The speed of pose estimation with ESM-Blur can vary a lot
as the number of iterations required for pose optimization changes
depending on the accuracy of the initial pose provided by patch de-
tection. In practice, we set the maximum number of iterations to
50, which results in a reasonable speed (10-15 fps) and accurate
registration.

4.4 Real World Examples
Figure 11 shows the result of the patch detection with target objects
from the real world. The first column shows the input images, with
green guide squares that represent the regions to learn. For the first
two examples, the fronto-parallel views of the objects are available.
After learning from the input images, the objects are successfully
detected and tracked by our algorithm on mobile phones. In con-
trast, the frontal views of the targets are unavailable for the last
three examples. It is possible to estimate the right pose of the cam-
era through the proposed fronto-parallel view generation method.
Note that our algorithm works well even with poor textures. In the
examples, we assume the origin of the world coordinate system is
at the center of the detected patch and virtual objects are synthe-
sized on it. The orientations of virtual contents are pre-defined for
specific target types, i.e., horizontal and vertical.

Figure 12 shows some failure cases. Failures typically happen on
surfaces with repetitive textures such as brick patterns or on glossy
objects.

4.5 Sharing Augmentations
The data learned from the target object and related contents can be
shared with nearby users through wireless communication, which
is one of common capabilities of mobile phones. When a connec-
tion between two mobile phones is established, the learned mean
patches and the virtual contents are transmitted from one to another,
in a compressed file over a peer-to-peer Bluetooth channel. Thus,
users can build an AR space in situ and collaborate with virtual
contents in the same AR space.

4.6 Discussion
As we showed in previous sections, the proposed algorithm works
well with real world objects having horizontal and vertical surfaces.
Although a target surface is neither horizontal nor vertical, the tar-
get can still be learned and detected by our method, but the augmen-
tations will have wrong registrations with respect to the geometry
of the target surface.

Our point-and-shoot approach requires the user to point the tar-
get with a mobile phone’s camera manually. It has both negative
and positive aspects in target detection. The negative aspect is no
detection occurs when the target patch is out of the image center.
On the other hand, the manual pointing to a target allows learning
and detection of the target that does not have a feature point at its
center.

5 CONCLUSION

We proposed an approach to Augmented Reality on mobile phones
that is very intuitive to use by combining recent Computer Vision
techniques and the use of the phone sensors. Our approach actually
fits closely the requirements of Anywhere Augmentation as defined
in [6] since it supports learning and detection of a target object on
the fly and lets users add augmentations even in low-textured envi-
ronments with very limited need for user intervention.

REFERENCES

[1] S. Benhimane and E. Malis. Homography-Based 2d Visual Tracking
and Servoing. International Journal of Robotics Research, 26(7):661–
676, 2007.

[2] A. Berg and J. Malik. Geometric blur for template matching. In Pro-
ceedings of the Conference on Computer Vision and Pattern Recogni-
tion, 2002.

[3] P. Bunnun and W. Mayol-Cuevas. OutlinAR: An Assisted Interactive
Model Building System with Reduced Computational Effort. In Pro-
ceedings of the International Symposium on Mixed and Augmented
Reality, 2008.

[4] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2000.

[5] S. Hinterstoisser, V. Lepetit, S. Benhimane, P. Fua, and N. Navab.
Learning Real-Time Perspective Patch Rectification. International
Journal of Computer Vision, 2010. In Press.

[6] T. Höllerer, J. Wither, and S. DiVerdi. ”Anywhere Augmentation”:
Towards Mobile Augmented Reality in Unprepared Environments. In
G. Gartner, W. E. Cartwright, and M. P. Peterson, editors, Location
Based Services and TeleCartography, pages 393–416. Springer, 2007.

[7] F. Jurie and M. Dhome. Hyperplane Approximation for Template
Matching. IEEE Transactions on Pattern Analysis and Machine In-
telligence, pages 996–1000, 2002.

[8] G. Klein and D. Murray. Improving the Agility of Keyframe-Based
SLAM. In Proceedings of the European Conference on Computer
Vision, pages 802–815, October 2008.

[9] G. Klein and D. Murray. Parallel Tracking and Mapping on a Camera
Phone. In Proceedings of the International Symposium on Mixed and
Augmented Reality, pages 83–86, 2009.

Figure 12: Failure cases. Failures typically happen on surfaces
with repetitive textures such as brick patterns or on glossy objects.

[10] S. Lieberknecht, S. Benhimane, P. Meier, and N. Navab. A Dataset and
Evaluation Methodology for Template-Based Tracking Algorithms. In
Proceedings of the International Symposium on Mixed and Augmented
Reality, 2009.

[11] J. Neubert, J. Pretlove, and T. Drummond. Semi-Autonomous Gener-
ation of Appearance-based Edge Models from Image Sequences. In
Proceedings of the International Symposium on Mixed and Augmented
Reality, 2007.

[12] Q. Pan, G. Reitmayr, and T. Drummond. ProFORMA: Probabilistic
Feature-based On-line Rapid Model Acquisition. In Proceedings of
the British Machine Vision Conference, 2009.

[13] Y. Park, V. Lepetit, and W. Woo. ESM-Blur: Handling & Rendering
Blur in 3D Tracking and Augmentation. In Proceedings of the Interna-
tional Symposium on Mixed and Augmented Reality, pages 163–166,
2009.

[14] G. Simon. Immersive Image-Based Modeling of Polyhedral Scenes.
In Proceedings of the International Symposium on Mixed and Aug-
mented Reality, 2009.

[15] D.-N. Ta, W.-C. Chen, N. Gelfand, and K. Pulli. Surftrac: Efficient
Tracking and Continuous Object Recognition Using Local Feature
Descriptors. In Proceedings of the Conference on Computer Vision
and Pattern Recognition, pages 2937–2944, 2009.

[16] S. Taylor and T. Drummond. Multiple Target Localisation At Over
100 Fps. In Proceedings of the British Machine Vision Conference,
pages 7–10, September 2009.

[17] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-
stieg. Pose Tracking from Natural Features on Mobile Phones. In
Proceedings of the International Symposium on Mixed and Augmented
Reality, September 2008.

[18] D. Wagner, D. Schmalstieg, and H. Bischof. Multiple Target Detec-
tion and Tracking With Guaranteed Framerates on Mobile Phones. In
Proceedings of the International Symposium on Mixed and Augmented
Reality, pages 57–64, 2009.

STDEV:

Figure 9: Evaluation of the accuracy of the retrieved pose for different types of images. From the top left: Sign-1, Sign-2, Car, Wall, City,
Cafe, Book, Grass, Macmini, and Board. For each of the patches delimited by the yellow squares in the first and third columns, we generated
test images by rendering the patch under different angles and adding different amounts of image noise. We then applied our method to retrieve
the pose and plotted the Normalised Cross-Correlation between the original patch and the test images rectified by the retrieved pose. Each
curve corresponds to a different amount of noise. For the first patches, we obtain very good results up to 60 degrees. Patches with high
frequencies like Grass, Macmini and Board yield lower performances.

Figure 11: Results on different types of surfaces. For all these examples, the user simply had to shoot the image on the left and select the
computer model he wanted to add. Note that our method works well with low-textured objects.

