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Abstract— Robotic systems that can create and use visual
maps in realtime have obvious advantages in many applicatits,
from automatic driving to mobile manipulation in the home. In
this paper we describe a mapping system based on retaining
views of the environment that are collected as the robot mowe
Connections among the views are formed by consistent geomiet
matching of their features. The key problem we solve is how .
to efficiently find and match a new view to the set of views
already collected. Our approach uses a vocabulary tree to mpose
candidate views, and a new compact feature descriptor that -
makes view matching very fast — essentially, the robot comually
re-recognizes where it is. We present experiments showindge
utility of the approach on video data, including map building
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1: Map reconstructed from view matching in an indoor envi-

in large environments, map building without localization, and ’ . )
re-localization when lost. ronment, with no sequence information. On the left, the lgrap
of view links, where each link encodes the relative position
I. INTRODUCTION of its two views. On the right, the graph after optimization.

Fast, precise, robust visual mapping is a desirable gc%Jr system is able to integrate a new image against a large

for many robotic systems, from transportation to in-hom@@P database, with no a priori information about its positio

navigation and manipulation. Vision systems, with theigé&a In under 100 ms.
and detailed data streams, should be ideal for recovering 3D

structure and guiding tasks such as manipulation of ev@ryq?mit the number of skeleton views that must be considered

objects, navigating in cluttered environments, and tnagki : .
and reacting to people. But the large amount of data, a\évg employ a vocabulary tree [26] to suggest candidate views

its associated perspective geometry, alsa create chidten or matching. The vocabulary tree response is not perfect,
. PErsps 9 Y, . Pd there will be many false positives in the candidate views
problems in organizing the data in an efficient and usefu

which must all undergo feature matching to the current view;
manner. this is the biggest computational bottleneck for onlinecess-
One useful idea for maintaining the spatial structure

. . L . €9 g. The main contributions of this paper are
visual data is to organize it into a set of representativavsje
along with spatial constraints among the views, which itecal * The development and deployment of a new feature de-
askeletonFigure 1 gives an example of a skeleton constructed ~ SCTiptor, based on random tree signatures [5], that is
in a small indoor environment. Relations between the views Fobust to view variation, yet extremely fast to compute

are calculated by matching common features; the overall map and match. As an example, matching 512 features to
is generated by nonlinear optimization of the system [1, 17, 912 features takes about 6 ms, less than GPU-enhanced

33]. For efficient operation, the critical question is how to  @lgorithms for other robust descriptors such as SURF [2].
match a newly-acquired view to a large database of existing® 1he |_ntegrat|on_ofaV|suaI vocab_u_lary tree into a_comp_lete
views. The matching system should be robust to changes in Solution for online place recognition. We call this ability
viewpoint, lighting, moving objects, and other distrastcand re-recognition the robot recognizes its position relative
it must be fast enough to run online during image acquisiton 0 the stored view map on every cycle, without any
In this paper we present a system that solves the view- & Priori knqwledge o_f_ its position _(unl|ke localization,
matching problem effectively, and can run in small, almost ~Which requires a position hypothesis). B
constant time over large view databases. The matchingreyste * A rigorous analysis of the false positive rejection ability
is feature-based: hundreds of features from the curremt vie ~©f two-view geometry.
are matched against features in a candidate skeleton wew. T The construction of a realtime system for robust, accurate
views are considered to be matched when a sufficient number Visual map making over large and small spaces.
of their matched features pass a strict geometric consigterin the experiments section, we highlight some of the advan-
check used by structure-from-motion (SfM) analysis [14]. Ttages of a view-based system. The view matching technique,



because of geometric consistency, is robust to object motigingle views, rather than extended sequences. Callmer. et al
nearly blank walls, and self-similar textures. View mapsoal [4] propose a loop closure procedure that uses a vocabulary
scale well: maps with hundreds of views can be constructede in a manner similar to ours, along with a weak geometric
and used in real time. Loop closure over large distancesss poheck to weed out some false positives.
sible; here we show a map with a 400 m trajectory. The sameThere is an interesting convergence between our work and
view matching method automatically relocalizes the cameracent photo stitching in the vision community [31]. They
within the existing view graph, recovering from occlusionemploy a similar skeletonization technique to limit theemtt
motion blur, etc. Finally, view matching with large numbefs of bundle adjustment calculations, but run in batch mod#h wi
points is inherently accurate, showing sub-centimetegipi@ no attempt at realtime behavior. Klopschitz et al. [20] use a
over a desktop workspace. vocabulary tree to identify possible matches in video strea

Our solution uses stereo cameras for input images. Taed then followed by a dynamic programming technique to
development of the feature descriptors and place recognitiverify a sequence of view matches. They are similar to our
is also valid for monocular cameras, with the exception thatork in emphasizing online operation.
the geometric check is slightly stronger for stereo. Howeve The ability to match keypoints across frames seen from
the skeleton system so far has been developed just for the fadtentially very different viewpoints is a key ingredient o
6DOF pose information generated by stereo matching, aestablishing relationships between these frames. Thisines)
although it should be possible to weaken this assumption, Weypoint descriptors that, such as SIFT [24] and GLOH [25],
have not yet done so. are robust to viewpoint changes. Faster SIFT-like desmspt
such as SURF [2] achieve 3 to 7-fold speed-ups by exploiting
the properties of integral images. However, it has recdrebn

Visual map-making, or VSLAM, has received a lot of recerghown that even shorter run-times can be obtained without
attention, starting with Davison’s online monoSLAM [9, 10]loss in discriminative power by reformulating the matching
and now including many variations [29, 32]. These systenmsoblem as a classification problem [23, 28]. This approach i
all consider sets of 3D points as landmarks, and attemptrtot suitable for real-time SLAM applications, since it rags
maintain a consistent EKF over them. The main limitatioonline training of new keypoints [35].
here is the filter size, which is only tractable in small (reom In recent work [5], we observed that if the classifier is
size) environments. An exception is [29], which uses a sybomaained offline on a randomly-chosen set of keypoints, &leot
technique, although realtime performance has not yet bdeypoints can be characterized in terms of the response they
demonstrated. induce in the classifier, thesignaturesin this paper, we build

In a similar vein, the recent Parallel Tracking and Mappingn this technique by developing a more compact version of
(PTAM) system [18, 19] also uses 3D landmarks, but emploggnatures that is extremely efficient and hence suitable fo
standard SfM bundle adjustment to build a map from mamnline view matching.
views. Many more points can be handled in the tracking
phase, leading to accurate and robust performance undgr man
conditions. Still, it is limited to small environments byeth  The view map system, which derives from FrameSLAM [1,
number of points and by bundle adjustment. It is also sulbject21], is most simply explained as a set of nonlinear condsain
tracking failures on self-similar textures (e.g., bushesject among camera views, represented as nodes and edges (see
motion, and scene changes (e.g., removal of an object). Figure 5 for a sample graph). Constraints are input to the

The skeleton system deployed here comes directly from t@gaph from two processes, visual odometry (VO) and place
work in [1, 21]. Other robotics work that employs similarecognition (PR). Both rely on geometric matching of views t
ideas about constructing view-based constraints is in3aR, find relative pose relationships; they differ only in thesasch
These systems also keep a constraint network of relative p#ethod. VO continuously matches the current frame of the
information between frames, based on stereo visual odgmetideo stream against the last keyframe, until a given destan
and solve it using nonlinear least square methods. To solk@s transpired or the match becomes too weak. This produces
the skeleton optimization problem, we use the technique afstream of keyframes at a spaced distance, which become the
Grisetti et al. [12], which is an efficient implementation obackbone of the constraint graph, skeleton PR functions
stochastic gradient descent (SGD). Other relaxation nasth@pportunistically, trying to find any other views that match
for nonlinear constraint systems include [11, 27]. the current keyframe. This is much more difficult, espegiall

For fast lookup of similar places, we rely on the hierarchicén systems with large loops. Finally, an optimization prese
vocabulary trees proposed by Nister and Stewénius [26]3ds the best placement of the nodes in the skeleton.
other methods include approximate nearest neighbor [3@] an For two viewsc; and ¢; with a known relative pose, the
various methods for improving the response or efficiency €Pnstraint between them is
the tree [8, 15, 16]. In particular, Cummins and Newman
[8] show how to use visual features for navigation and loop
closure over very large trajectories. Our method diffesrfr wherec is the inverse motion composition operator — in other
theirs in using a strong geometric check to do recognition avords, ¢;'s position inc;'s frame. The covariance expresses

Il. RELATED WORK

I1l. FRAMESLAM BACKGROUND

Az;j = ¢; © ¢;, with covarianceA ™ (1)



the strength of the constraint, and arises from the geometarge motions. However, they are prone to fail when there is
matching step that generates the constraint, explainemvbel significant object motion, since they do not explore the spac
Given a constraint graph, the optimal position of thef geometrically consistent data associations
nodes is a nonlinear optimization problem of minimizing The focus of this paper is on fast, effective PR. The
D Az AAz;; a standard solution is to use preconditionedext section discusses an effective candidate view proposa
conjugate gradient [1, 13]. For realtime operation, it isreno method, and the geometric consistency check that eliminate
convenientto run an incremental relaxation step, and ttente false positives. The end result is an extremely fast andbigi
work of Grisetti et al. [12] on SGD provides an efficienPR method that takes on the order of 100 ms to find, match and
method of this kind, called Toro, which we use for therient multiple corresponding views over large view datsse
experiments. This method relies on no prior information about the current
camera view relative to other views, and it does not need

A. Geometric View Matching to maintain complicated covariance relations among viétvs.

Constraints arise from geometric matching between tWeatly simplifies the task of constructing the skeletortesys
stereo camera views. The process can be summarized by 4Rg allows it to operate over large spaces.

following steps:

1) Match features in the left image of one view with IV. MATCHING VIEWS
features in the left image of the other view. In this section we describe our approach to achievin
2) (RANSAC steps) From the set of matches, pick thre bp 9

. . : eefficient view matching over thousands of frames. We start
candidates, and generate a relative motion hypothesi

between the views. Stereo information is essential heVrV(?h a new keypoint descriptor that is fast both to comput an

for giving the 3D coordinates of the points. to match. Next we develop a filtering technique for matching

3) Project the 3D points from one view onto the othe&r1 new image against a dataset of reference imagesv(

based on the motion hypothesis, and count the numqnéfatchmg), using a vocabulary tree to suggest candidatesvie

o rom large datasets. Finally, we develop statistics tofyehe
of inliers. rejection capability of the geometric consistency cheokall
4) Repeat 2 and 3, keeping the hypothesis with the best P y 9§ y
- cases, we use FAST keypoint detectors because they are, well
number of inliers. fast
5) Polish the result by doing nonlinear estimation of the ™
relative pose from all the inliers.

: ) ) _ A. Compact Randomized Tree Signatures
The last step iteratively solves a linear equation of thenfor

In Section Il we introduced a keypoint descriptor that can
I Jox = —J" Az, (2) be computed fast enough to be useful to demanding real-
time problems such as SLAM [5]. The descriptor relies on
the fact that if we train a Randomized Tree (RT) classifier
to recognize a number of keypoints extracted from an image

tabase, all other keypoints can be characterized in tefms

their response to these classification trees. Remarkafdif)ya
gmited number of base keypoints—500 in our experiments—is
sufficient. However, a limitation of this approach is thatrsig
:iwspre—trained Randomized Tree takes a considerable ambunt o
memory. Here we show that the signatures can be compacted
into much denser and smaller vectors, as depicted by Figure 2
resulting in both a large decrease in storage requiremeht an
substantially faster matching.
B. Re-detection and Re-recognition In [5], signatures are computed as follows. A settbbase

Our overriding concern is to make the whole system robu&gypoints are extracted from a representative image andthe
In outdoor rough terrain, geometric view matching for VO ha@lassifier is trained to recognize them under changes irescal
proven to be extremely stable even under very large imaBgrspective, and lighting [23]. It consists of a set’fbinary
motion [22], because points are re-detected and matched owésZ;i, where the binary test at a node is a simple comparison
large areas of the image for each frame. Here we use @fetwo random points in a patcp around the keypoint. At
FAST detector and SAD matching of small patches arou@ch leaf of a tred;, there is a vector of responses for all
each keypoint as the matching step. In a 400 m circuit 88s€ keypoints, computed from the training set. t,¢p) be
our labs, with almost blank walls, moving people, and bidrrethe vector found by dropping the patghthrough the tred;
images on fast turns, there was not a single VO frame matféha leaf node. The total response vectorpois taken to be
failure (see Figure 5 for sample frames). The PTAM methods N
of [18], which employ hundreds of points per frame, can al§o r(p) = Zti(p) ) 3)
have good performance, with pyramid techniques to determin =

where Az is the error in the projected point&y is a change
in the relative pose of the cameras, ahik the Jacobian of
with respect tar. The inverse covariance derives frofd J,
which approximates the curvature at the solution point. As
practical matter, Toro accepts only diagonal covarianses,
instead of using/ " .J, we scale a simple diagonal covarianc
based on the inlier response.

In cases where there are too few inliers, the match
rejected; this issue is explored in detail in Section IV-GeT
important result is that geometric matching provides aroaim
foolproof method for rejecting bad view matches.



The response can be normalized to generate a probability of T, T, Ty

the patchp belonging to any member of the base set. Note

that forp belonging to some keypoint that is similar to a base r(p)

keypointb, we expectr(p) to have high values dts position

in the vector. g b | db .. b | = | = E
For any new keypoink not in the base set, the response t, t, ty

r(p) will have high values at locations corresponding to base () () — ()

keypoints that are similar td&, and low values elsewhere. E & I B e o I I

Thresholding the components ofp) therefore results in a 6t t r'p)

sparse vector that we take to be our signature. In practiee, w

obtain good results usingy = 50 binary randomized trees of 2: ||jystration of the signature creation process for ariteaty,

depth 10 and3 = 500 base points. [5] compared the matchingiew keypointk. For simplicity we show trees of depth 3; the

performance of sparse RTs with that of SIFT and found the§gical value our implementation uses is 10. (a) The patch

comparable. p: aroundk is dropped through all tree%;, 1 < i < N,
While sparse signatures are fairly efficient to generate atglding the vectors,. (b) All t; are summed up yieldingp),

match, it is possible to make them even more so. First, th& Equation 3. (c) In the upper row of vectors, thép) are

expensive operation in signature creation is the summatitimesholded yielding a sparse signal. This step does nairocc

of the t;, which requires50 = 500 = 25,000 floating-point in the lower row of vectors as they represent some compressed

operations per signature. Second, the matching of sparepresentation of the corresponding; that simply need to

vectors is slower than desired, because it involves caditi be summed.

tests. To address these issues, we compress; thesponses

into smaller vectors, and produce a dense signature. There a

several ways to perform the compression, and the tradedfs place Recognition

involved will be reported in an upcoming paper [6]. Here

we use a simple PCA scheme to extract a dense 176-elem’et[élihe 1x V' image matching problem has received recent
vectort’ that replaces the 500-elementon each leaf node auention in the vision community [16, 26, 30]. We have

A "implemented a place recognition scheme based on the vo-
As a further reduction, we found that eaelementof both o . .
¢/ and the corresponding signaturép) — 3" t/(p) could be cabulary trees of Nistér and Stewénius [26] which has good

represented by a single byte, rather than a roating-poim-nuperformance for both inserting and retrieving images based

ber, and that signatures could be compared more quickl usfrr]]e compact RT descriptors.
' 9 b q 9 The vocabulary tree is a hierarchical structure that siault

sum qf absolute differences. In tests on st.andard V'eWpohmoust defines both the visual words and a search procedure
matching sets, performance of the dense signatures desgrqtge

. - ?finding the closest word to any given keypoint. The
by about 10 percent relative to the original sparse ones. tree is constructed offline by hierarchidalmeans clustering

As expected, compression to dense, small vectors grealy a large training set of keypoint descriptors. The set of
improves the timing of both descriptor creation and matghintraining descriptors is clustered intacenters. Each center then
In Table I, dense RTs are compared to the original spansgcomes a new branch of the tree, and the subset of training
RTs, and also to the most efficient robust descriptor, U-SURfascriptors closest to it are clustered again. The proegests
[2]. SURF matching is done on the smaller length 64 vectorgitil the desired number of levels is reached. In our case,
match times are from [7], creation times are from [2], and dge use about 1M training keypoints from 500 images, with
not include keypoint detection. Overall, dense RTs are mapy— 10, and create a tree of depth 5, resulting in 100K visual
times faster, and for matching even beat GPU implementatiqjords. Nister and Stewénius have shown that performance
of U-SURF. Approximate Nearest Neighbor techniques [$lhproves with the number of words, up to very largel(V))
can be used to speed up the process, at some decreasg,#bularies.
matching performance; but the overhead in applying them isThe vocabulary tree is populated with the reference images
not worthwhile given the matching speed. by dropping each of their keypoint descriptors to a leaf and

recording the image in a list, anverted file at the leaf. To

Descriptor Creation| NxN Matching query the tree, the keypoint descriptors of the query image
(512 kpts) (512x512 kpts) are similarly dropped to leaf nodes, and potentially simila
SDparse ";TTS (CCF')’LLJ’ 37153 ms %7-37 ms reference images retrieved from the union of the inverted fil
U?QSEFGE ((CPU)) 150 Tnss 120 Tnss In either case, the vocat_)ulary tree 'describes the image as a
73 ms (ANN) vector of word frequencies determined by the paths taken
U-SURF64 (GPU) 6.8 ms by the descriptors through the tree. Each reference image is

I: Timings for descriptor creation and matching.

scored for relevance to the query image by computing the
distance between their frequency vectors. The score ie@ntr
weighted to discount very common words using the Term



Frequency Inverse Document Frequency (TF-IDF) approach Vocabulary tree match score prefilter
described in [26, 30]. e

Various extensions to the bag-of-words approach exem- oal .
plified by the vocabulary tree are possible. Cummins and
Newman [8] use pairwise feature statistics to address the
perceptual aliasing problem, especially notable in madena
environments containing repeated structure. Jegou efl5]. [
incorporate Hamming embedding and weak geometric consis-
tency constraints into the inverted file to improve perfoncea 02
We do not use such techniques in this work, relying instead
on the strength of the geometric consistency check. Finally R S S e
Jegou et al. [16] note that even using inverted files, queng ti Flse positve rate
is linear in the number of reference images; they propose a . Vocabulary tree top-N matching
two-level inverted file scheme to improve the complexity. We [ ]
simply note that for our scale of application (in the thowdsn / _—
of images), the number of reference images we must score is
effectively a small constant.

To test the effectiveness of the vocabulary tree as a prefilte
we constructed a test set of some 180 keyframes over a 20m
trajectory, and determined ground truth matches by peiifggm

True positive rate
°
S

o
S

S

40‘

% of correct matches found

geometric matching across all 18080 possibilities. We in- 2

serted these keyframes, along with another 553 non-matchin e s
distractor keyframes, into the vocabulary tree. Queryimg t 3 NS S S S S 120*124: mai:ges 3N
vocabulary tree with each of the 180 test keyframes in turn, N

we obtained their similarity scores against all the refeeen 5. Top: ROC curve for the vocabulary tree prefilter on the
images. The sensitivity of the vocabulary tree matching. j&st dataset. Bottom: “Average” curve shows percentagheof t

shown by the ROC curve (Figure 3, top) obtained by varying,yect matches among the tdp results from the vocabulary

a threshold on the similarity score. tree (blue); other curves are the percentage of views with at
Since we can only afford to put a limited number of CaNpast 1 or 2 matches in the tap

didates through the geometric consistency check, thecakiti
performance criterion is whether the correct matches appea

among the most likely candidates. Varying we counted the _ = . ] .
percentage of the ground truth matches appearing in the tgjiS 1S for monocular images; for stereo images, the two

N results from the vocabulary tree. For robustness, we wat29e disparity checks (assuming disparity search of 128
. ) N

to be very likely to successfully relocalize from the cutrerPX€lS) yield a further factor of (6/128)*(6/128). In the neo

keyframe, so we also count the percentage of test keyfranf@&nmon case with dominant planes, one of the image disparity

with at least one or at least two ground truth matches in t9€cks can be ignored, and the factor is just (6/128). If the
top-N results (Figure 3, bottom). matches are random and independent (i.e., no common objects

In our experiments, we take as match candidates the pWeen images), then counting arguments can be applied.
N = 15 responses from place recognition. We expect to find i€ distribution of inliers overV trials with probabilityp of
least one good match for 97% of the keyframes and two goB§ing an inlier is5,, , the binomial distribution. We take the
matches for 90% of the keyframes. For any given keyfram@@Ximum inliers overs RANSAC trials, so the probability of
we expect around 50% of the correct matches to appear in fiing less tham: inliers is (1 — B, (). The probability

top 15 results. of exactly z inliers over all trials is
C. Geometric Consistency Check
We can predict the ability of the geometric consistency

check (Section 1Il-A) to reject false matches by makmga%igure 4 shows the theoretic probabilities for the planaresi

few assumptions about the statistics of matched points : -
L - . ' E .Th h ks sharpl I
estimating the probability that two unrelated viewgsand Iy gase, based on Equation 5. The graph peaks sharply at Zinlier

(1= Bpn ()" = (1= Bpn(z —1)* ®)

will share at leash/ matches. Based on per iy m trOUt of 250 matches), showing the rejection ability of the
share atleashi maiches. based on perspective geomeliy, o ric check. Actual values were computed for the indoor
any point match will be an inlier if the projection iR lies on

. : L . ing 200 i ith Harris k ints f h of
the epipolar line of the point ify. In our case, with 640480 dataset, using 200 images with Haris keypoints from each o

) - . ; . ._two disjoint sets. The actual values are less peaked andgeer
g?]ai%ﬁ:’r Ia;n inlier radius of 3 pixels, the probability of twmjust under 3 inliers — the real world has structure that vésa

the random match assumption. The key part is the tail: there
Atrack/Aimage = (6 % 640)/(640 * 480) = .0125 (4) are no actual matches with greater than 10 inliers.



250 matched features per image, 100 RANSAC trials graph, but this simple one worked quite well. Typically the
m graph contains about 1/2 of the keyframes produced by VO.
In the case of lingering in the same area for long periods of
time, it would be necessary to stop adding new views to the
graph, which otherwise would grow without limit. We have

not explored these strategies yet.

o
3

4 o
3 )
T T

I
~

Probability

A. Large Office Loop

o
w
T

The first experiment is a large office loop of about 400m
in length. The trajectory was done by joysticking a robot
at around 1m/sec. Figure 5 shows some images: there is
substantial blurring during fast turns, sections with amo
3 4 5 6 7 8 9 10 blank walls, cluttered repetitive texture, and moving fdeop

Number of infiers There are a total of 12K images in the trajectory, with 1540

4: The probability of getting: inliers from a random unrelated kéyframes, 628 graph nodes, and 1275 edges. Most of the

view match, based on 250 keypoint matches per image and £§§es are added from neighboring nodes along the same

RANSAC steps, with a keypoint match probability of 0.0005¢€mPoral path, but a good portion come from loop closures
and parallel trajectories (Figure 5, bottom right).

View matching has clearly captured the major structural
V. EXPERIMENTS aspects of the trajectory, relative to open-loop VO. It etbs

As explained in Section lll, the view-based system con:ysttge large loop from the beglnn_lng of the trajectory to the,end
. . S well as two smaller loops in between. We also measured
of a robust VO detector that estimates incremental poses of a . . —
X o : € planarity of the trajectory, which is a good measure ef th
stereo video stream, and a view integrator that finds and a

S S -
non-sequential links to the skeleton graph, and optimikes tafr%ir\?v?é c;fztf;ﬁ].tig?rélqgg_.légr t\h/g Vilte \\:vvabsaggdcilystem, RMS
graph. We carried out a series of tests on video data camtureg ' b PV, )

30 Hz from a stereo camera at 640x480, with a 9 cm baseli%eNOte that the vocabulary tree prefilter makes no distinction

o
N}
T

I
o

and a 90 degree FOV. Rectification is done on the stereo he Stwee” reference views that are temporally near or far from

VO consumes 11/33 ms per video frame, leaving 22/33 msft & current view: all reference views are treated as places

view integration, 2/3 of the available time. As in PTAM [18]’tcc))n?st(;?liog?rllfeig.'slgr)\/o iﬁ%lglttlgiot:]e ?:Vggrrn OI]; gsgn;(re'te:'(\:ce
view integration can be run in parallel with VO, so on a duafons! Y ' pu piex covarl

core machine view matching and optimization could consu gtmg information for data association, as is typicaliynelo

a whole processor. Given its efficiency, we publish reswdizh or EKF-.based syst(.ems.[g, 1,0’ 29, 32]' )

for a single processor only. In all experiments, we resthet The t'me §pent In view integration IS broken down b.y
number of features per image 4800, and use 100 RANSAC category in Figure 6. Averages for for adding to and seagchin
iterations for geometric matching. the vocabulary tree are 25 ms, and for the geometry check,

The goal of the system is to integrate as many viem?SS_mtS' Totrr(]) does alrrlost no XV(;)(;IS at tge tbheginn(ijngTﬁf tg_e
as possible, while giving priority to VO in processing thérajec ory, then grows 1o over ms Dy the end. The big

video stream. The view integration cycle takes the latgf"P comes when the large loop is closed, which creates a

keyframe produced by VO, runs the vocabulary tree prefilt!ec}ng opt|r_n|z_at|on loop in Toro. At this point, opt|m.|zat|on

to determine likely match candidates, performs geometﬁ&artS to limit the_number of new keyframes coming in to the

consistency checking against the candidates, and then r H%Dh' and the distance b_etween n_ode_s stretches to about 1m.

Toro to optimize the skeleton. With the exception of Tord, a n other parts of the trajectory, view integration can run at

of these components take constant time (the vocabulary t Eg speed.

prefilter is essentially constant up to very large numbers of .

views). Since Toro can run incrementally, we limit the arrtourg' TrajectorySynth

of time it takes by stopping iterations when the error dedta i To showcase the capability of view integration, we per-

small, or the number of iterations exceeds a threshold.dasaformed a reconstruction experiment without any temporal

where the error is growing, we then limit the addition of newnformation provided by video sequencing or VO, relyingtjus

keyframes to the skeleton graph, until the error comes dowan view integration. We take a small portion of the office Ipop
Skeleton graph density is controlled by view integratiorextract 180 keyframes, and push them into the vocabulary

When it has finished matching and optimizing its currentekeltree. We then choose one keyframe as the seed, and use view

ton node, it checks if the most recent keyframe is far enougitegration to add all valid view matches to the view skeleto

in angle or distance (typically 10 degrees or 0.5 m) from thEhe seed is marked as used, and one of the keyframes added

previous keyframe. One can imagine many other schemes toithe skeleton is chosen as the next seed. The processsepeat

skeleton construction that try to balance the density of thmtil all keyframes are marked as used.



29 .A’} s =

5: Top: representative scenes from the large office loopwstgpmatched features in green. Note blurring, people tedat
texture, nearly blank walls. Bottom: resultant skeletoapdr (in blue) of 628 nodes and 1275 edges, overlaid on a laapr m
of the building. For comparison the VO trajectory withouewi match correction is shown in red. On the right is a closeup
showing the matched views on a small loop. The optimizer e lurned off to show the links more clearly.

method is a batch process that uses full bundle adjustment
——— over a reduced set of views, whereas our approximate method
B Optimization

Geometric check retains just pairwise constraints between views.
1000/ | HEE Place recognition

1200

C. Relocalization

Under many conditions, VO can lose its connection to the
previous keyframe. If this condition persists (say the came
is covered for a time), then it may move an arbitrary distance
before it resumes. The scenario is sometimes referred to as
the “kidnapped robot” problem. View-based maps solve this
problem with no additional machinery. To illustrate, we koo
the small loop sequence from the TrajectorySynth experimen
and cut out enough frames to give a 5m jump in the actual
| position of the robot. Then we started the VO process again,
0 T o using a very weak link to the previous node so that we

Node index could continue using the same skeleton graph. After a few

6: Timina for view intearation per view during the office 100 keyframes, the view integration process finds the correct
» 9 g P 9 pmatch, and the new trajectory is inserted in the correcteplac
trajectory. Toro dominates the latter part of the run.

in the growing map (Figure 7). This example clearly indisate
The resultant graph is shown in Figure 1 (first page), leflhe power of constant re-recognition.

The nodes are placed according to the first constraint found;

some of these constraints are long-range and weak, andBsoAccuracy of View-Based Maps

the graph is distorted. Optimizing using Toro produces the To verify the accuracy of the view-based map, we acquired

consistent graph on the right. The time per keyframe is 180 sequence of video frames that are individually tagged

ms, so that the whole trajectory is reconstructed in 37 s#x;onby “ground truth” 3D locations recorded by the IMPULSE

about 2 times faster than realtime. The connection to vieviotion Capture System from PhaseSpace Inc. The trajectory

stitching [31] is obvious, to the point where we both use this about 23 m in total length, consisting of 4 horizontal Isop

same term “skeleton” for a subset of the views. Howeverythevith diameters of roughly 1.5 m and elevations from 0 to 1m.
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[10]

[11]

[12]

(23]

[14]

15
7: Kidnapped robot problem. There is a cut in the V(B ]
process at the last frame in the left trajectory, and the trisbo [16]

transported 5m. After continuing a short time, a correctwie

match inserts the new trajectory into the map.

[27]

There are total of 6K stereo images in the trajectory, with 22
graph nodes, and 360 edges. The RMS error of the nodes was Research2003.
3.2 cm for the view-based system, which is comparable to tHé!
observed error for the mocap system. By contrast, open-loop
VO had an error of 14 cm.

We have presented a complete system for online generation

VI. CONCLUSION

[29]

[20]

of view-based maps. The use of re-recognition, where t&q]
robot’'s position is re-localized at each cycle with no prior

information, leads to robust performance, including awttin
relocalization and map stitching.

[22]

There are some issues that emerged in performing this
research that bear further scrutiny. First, the time takgn B3l
SGD optimization will not be acceptable for graphs witlpy
more than a few thousand edges, and better methods, perhapsinternational Journal of Computer Visioi60(2):91-110, 2004.
hierarchical, should be found. Second, we would like t8°
investigate the monocular case, where full 6DOF cons8ailjig
are not present in the skeleton graph.

(1]

(2]

(3]

(4]

(5]
(6]

(7]
(8]
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