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Abstract— Robotic systems that can create and use

visual maps in realtime have obvious advantages in many

applications, from automatic driving to mobile manipula-

tion in the home. In this paper we describe a mapping

system based on retaining stereo views of the environment

that are collected as the robot moves. Connections among

the views are formed by consistent geometric matching

of their features. Out-of-sequence matching is the key

problem: how to find connections from the current view

to other corresponding views in the map. Our approach

uses a vocabulary tree to propose candidate views, and

a strong geometric filter to eliminate false positives –

essentially, the robot continually re-recognizes where it is.

We present experiments showing the utility of the approach

on video data, including incremental map building in large

indoor and outdoor environments, map building without

localization, and re-localization when lost.1

I. INTRODUCTION

Fast, precise, robust visual mapping is a desirable

goal for many robotic systems, from transportation to in-

home navigation and manipulation. Vision systems, with

their large and detailed data streams, should be ideal

for recovering 3D structure and guiding tasks such as

manipulation of everyday objects, navigating in cluttered

environments, and tracking and reacting to people. But

the large amount of data, and its associated perspective

geometry, also create challenging problems in organizing

the data in an efficient and useful manner.

One useful idea for maintaining the spatial structure

of visual data is to organize it into a set of represen-

tative views, along with spatial constraints among the

views, called a skeleton. Figure 1 gives an example of a

skeleton constructed in an indoor environment. Typically

views are matched in sequence as the camera is moved

around, so the skeleton mimics the camera trajectory (red

trajectory). In loop closure, the camera enters an area

already visited, and can re-connect with older views. The

overall map is generated by nonlinear optimization of the

1This research received no specific grant from any funding

agency in the public, commercial, or not-for-profit sectors.
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Fig. 1. Top: Skeleton map constructed online from just stereo

images, registered against a laser map for reference. Red is visual

odometry, blue is corrected by loop closure from visual place

recognition. Tick marks at sides of map are 10m intervals. Bottom

shows typical views, with blurring, clutter, people, and blank walls.

system [2, 21, 39]. View-based maps have the advantage

of scalability: using incremental techniques, new views

can be added and the skeleton optimized online.

One problem is how to efficiently perform loop clo-

sure. Previous approaches used exhaustive search of the

current view against all skeleton views that could possi-

bly be in the area, given the relative uncertainty of views.

This approach does not scale well to larger skeletons,

and involves constant calculation of relative covariance.

Instead, to limit the number of views that must be consid-

ered for loop closure, we employ a vocabulary tree [32]

to suggest candidate views, a type of place recognition

(PR). The vocabulary tree allows us to efficiently filter

thousands of skeleton views to find possible matches, as

well as add new views online. We call this online PR

re-recognition: the robot recognizes its position relative
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to the stored view map on every cycle, without any

a priori knowledge of its position (unlike localization,

which requires a position hypothesis).

The addition of vocabulary tree PR to view-based

maps is a happy alignment of technologies that expands

the utility of visual mapping in two important ways.

1) Incremental mapping. The system can add new

sections on to its map at any point, that is, it can

continuously localize and map. It is able to wake

up anywhere, even outside the current map, and

connect itself to the map when it is encountered.

It can continually check for loop closures and

optimize them. It works online.

2) Localization and odometry failure. Typically a

robot will fail to localize if its sensors are blocked

or degraded in some way. The system can recover

from these errors by relocalizing in the map when

it gets the chance.

Just as laser sensors helped to solve a static SLAM

problem that was difficult for sonars, so new techniques

in visual PR and online recognition eliminate the am-

biguous nature of 2D laser scan matching, and enable

online PR. Visual sensors have much more data, and are

better at distinguishing scenes from a single snapshot.

The main contributions of this paper are

• The construction of a real time system for robust

and accurate visual map making over large and

small spaces. This system exhibits the key proper-

ties of incremental anytime mapping, and recovery

from localization failures.

• The use of views (images), view matching, and

geometric relations between views as a uniform

approach to short-term tracking and longer-term

metric mapping and loop closure.

• The integration of a visual vocabulary tree into a

complete solution for online place recognition.

• An analysis of the false positive rejection ability of

two-view geometry.

• Extensive experiments with real data, showing the

scalability of the technique.

In the Experiments section, we highlight some applica-

tions that show the scalability and flexibility of view-

based maps. For example, even without sequence in-

formation, it is often possible to quickly reconstruct

a skeleton map from a set of views (Figure 13 and

Section VI-F). Loop closure over large distances is

possible: we show indoor maps with 800m trajectories

(Figure 1), and outdoor rough-terrain maps with 5km

trajectories. On a smaller scale, view matching with

large numbers of points is inherently accurate, showing

a few centimeter accuracy over a desktop workspace.
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Fig. 2. System overview.

Additional capabilities include automatic recovery from

localization failures (e.g., occlusion and motion blur) and

incremental construction of maps.

Our solution uses stereo cameras for input images.

The development of place recognition is also valid for

monocular cameras, with the exception that the geo-

metric check is slightly stronger for stereo. However,

the skeleton system so far has been developed just for

the full 6DOF pose information generated by stereo

matching, and although it should be possible to weaken

this assumption, we have not yet done so.

II. VSLAM AND VIEW MAPS

The view map system (Figure 2), which derives from

FrameSLAM [2, 25], is most simply explained as a set of

nonlinear constraints among camera views, represented

as nodes and edges (see Figure 6 for a sample graph).

Constraints are input to the graph from two processes,

visual odometry (VO) and place recognition (PR). Both

rely on geometric matching of views to find relative pose

relationships; they differ only in their search method.

VO continuously matches the current frame of the video

stream against the last keyframe, until a given distance

has transpired or the match becomes too weak. This

produces a stream of keyframes at a spaced distance,

which become the backbone of the constraint graph, or

skeleton. PR functions opportunistically, trying to find

any other views that match the current keyframe. This

is much more difficult, especially in systems with large

loops. Finally, an optimization process finds the best

placement of the nodes in the skeleton.

It is interesting to note that current methods in visual

SLAM divide in the same way as in laser-based SLAM,

namely, those that keep track of landmarks using an

EKF filter (monoSLAM [12, 13] and variations [34, 38]),

and those that, like ours, maintain a constraint graph

of views, similar to the original Lu and Milios method
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[30]. The main limitation of the landmark methods is

the filter size, which is only tractable in small (room-

size) environments. An exception is [34], which uses a

submap technique, although realtime performance has

not yet been demonstrated. Landmark systems also tend

to be less accurate, because they typically track only a

few tens of landmarks per frame. In contrast, our visual

odometry technique tracks 300 points per frame, and we

construct maps containing several thousand views (and

thus hundreds of thousands of points).

In a similar vein, the recent Parallel Tracking and

Mapping (PTAM) system [22, 23] also uses 3D land-

marks, but employs standard SfM bundle adjustment to

build a map from many views. Many more points can

be handled in the decoupled tracking phase, leading to

accurate and robust performance under many conditions.

Still, it is limited to small environments (around 150

keyframes) by the number of points and by bundle

adjustment. It is also subject to tracking failures on self-

similar textures (e.g., bushes), object motion, and scene

changes (e.g., removal of an object). In contrast, view-

based maps use consistent view geometry to robustly

estimate poses even in the presence of distractors.

The skeleton system deployed here comes directly

from the frameSLAM work in [2, 25]. Several other

systems employ constraint graphs as the basic map struc-

ture. Fraundorfer et al. [16] have a monocular system that

represents only direction information between views, and

produce only a topological map. Eade and Drummond

[14] employ a hybrid approach, using EKF landmarks

within a local area called a node, then connecting the

nodes via similarity relations. An interesting point of

their graph optimization is the use of cycles to constrain

relative scale between nodes. Other robotics work that

employs similar ideas about constructing view-based

constraints is in [39, 40]. These systems also keep a

constraint network of relative pose information between

frames, based on stereo visual odometry, and solve it

using nonlinear least square methods. The main differ-

ence with our system is that frameSLAM represents the

relationships as nonlinear constraints, which are more

accurate over angular deformations, and can reduce the

size of the skeleton graph to deal with larger areas as

required.

III. RELATED PLACE RECOGNITION WORK

Visual place recognition is an image classification

problem; new views are classified against a set of pre-

viously seen views. For use in VSLAM, the classifier

must support efficient online learning of new reference

views. Image matching techniques based on bag-of-

words matching are ideally suited to this purpose. For

fast lookup of similar places, we rely on the hierarchical

vocabulary trees proposed by Nistér and Stewénius [32],

which has the advantage of fast online learning of new

places. Other methods include alternative approximate

nearest neighbor algorithms [36, 31] and various refine-

ments for improving the response or efficiency of the

tree [11, 19, 20].

Cummins and Newman [11] show how to use visual

features for navigation and loop closure over very large

trajectories. They use pairwise feature statistics and

sequences of views to address the perceptual aliasing

problem, especially notable in man-made environments

containing repeated structure. Jegou et al. [19] incor-

porate Hamming embedding and weak geometric con-

sistency constraints into the inverted file to improve

performance. In this work, we rely instead on a strong

geometric consistency check on single views.

Jegou et al. [20] note that even using inverted files,

query time is linear in the number of reference images;

they propose a two-level inverted file scheme to im-

prove the complexity. Our experiments do show linearly

increasing query/update time, but with a very small

constant factor (Figure 7). For our scale of application

(in the thousands of images), the query time of the vo-

cabulary tree is nearly constant, and such sophistication

is unnecessary.

In application to graph-based VSLAM, Callmer et

al. [6] propose a loop closure procedure that uses a

vocabulary tree in a manner similar to ours, along with a

weak geometric check to weed out some false positives.

Eade and Drummond [15] have extended their node

approach with a PR method based on bag of words,

in which they learn the words online. They give few

statistics on the performance of PR, so it isn’t possible

to compare directly – they have the advantage of learning

based on the observed features, but have far fewer words

(3000 vs. 100,000 in our case). They have independently

introduced some of the same applications of PR as

given here: recovery from localization error and stitching

together trajectories when common views are found.

Finally, Williams et al. [41] also recover from localiza-

tion errors in a landmark-based VSLAM framework, by

training a classifier to recognize landmarks online; so far

their system has been limited to 80 landmarks, mostly

because of EKF processing.

There is an interesting convergence between our work

and recent photo stitching in the vision community

[37]. They employ a similar skeletonization technique

to limit the extent of bundle adjustment calculations,

but run in batch mode, with no attempt at realtime

behavior. Klopschitz et al. [24] use a vocabulary tree

to identify possible matches in video stream, and then
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followed by a dynamic programming technique to verify

a sequence of view matches. They are similar to our work

in emphasizing online operation.

IV. FRAMESLAM BACKGROUND

The view map system, which derives from our work

on FrameSLAM [2, 25, 27], is most simply explained

as a set of nonlinear constraints among camera views,

represented as nodes and edges (see Figures 11 and 13

for sample graphs). Constraints are input to the graph

from two processes, visual odometry (VO) and place

recognition (PR). Both rely on geometric matching of

stereo views to find relative pose relationships. The poses

are in full 3D, that is, 6 degrees of freedom, although

for simplicity planar projections are shown in the figures

of this paper.

VO and PR differ only in their search method and fea-

tures. VO uses FAST features [35] and SAD correlation,

continuously matching the current frame of the video

stream against the last keyframe, until a given distance

has transpired or the match becomes too weak. This

produces a stream of keyframes at a spaced distance,

which become the backbone of the constraint graph, or

skeleton. PR functions opportunistically, trying to find

any other views that match the current keyframe, using

random tree signatures [7] for viewpoint independence.

This is much more difficult, especially in systems with

large loops. Finally, an optimization process finds the

best placement of the nodes in the skeleton.

For two views ci and cj with a known relative pose,

the constraint between them is

∆zij = ci ⊖ cj , with covariance Λ−1 (1)

where ⊖ is the inverse motion composition operator – in

other words, cj’s position in ci’s frame; we abbreviate the

constraint as cij . The covariance expresses the strength

of the constraint, and arises from the geometric matching

step that generates the constraint. In our case, we match

two stereo frames using a RANSAC process with 3

random points to generate a relative pose hypothesis.

The hypothesis with the most inliers is refined in a

final nonlinear estimation, which also yields a covariance

estimate. In cases where there are too few inliers, the

match is rejected; the threshold varies for VO (usually

30) and PR (usually 80).

Given a constraint graph, the optimal position of the

nodes is a nonlinear optimization problem of minimizing∑
ij ∆z⊤ijΛ∆zij; a standard solution is to use precondi-

tioned conjugate gradient [2, 18]. For realtime operation,

it is more convenient to run an incremental relaxation

step, and the recent work of Grisetti et al. [17] on

stochastic gradient descent provides an efficient method

of this kind, called Toro, which we use for the ex-

periments. Toro has an incremental mode that allows

amortizing the cost of optimization over many view

insertions.

Because Toro accepts only a connected graph, we have

used the concept of a weak link to connect a disjoint

sequence to the main graph. A weak link has a very

high covariance so as not to interfere with the rest of

the graph, and is deleted as soon as a normal connection

is made via place recognition.

A. Geometric Consistency Check and Pose Estimation

Constraints arise from the perspective view geometry

between two stereo camera views. The process can be

summarized by the following steps:

1) Match features in the left image of one view with

features in the left image of the other view (N×N
matching).

2) (RANSAC steps) From the set of matches, pick

three candidates, and generate a relative motion

hypothesis between the views. Stereo information

is essential here for giving the 3D coordinates of

the points.

3) Project the 3D points from one view onto the other

based on the motion hypothesis, and count the

number of inliers.

4) Repeat 2 and 3, keeping the hypothesis with the

best number of inliers.

5) Polish the result by doing nonlinear estimation of

the relative pose from all the inliers.

The last step iteratively solves a linear equation of the

form

J⊤Jδx = −J⊤∆z, (2)

where ∆z is the error in the projected points, δx is a

change in the relative pose of the cameras, and J is the

Jacobian of z with respect to x. The inverse covariance

derives from J⊤J , which approximates the curvature at

the solution point. As a practical matter, Toro accepts

only diagonal covariances, so instead of using J⊤J , we

scale a simple diagonal covariance based on the inlier

response.

In cases where there are too few inliers, the match

is rejected; this issue is explored in detail in Section

V-C. The important result is that geometric matching

provides an almost foolproof method for rejecting bad

view matches.

B. Visual Odometry and Re-detection

Our overriding concern is to make the whole sys-

tem robust. In outdoor rough terrain, geometric view
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matching for VO has proven to be extremely stable even

under very large image motion [26], because points are

re-detected and matched over large areas of the image

for each frame. For this paper’s experiments, we use

a recently-developed scale-space detector called STAR

(similar to the CenSurE detector [1]) outdoors, and the

FAST detector indoors. There is no motion assumption

to drive keypoint match prediction – all keypoints are

redetected at each frame. For each keypoint in the current

left image, we search a corresponding area of size

128x64 pixels for keypoints in the reference keyframe

image for a match using SAD correlation of a 16x16

patch. Robust geometric matching then determines the

best pose estimate. Keyframes are switched when the

match inlier count goes below 100, or the camera has

moved 0.3m or 10 degrees.

In a 400 m circuit of our labs, with almost blank walls,

moving people, and blurred images on fast turns, there

was not a single VO frame match failure (see Figure 6

for sample frames). The PTAM methods of [22], which

employ hundreds of points per frame, can also have good

performance, with pyramid techniques to determine large

motions. However, they are prone to fail when there is

significant object motion, since they do not explore the

space of geometrically consistent data associations

C. System-Level Algorithm

The robot stores a skeleton map M that represents

its current global map. Every time the robot wakes up,

it runs the algorithm of Table I for visual mapping. In

general form, the algorithm is very simple. Waking up,

the robot is lost, and inserts a weak link to keep the

whole map connected (see Section IV). Then it processes

stereo frames at 30 Hz, using VO to connect each frame

to the last. If there is a failure in VO, it proceeds as with

wakeup, putting in a weak link. Otherwise, it tests for

a keyframe addition, which happens if the match score

falls below a threshold, or the robot has moved a certain

amount (usually 0.3m or 10 degrees).

The VO module provides a constant stream of

keyframes to be integrated into the skeleton graph. To

control the size of the graph for large environments,

only a subset of the keyframes need to be kept in the

graph. As each keyframe is generated by VO, it is kept

in a small sequential buffer until enough distance has

accumulated to integrate it into the skeleton. At this

point, all the views in the buffer are reduced to a single

constraint between the first and last views in the buffer.

The reduction process is detailed in [2]; for a linear

sequence of constraints, it amounts to compounding the

pose differences ∆z01 ⊕ ∆z12 ⊕ · · · ⊕ ∆zn,n−1. As an

Anytime Mapping

Input: skeleton view map M

Output: updated map M

1) On wakeup, initialize the current keyframe Kc and

insert a weak link between Kc and the last encountered

map keyframe.

2) Get new stereo frame S

3) Perform VO to get the relative pose Kc ↔ S

4) VO failure?

a) Add weak link from S to Kc

b) If previous S was a VO failure, delete it

c) Continue at step (2)

5) Switch keyframes?

a) Kc ⇐ S

b) Add skeleton node?

i) M ⇐ M ∪ {S}
ii) Place recognition for S?

A) Add PR links to M

B) Remove any weak links

C) Incrementally optimize M

6) If not shut down, continue from step (2)

TABLE I

SYSTEM-LEVEL SKELETON GRAPH CONSTRUCTION.

example, in the 5km outdoor runs, a typical distance

between skeleton views is 5m.

One can imagine many other schemes for skeleton

construction that try to balance the density of the graph,

but this simple one worked quite well. In the case of

lingering in the same area for long periods of time,

it would be necessary to stop adding new views to

the graph, which otherwise would grow without limit.

The frameSLAM graph reduction supports online node

deletion, and we are starting to explore strategies for

controlling the density of views in an area.

If a skeleton view is added, it checks all views in the

graph for matches, and adds any links it finds, removing

the now-unnecessary weak link. Finally, the graph is

incrementally optimized for a few iterations of Toro. The

optimization can be amortized over time, allowing online

operation for fairly large graphs, up to several thousand

views (see the timings in Figure 7).

V. MATCHING VIEWS

In this section we describe our approach to achieving

efficient view matching against thousands of frames.

We develop a filtering technique for matching a new

image against a dataset of reference images (PR), using

a vocabulary tree to suggest candidate views from large

datasets. From a small set of the top candidates, we apply

the geometric consistency check, using Randomized Tree

signatures [7] as an efficient viewpoint-invariant descrip-
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tor for keypoint matching. Finally, we develop statistics

to verify the rejection capability of this check.

A. Compact Randomized Tree Signatures

Our approach to matching keypoints relies on sta-

tistical learning techniques to compute a probabilistic

model of the patches surrounding them. Since the set

of possible appearances of patches around an image

feature, seen under changing perspective and lighting

conditions, can be treated as a class, a classifier based on

Randomized Trees [3] can be trained to recognize them

independently of pose. This is done using a database

of patches that is obtained by warping keypoints of a

reference image by randomly chosen homographies. The

resulting algorithm has very fast run-time performance

but requires a computationally intensive training phase

that precludes online learning of new feature points [28,

33].

In recent work, we overcame this limitation based on

the following observation: If we train a Randomized

Tree classifier [28] to recognize a number of base

keypoints extracted from an image database, all other

keypoints can be characterized in terms of their response

to these classification trees, which we will refer to as

their signature. Because the signature can be computed

very fast, the learning becomes quasi-instantaneous and

therefore practical for online applications. We attribute

this desirable behavior to the fact that, assuming the

initial set of keypoints is rich enough, the new keypoints

will be similar to some of those initial points and the

signature will summarize these similarities. In other

words, we replace a hand-crafted descriptor such as

SIFT [29] by one that has been empirically learned from

training data to be very discriminative. Remarkably, this

can be done using a fairly limited number—500 in our

experiments—of base keypoints [8].

Furthermore, our signatures are long sparse vectors

that can be compacted into small dense ones by multi-

plying them by random ortho projection matrices. This

results in a substantial speed increase over the fastest

competing descriptors such as SURF [4], at essentially

the same recognition rates [9]. As shown in Table I, we

are about 32 times faster than SURF when running on

the same CPU. Furthermore, our CPU implementation

is even slightly faster than a GPU implementation of

SURF.

B. A Prefilter for Place Recognition

We have implemented a place recognition scheme

based on the vocabulary trees of Nistér and Stewénius

[32] which has good performance for both inserting and

Descriptor Creation N×N Matching

(512 kpts) (512×512 kpts)

Compact RTs (CPU) 7.9 ms 6.3 ms

U-SURF64 (CPU) 150 ms 120 ms

73 ms (ANN)

U-SURF64 (GPU) 6.8 ms

TABLE II

TIMINGS FOR DESCRIPTOR CREATION AND MATCHING.

retrieving images based on the compact RT descriptors.

We call this step a prefilter because it just suggests

candidates that could match the current view, which

must then be subject to the geometric consistency check

for confirmation and pose estimation. VO and PR both

use the geometric check, but PR has the harder task of

finding matches against all views in the skeleton, while

VO only has to match against the reference keyframe.

The prefilter is a bag-of-words technique that works with

monocular views (the left image of the stereo pairs).

The vocabulary tree is a hierarchical structure that si-

multaneously defines both the visual words and a search

procedure for finding the closest word to any given

keypoint. The tree is constructed offline by hierarchical

k-means clustering on a large training set of keypoint

descriptors. The set of training descriptors is clustered

into k centers. Each center then becomes a new branch

of the tree, and the subset of training descriptors closest

to it are clustered again. The process repeats until the

desired number of levels is reached.

The discriminative ability of the vocabulary tree in-

creases with the number of words, at a cost of greater

quantization error [5] and increased memory require-

ments. Nistér and Stewénius have shown that perfor-

mance improves with the number of words, up to very

large (>1M) vocabularies. In our experiments, we use

about 1M training keypoints from 500 images in the

Holidays dataset [19], with k = 10, and create a

tree of depth 5, resulting in 100K visual words. The

Holidays dataset consists of mostly outdoor images, so

the vocabulary tree is trained on data visually dissimilar

to the indoor environments of most of our experiments.

The vocabulary tree is populated with the reference

images by dropping each of their keypoint descriptors to

a leaf and recording the image in a list, or inverted file,

at the leaf. To query the tree, the keypoint descriptors of

the query image are similarly dropped to leaf nodes, and

potentially similar reference images retrieved from the

union of the inverted files. In either case, the vocabulary

tree describes the image as a vector of word frequencies

determined by the paths taken by the descriptors through

the tree. Each reference image is scored for relevance to
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the query image by computing the L1 distance between

their frequency vectors. The score is entropy-weighted

to discount very common words using the Term Fre-

quency Inverse Document Frequency (TF-IDF) approach

described in [32, 36].

To evaluate the vocabulary tree as a prefilter, we

constructed a small test set of some 180 keyframes

over a 20m trajectory, and determined ground truth

matches by performing geometric matching across all

180×180 possibilities. In this dataset, each keyframe

averages 11.8 ground truth matches. We inserted these

keyframes, along with another 553 non-matching dis-

tractor keyframes, into the vocabulary tree. Querying the

vocabulary tree with each of the 180 test keyframes in

turn, we obtained their similarity scores against all the

reference images. The sensitivity of the vocabulary tree

matching is shown by the ROC curve (Figure 4, left)

obtained by varying a threshold on the similarity score.

Since we can only afford to put a limited number

of candidates through the geometric consistency check,

the critical performance criterion is whether the cor-

rect matches appear among the most likely candidates.

Varying N , we counted the percentage of the ground

truth matches appearing in the top-N results from the

vocabulary tree. For robustness, we want to be very likely

to successfully relocalize from the current keyframe, so

we also count the percentage of test keyframes with at

least one or at least two ground truth matches in the

top-N results (Figure 4, right).

In our experiments, we take as match candidates the

top N = 15 responses from place recognition. We expect

to find at least one good match for 97% of the keyframes

and two good matches for 90% of the keyframes. For any

given keyframe, we expect almost 60% of the correct

matches to appear in the top 15 results. Figure 3 shows

the recognition rate for a full map (Figure 11), as a

function of distance and angle to a view. Within a 0.5m

radius, the place recognition algorithm gives very high

recall when the angle is 10 degrees or less.

C. Geometric Consistency Check

We can predict the ability of the geometric consistency

check (Section IV-A) to reject false matches by making

a few assumptions about the statistics of matched points,

and estimating the probability that two unrelated views

I0 and I1 will share at least M matches, given a relative

pose estimate. Based on perspective geometry, any point

match will be an inlier if the projection in I1 lies

on the epipolar line of the point in I0. In our case,

with 640×480 images, an inlier radius of 3 pixels, the

Fig. 3. Recognition rate. The plot shows the proportion of recognized

poses for varying pose angle and pose distance. The poses are taken

from the final map in Figure 11.
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Fig. 4. Left: ROC curve for the vocabulary tree prefilter on the

test dataset. Right: “Average” curve shows percentage of the correct

matches among the top N results from the vocabulary tree (blue);

other curves are the percentage of views with at least 1 or 2 matches

in the top N .

probability of being an inlier is:

Atrack/Aimage = (6 ∗ 640)/(640 ∗ 480) = .0125 (3)

This is for monocular images; for stereo images, the two

image disparity checks (assuming disparity search of 128

pixels) yield a further factor of (6/128)*(6/128). In the

more common case with dominant planes, one of the

image disparity checks can be ignored, and the factor is

just (6/128). If the matches are random and independent

(i.e., no common objects between images), then counting

arguments can be applied. The distribution of inliers over

N trials with probability p of being an inlier is Bp,N , the

binomial distribution. We take the maximum inliers over

K RANSAC trials, so the probability of having less than

x inliers is (1 − Bp,N(x))K . The probability of exactly

x inliers over all trials is

(1 − Bp,N (x))K − (1 − Bp,N(x − 1))K (4)

Figure 5 shows the probabilities for the planar stereo

case, based on Equation 4. The graph peaks sharply

at 2 inliers (out of 250 matches), showing the theo-

retic rejection ability of the geometric check. However,

the real world has structure, and some keypoints form

clusters: these factors violate the independent match
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assumption. Figure 5 compares actual rejections from

the three datasets in the Experiments section, with two

different types of keypoints, FAST and STAR. These

show longer tails, especially FAST, which has very

strong clustering at corners. Note that repetitive structure,

which causes false positives for bag-of-words matching,

as noted in [11], is rejected by the geometric check –

for example, the windows in Figure 8. Even with the

long tail, probabilities are very low for larger numbers

of inliers, and the rejection filter can be set appropriately.

Of course, there is always the the possibility of visual

aliasing, e.g., the same large poster in two locations

could produce false positives, although we haven’t yet

found such a case in many hundreds of thousands of

matches. In such cases, a good technique would be filters

based on positional information.

VI. EXPERIMENTS

As explained in Section II, the view-based system con-

sists of a robust VO detector that estimates incremental

poses of a stereo video stream, and a view integrator

that finds and adds non-sequential links to the skeleton

graph, and optimizes the graph. We carried out a series

of tests on stereo data from three different environments:

Type length image image stereo skeleton

res rate base views

Office1 0.8 km 640x480 30 Hz 9 cm 4.2k

Office2 0.9 km 640x480 30 Hz 9 cm 5.1k

Urban 0.4 km 768x568 25 Hz 100 cm 0.5k

Terrain 10 km 512x384 15 Hz 50 cm 14.6k

Rectification is not counted in timings; for the indoor

sequence it is done in the stereo hardware. VO consumes

11 ms per video frame, leaving 22 ms for view integra-

tion, 2/3 of the available time at the fastest frame rate.

As in PTAM [22], view integration can be run in parallel

with VO, so on a dual-core machine view matching and

optimization could consume a whole processor. Given its
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Fig. 6. A closeup from the office dataset showing the matched views

on a small loop. The optimizer has been turned off to show the links

more clearly.

efficiency, we publish results here for a single processor

only. In all experiments, we restrict the number of

features per image to ∼300, and use 100 RANSAC

iterations for geometric matching.

A. Large Office Loop

The first experiment is a large office loop of about

800m in length. The trajectory was done by joysticking

a robot at around 1m/sec. Figure 1 shows some images:

there is substantial blurring during fast turns, sections

with almost blank walls, cluttered repetitive texture, and

moving people. There are a total of 24K images in the

trajectory, with 10k keyframes, 4235 skeleton views, and

21830 edges (Figure 1 shows the first 400m). Most of the

edges are added from neighboring nodes along the same

trajectory, but a good portion come from loop closures

and parallel trajectories (Figure 6).

View matching has clearly captured the major struc-

tural aspects of the trajectory, relative to open-loop VO.

It closed the large loop from the beginning of the trajec-

tory to the end, as well as two smaller loops in between.

We also measured the planarity of the trajectory: for the

view-based system, RMS error was 22 cm; for open-loop

VO, it was 50 cm.

Note that the vocabulary tree prefilter makes no dis-

tinction between reference views that are temporally near

or far from the current view: all reference views are

treated as places to be recognized. By exploiting the

power of geometric consistency, there is no need to

compute complex covariance gating information for data

association, as is typically done for EKF-based systems

[12, 13, 34, 38].

The time spent in view integration is broken down

by category in Figure 7. The vocab tree prefilter grows

linearly, to about 100 ms at the end; the geometry check
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Fig. 7. Timing for view integration per view during the office loop

trajectory.

is constant at 65 ms. Toro does almost no work at the

beginning of the trajectory, then grows to average 120 ms

at the end, with maximum time of 500 ms. VO can run at

frame rates, while simultaneously adding and optimizing

skeleton frames at 2 Hz.

B. Versailles Rond

We ran viewmap on an outdoor urban sequence from

a car in Versailles, a trajectory of about 400m (Figure 8).

The skeleton map contained 140 views, and PR found 12

matches after looping around, even when the car moved

into an adjacent lane. The Versailles images have a lot of

self-similarity in the windows, but the geometric check

rejects false positives. This sequence easily runs online.

C. Rough-Terrain Loops

Large off-road trajectories present the hardest chal-

lenge for VSLAM. Grass, trees and other natural terrain

have self-similar texture and few distinguishing land-

marks. The dataset we used was taken by a very aggres-

sive offroad autonomous vehicle, with typical motion of

0.5 m between frames, and sometimes abrupt roll, pitch,

and vertical movement. VO fails on about 2% of the

frames, mostly because of complete occlusion of one

camera; we fill in with IMU data. There are two 5 km

trajectories of 30K frames that overlap occasionally. To

test the system, we set the skeleton view distance to only

1m. The resultant graph has 14649 nodes and 69545

edges, of which 189 are cross-links between the two

trajectories. The trajectories are largely corrected via the

crosslinks – the error at the end of the loop changes from

over 100m with raw VO to less than 10m. Note that there

are no loop closures within each trajectory, only between

them. Figure 9 shows such a match. The PR system

has the sensitivity to detect close possibilities, and the

geometric check eliminates false positives – in Section

V-C we tested 400K random non-matching image pairs

from this dataset, and found none with over 10 inliers

(Figure 5).
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Fig. 8. Versailles Rond sequence of 700 video frames taken from

a moving vehicle, 1m baseline, narrow FOV. (Dataset courtesy of

Andrew Comport [10]) Top: matched loop closure frames. Bottom:

top-down view of trajectory superimposed on satellite image.
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Fig. 9. Matched loop closure frames from the rough-terrain dataset.

The match was made between two separate autonomous 5km runs,

several hours apart: note the low cloud in the left image.

D. Relocalization

Under many conditions, VO can lose its connection

to the previous keyframe. If this condition persists (say

the camera is covered for a time), then it may move

an arbitrary distance before it resumes. The scenario is

sometimes referred to as the “kidnapped robot” problem.

View-based maps solve this problem with no additional

machinery. To illustrate, we took the small loop sequence

from the TrajectorySynth experiment, and cut out enough

frames to give a 5m jump in the actual position of the

robot. Then we started the VO process again, using a

very weak link to the previous node so that we could

continue using the same skeleton graph. After a few

keyframes, the view integration process finds the correct

match, and the new trajectory is inserted in the correct
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Fig. 10. Relocalization (a.k.a the Kidnapped Robot Problem). There

is a cut in the VO process at the last frame in the left trajectory, and

the robot is transported 5m. After continuing a short time, a correct

view match inserts the new trajectory into the map.

place in the growing map (Figure 10). This example

clearly indicates the power of constant re-recognition.

E. Incremental Construction

Continuous PR and relocalization allow us to incre-

mentally construct maps using the Anytime Mapping

algorithm of Table I. Over the course of two days, we

collected a set of six sequences covering the same large

office area as in Figure 1. The sequences were done

without regard to forming a full loop or connecting to

each other – see the four submaps on the left of Figure

11. There were no VO failures in the sequences, even

with lighting changes, narrow corridors, and walls with

little texture.

After capturing the sequences, we ran them through

the Anytime Mapping algorithm, considering the start of

each new sequence to be a “wake-up” event. Each new

sequence started with a weak link to the map, and when

a PR event took place, the sequence was attached in its

proper place, as in the previous subsection. The full map

stitching result (right side, Figure 11) shows that PR and

optimization melded the maps into a consistent global

whole. A detail of the map in Figure 12 illustrates the

density of links between sequences, even after several

days between sequences.

To show that the map can be constructed incrementally

without regard to the ordering of the sequences, we redid

the runs with a random ordering of the sequences, pro-

ducing the same overall map with only minor variation.

In some cases, several detached “islands” were grown,

where the sequences in each island had no common

views. When a sequence with views in both islands was

added, they were merged into a common map.

Fig. 12. Detail of a portion of the large map of Figure 11. The

cross-links between the different sequences are shown in blue.

F. TrajectorySynth

To showcase the capability of view integration, we

performed a reconstruction experiment without any tem-

poral information provided by video sequencing or VO,

relying just on view integration. We take a small portion

of the office loop, extract 180 keyframes, and push them

into the vocabulary tree. We then choose one keyframe

as the seed, and use view integration to add all valid

view matches to the view skeleton. The seed is marked

as used, and one of the keyframes added to the skeleton

is chosen as the next seed. The process repeats until all

keyframes are marked as used.

The resultant graph is shown in Figure 13, left. The

nodes are placed according to the first constraint found;

some of these constraints are long-range and weak, and

so the graph is distorted. Optimizing using Toro produces

the consistent graph on the right. The time per keyframe

is 150 ms, so that the whole trajectory is reconstructed

in 37 seconds, about 2 times faster than realtime. The

connection to view stitching [37] is obvious, to the

point where we both use the same term “skeleton” for

a subset of the views. However, their method is a batch

process that uses full bundle adjustment over a reduced

set of views, whereas our approximate method retains

just pairwise constraints between views.

G. Accuracy of View-Based Maps

To verify the accuracy of the view-based map, we

acquired a sequence of video frames that are individually

tagged by “ground truth” 3D locations recorded by the

IMPULSE Motion Capture System from PhaseSpace Inc.

The trajectory is about 23 m in total length, consisting

of 4 horizontal loops with diameters of roughly 1.5 m
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Fig. 11. Trajectories from robot runs through an indoor environment. Left: four typical trajectories shown without correction. Right: the

complete lifelong map, using multiple trajectories. The map has 1228 views and 3826 connecting links. Distances are in meters.

and elevations from 0 to 1m. There are total of 6K stereo

images in the trajectory, with 224 graph nodes, and 360

edges. The RMS error of the nodes was 3.2 cm for the

view-based system, which is comparable to the observed

error for the mocap system. By contrast, open-loop VO

had an error of 14 cm.

VII. CONCLUSION

We have presented a complete system for online gen-

eration of view-based maps, with an emphasis on any-

time mapping: incrementally constructing maps when-

ever new information presents itself. The use of re-

recognition, where the robot’s position is re-localized

at each cycle with no prior information, leads to robust

performance, including automatic relocalization and map

stitching.

There are some issues that emerged in performing

this research that bear further scrutiny. First, SGD opti-

mization takes too long on very large graphs, since its

convergence is sublinear. A better strategy is to use a few

iterations of SGD, followed by Gauss-Seidel iterations to

converge quickly. Second, we would like to investigate

the monocular case, where full 6DOF constraints are not

present in the skeleton graph.
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