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ABSTRACT

We propose a real-time solution for modeling and tracking multiple
3D objects in unknown environments. Our contribution is two-fold:
First, we show how to scale with the number of objects. This is
done by combining recent techniques for image retrieval and online
Structure from Motion, which can be run in parallel. As a result,
tracking 40 objects in 3D can be done within 6 to 25 milliseconds
per frame, even under difficult conditions for tracking. Second,
we propose a method to let the user add new objects very quickly.
The user simply has to select in an image a 2D region lying on
the object. A 3D primitive is then fitted to the features within this
region, and adjusted to create the object 3D model. In practice, this
procedure takes less than a minute.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, Augmented, and Vir-
tual Realities; I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Shape

1 INTRODUCTION

Considerable progress has been made recently for camera tracking
in unknown environments, in terms of reliability [7] and scalability
with the size of the scene [4]. By contrast, tracking of 3D objects
moving independently received much less attention, despite its im-
portance for Human Computer Interfaces or Augmented Reality.

As Figure 1 shows, our contribution in this paper is two-fold.
First, we show how to handle a large number of objects. For exam-
ple, we can maintain real-time performances while simultaneously
tracking 13 different objects, while continuously checking for ob-
jects from a database of 40 objects to appear. To do that, we built
upon our approach developed in [6], which is able to manage a
large database of planar objects but track only one object at a time.
Object detection and feature tracking run in parallel: A foreground
thread tracks feature points from frame-to-frame to ensure real-time
performances, while a background thread aims at recognizing the
visible targets and estimating their poses. We show how to extend
the latter to detect all the known objects present in an image to be
able to track reliably several objects simultaneously.

The second part of our contribution is to show how to allow the
user to add new objects very efficiently. In a way similar to [7], a
second background thread maps the environment to track the cam-
era and reconstruct the 3D locations of image features. When the
user wants to define a new object, he simply has to select from a
captured frame a region that lies on the object. We then fit automat-
ically a 3D primitive to the 3D locations corresponding to the image
features that belong to this region, to obtain the object 3D model.
This procedure is fast and intuitive, and allows to create reliable 3D
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models and data required for tracking with a minimal effort. Our
current implementation is limited to box-like primitives, but could
easily be extended to other shapes.

In the remainder of the paper, we first address related work in
Section 2. We then give an overview of our approach and detail it
in Section 3. The experimental results are discussed in Section 4.

2 RELATED WORK

We review below previous work about multiple object tracking and
interactive modeling, respectively.

2.1 3D Multiple Object Tracking
[10] proposed a real-time tracking algorithm for multiple 3D ob-
jects that combines detection and frame-to-frame tracking. The
main drawback of the approach is that its complexity in terms of
computation time and memory grows linearly with the number of
objects, which makes it impractical when considering more than 10
objects. [16] optimizes a score evaluating the trade-off between de-
tection and frame-to-frame tracking, as detection is more robust but
requires more time, to dynamically asjust the tracking and detec-
tion loads at run-time. It also “masks” the parts of the image where
an object is already tracked, to avoid running the detection process
on these parts and thus save computation time. It can handle a re-
markably large number of objects simultaneously visible, however
it is still limited in the number of objects that can potentially be-
come visible, in other words the number of known objects in the
database.

Very recently, [11] developed an approach that can scale to a
very large number of known objects, by relying on image retrieval
techniques similar to the one we use [8]. In this paper, we show
how to combine detection and tracking for multiple objects, so that
these two parts of the approach can be run in parallel and commu-
nicate when needed. Thus, our method runs at more than 50Hz on
a modern PC, while [11] reports about 8 Hz.

We also propose a method to let the user add new 3D objects
very quickly, as discussed in the next subsection.

2.2 Online Interactive Modeling
Early works on online interactive modeling include [5] and [3]. [5]
relies on a visual marker while we do not need to engineer the en-
vironment and use natural features for tracking and reconstruction.
[3] introduced a special device that combines a camera and physical
buttons for the interface. By contrast, we focus on using standard
hardware.

Recently, [9] proposed a method to interactively build complex
3D models of real objects. The system uses AR for user guidance
through the reconstruction process, and does not really focus on
tracking the object afterward, as we do.

The in situ modeling in [12] is closer to our approach as the user
can define the vertices of the object mesh while moving the camera.
We show here that we can combine automated reconstruction and
interactive modeling by fitting 3D primitives to the reconstructed
3D locations. This makes the task much easier for the user.

Maybe closer to our own work is [15], which combines Video-
Trace [14], an off-line reconstruction method from videos, with
PTAM [7] for interactive modelling. However this approach fo-
cuses on modelling the scene, while we can build models of inde-
pendently moving objects.
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Figure 1: Overview of our approach. In the top line (A/B), (A): the total number of the detected objects in the current image, and (B): the
number of the registered objects in database. (a) Our system continuously reconstructs the environment and tracks the camera from the video
stream. (b) To add a new object, the user starts by selecting some features on the object using a brush-like tool. (c) The system then fits a
planar facet to the features that can be adjusted (d) and extended to a 3D box by the user (e). (f) The object can then be moved independently
from the rest of the scene. (g-k) Known objects are recognized when they become visible, and are tracked independently from each other. (l)
Our system can handle many objects in real-time.
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Figure 2: Flowchart of the proposed tracking, mapping and model-
ing.

3 TRACKING, MAPPING AND MODELING

3.1 Overview
Our general approach is to track the camera and the known objects
and reconstruct the 3D environment continuously. At any time, the
user can interactively define new objects from the captured images
and the environment reconstruction.

As shown in Figure 2, our system is made of three different
processes that run in parallel for efficiency. In a way similar
to PTAM [7], the foreground process mostly computes the pose
of the camera and the objects from frame-to-frame matches, and
one background process takes care of the online reconstruction.
An additional background process matches the input images with
keyframes of the environment and the objects. This makes tracking
more robust than the frame-to-frame tracking alone and allows to
recognize known objects when they become visible and start track-
ing them.

The user initiates the object modeling process by selecting key-
points from the reconstructed environment that lie on a planar patch
on the object to model.

We detail below these different aspects of our system. We first
focus on camera tracking and environment reconstruction, and then
show how to extend them to model and track multiple objects.

3.2 Camera Tracking
Our approach to camera tracking is very similar to the one we de-
veloped for digilog books, or magic books, in [6]. As mentioned
above, it is made of two processes, a fast one, the “tracking mod-
ule”, that relies on frame-to-frame tracking and runs in the fore-
ground, and a slower one, the “detection module”, that tries to
match the input frames with keyframes of the environment and of
the known objects.

We quickly describe these two modules below. More details can
be found in [6].

3.2.1 Detection Module
The environment reconstruction process, which will be detailed in
Section 3.3, generates keyframes that are images containing key-
points that have been reconstructed in 3D. The detection module
quickly retrieves the keyframes similar to the input frame, and
matches their keypoints with those extracted in the input image.

For a given input image, we first extract SIFT keypoints from
it and run the algorithm described in [8] for image retrieval. This
algorithm is based on a vocabulary tree to identify the keypoints
and look-up tables to quickly retrieve similar images. The result is
a list of reference images of the targets, sorted by similarity with
the input image. This is very fast, even with a very large number of
keyframes.

To actually match the keypoints between the keyframes and the
input frame, we use kd-trees. Each keyframe has an associated kd-
tree, and the kd-tree for the input frame is computed online. We
finally use RANSAC to robustly compute the camera rotation and
translation from these matches.

3.2.2 Tracking Module

When the detection module finished to match the input frame with a
keyframe, this information can be used by the tracking module. Un-
fortunately, the detection module is typically slower than the track-
ing thread. As a result, the tracking module already processes an
image captured after the image processed by the detection module.

To compensate, we match the features extracted in the two im-
ages. Because the motion between the two images is typically
not large, we can use a fast and simple procedure based on cross-
correlation and bounded search regions, as described in [13] for
example. In practice we use 16×16 correlation windows.

We can then proceed to track feature points over consecutive
frames. The camera pose is estimated using their 3D locations as
recovered by the environment reconstruction process, described be-
low.

3.3 Environment Reconstruction
Like in PTAM, the initial map is obtained from two views. The
map is then extended by first matching an input frame and the cor-
responding keyframe as recovered by the process explained in Sec-
tion 3.2.1.

The input frame is added as a keyframe and contributes to the
environment reconstruction if it passes several conditions: It must
exhibit a sufficient large number of new keypoints, the reprojection
error must be sufficient low, and the corresponding camera center
must be distant enough from the camera center of the correspond-
ing keyframe to allow an accurate reconstruction. If it does, we
reconstruct the 3D locations of the new keypoints matched with the
corresponding keyframe but do not belong to the map yet. Finally,
we perform a local bundle adjustment using the 10 keyframes clos-
est to the input frame in a background process.

Input: SIFT features S extracted from the input camera image
Output: Inliers of each object

K: set of keyframes returned from vocabulary tree ;

K← queryToVocabularyTree(S) ;

Keep only the first min(# of objects×5,# of total keyframes)
best keyframes in K;

foreach keyframe K ∈K do
O← correspondingObject(K) ;
if O is not currently tracked then

if no good keyframe for O has been found yet then
[inliers]← robustMatch(O, S) ;
if # of [inliers] > Tval then

send [inliers] to foreground tracking thread ;
end

end
end

end
Algorithm 1: Pseudo-code for multiple objects detection.

3.4 Multiple Object Tracking
We now explain how we extend the camera tracking process to track
multiple objects, and describe how the user can quickly define new
objects.
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Figure 3: Flowchart of the proposed modeling procedure.

3.4.1 Object Tracking Algorithm

To each object corresponds a set of keyframes similar to those of the
environment as used in Section 3.2. The only difference is that these
keyframes contain only the keypoints that lie on the corresponding
objects. These keyframes are created automatically during the in-
teractive object modeling as will be explained in Section 3.5. They
are referenced in the detection module by a second vocabulary tree.
We could use the same vocabulary tree as for the keyframes for the
environment but we noticed that keeping the two types of keyframes
results in better performances.

The pseudo-code for detecting newly visible objects is given in
Algorithm 1. For a given input frame, the detection module returns
a list of keyframes sorted by similarity score. We consider at least
one keyframe per object in the database: If one object exhibits much
more keypoints than another one, it tends to artificially get better
scores, and appears more often in the best keyframes. We then
try to robustly match each keyframe from this list with the input
image, using RANSAC to compute the object pose. If the number
of inliers is sufficient large, the object is considered visible in the
input image, and its keypoints are sent to the foreground process
and tracked frame-by-frame.

3.5 Interactive Object Modeling
We finally describe here how the user can define new objects easily.

3.5.1 User Interface

Figure 3 shows the flowchart of the proposed modeling procedure.
The modeling process is activated by the user’s input. It eventually
results with a set of keyframes corresponding to the modeled object.
These keyframes will be used to track the object as described in the
previous section.

In the first step, for selecting a target object area, we use a cir-
cular 2D brush pointer to mark features from images. The user can
use a 2D brush-like tool to mark directly in the input frames some
keypoints lying on the objects. For convenience, the brush radius
can be changed adaptively with a mouse wheel movement in order
to pick keypoints one by one or entire set at a time.

Once the keypoints are selected, we fit a plane to the correspond-
ing 3D points. Four virtual corner points are displayed and the user
can adjust their positions on the plane without pausing the tracker.
The 2D surface can finally be extended in a direction orthogonal to
the 3D plane to define the object 3D shape.

3.5.2 Keyframes Selection

To create the set of keyframes for the modeled object, we consider
the keyframes already used to track the environment. Using the 3D
locations of the keypoints that belong to the object, it is easy to find
the keyframes where these keypoints are also visible. We retain the
keyframes with the largest ratios between the number of keypoints
lying on the object and the total number of keypoints extracted in
the keyframe.

Only the keypoints that lie on the object are kept. The keyframes
are finally added to the vocabulary tree of the detection module,

and the kd-tree of each keyframe is computed. This is carried out
without stopping tracking.

4 EXPERIMENTAL RESULTS

In all our experiments, we used a PC with an Intel 2.95 GHz Quad-
core CPU and a NVidia GTX285 graphic card, and a USB type
FireflyMV camera [2] with a 3.5 mm lens. We used two vocabulary
trees (one for the environment, one for the objects) each made of
6 levels and 10 branches per level, and the implementation from 1.
We also used SIFTGPU [17] to speed up feature extraction. The
other parts of the system were implementing using OpenCV [1].

4.1 Real-Time Tracking and Mapping Performance

Figure 4 shows the results of the proposed tracker running in a small
desktop environment. For this experiment, we translated the camera
roughly in a direction orthogonal to its line of sight, and parallel to
the ground plane. Then we measure the tracking time and the repro-
jection error over 1000 frames. The results are shown in Figure 4.
Tracking time always remained between 5 and 25 ms, and the re-
projection error was maintained under 2 pixels, even when the map
contains almost 8000 points. The keyframes and map points are
rendered in 3D in Figure 4(c), which shows that the camera trajec-
tory is as expected, at least qualitatively.
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Figure 4: Tracking and mapping results for a camera in translation.
(a) Tracking time in milliseconds and the number of features in the
map, and (b) Reprojection error in pixels over 1,000 frames. The
x-axis corresponds to the frame index. (c) The map points and the
camera for the keyframes.

1http://www.cvg.ethz.ch/people/postgraduates/fraundof/vocsearch



Table 1 details the average times for each module. The real-time
performances depends on the number of visible objects and fea-
tures tracked in the current frame, but the frame-rate of the tracking
module is always higher than the video capture frame rate.

Table 1: Average Times for the Different Modules Running on (1):
Foreground and (2),(3): Background Threads.

Process module Time (ms)

(1)
Searching features 1.876

Frame-to-Frame matching 3.432
Pose update per object 2.128

(2)

Keyframe searching (vocabulary tree) 11.061
Feature matching (kd-tree) 11.848

Outliers rejection 2.386
Guided matching 1.284

(3) Keyframe insertion 16.215 + 21.092(vocabulary tree, kd-tree)

4.2 3D Object Modeling and Multiple Objects Tracking
Results

Figure 5 shows an example of modeling and tracking a single box
by using the proposed method. In this case, a total of 32 object-
keyframes were created. With the help of the strong distinctiveness
of SIFT features we could track the target box from previously un-
seen viewpoints.

To evaluate the scalability of the proposed method with the num-
ber of objects, we modeled 40 different objects —some of them are
shown in Figure 6(a)— for a total of 444 keyframes and 24,568 map
points. Figure 6(b) shows the number of keyframes and collected
map points for 10 of the objects.

Figure 6(c) shows the evolution of the computation time required
for tracking together with the number of objects visible in the im-
age. Up to 13 objects were visible, and the computation time varied
from 6 ms to 25 ms. The computation time evolves roughly linearly
with the number of visible objects, while the number of known ob-
jects has only a very limited influence.
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(a)
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Figure 5: Object modeling and tracking using the proposed method: (a) Generated map and tracker keyframes during the modeling pro-
cess described in Figure 1(a)-(f) seen from two different viewpoints, (b) two of the generated object-keyframes and their object-keypoints
represented as red dots, and (c) two snapshots of the target object tracking results.
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Figure 6: Evaluating the scalability in terms of the number of objects: (a) 10 of the 40 objects used for the experiment. (b) Number of
keyframes and number of map points for each object of these 10 objects. (c) The prototype could detect and track potentially visible 40
objects, for a total of 444 keyframes and 24,568 map points. The computation required for tracking reached 25 ms when 13 objects were
visible and tracked simultaneously. The computation time evolves roughly linearly with the number of visible objects, while the number of
known objects has only a very limited influence.


