
contact: Nikolaus Heran nikolaus.heran@tugraz.at

ARift

Augmented Reality for the Oculus Rift DK1

Nikolaus Heran, Markus Höll, Vincent Lepetit

Inst. for Computer Graphics and Vision

Graz University of Technology, Austria

Technical Report
ICG–CVARLab-TR–001
Graz, February 22, 2016

mailto:nikolaus.heran@tugraz.at


Abstract

In this work we investigate the creation of an augmented reality environment
using the Oculus Rift DK1 combined with two webcams, similar to what has
been done by Steptoe et al. in [1]. First we recapitulate the definition of aug-
mented reality and the general obstacles to overcome. Upon which we discuss
the state of the art and move on to the specifics of this implementation of aug-
mented reality. Finally we describe ongoing and propose future work building
upon this realization.

Keywords: Report, Technical report, template, ICG, AR, ARift, Augmented
Reality, Oculus



1 Introduction

Virtual and augmented reality have been topics in research and popular cul-
ture for multiple decades [2, 3] but recent developments in hard- and software
have sparked new interest in these subjects in a wide audience. Especially
the upcoming release of head mounted virtual reality devices as the Oculus
Rift and HTC Vive move this topic closer to the homes and lives of con-
sumers than ever before. According to these companies the hardware for the
end users will be just as a↵ordable as a new desktop gaming computer. Both
devices are aimed at providing access to a virtual reality but not augmented
reality. Given the close relation of virtual and augmented reality a conversion
to augmented reality can be achieved with very few downsides.

In this report we discuss the necessary steps for creating such a rig and
software for it. To create the illusion of virtual reality three requirements
must be met: the creation of a virtual world, measurements of the device’s
position and orientation and finally a convincing animation of the virtual
world with the measurements in mind [3]. Advancing from virtual reality to
augmented reality requires capturing the real scene and melding it with the
already created virtual reality. To capture the real scene we mounted two
cameras (IDS uEye UI-122-1LE-C-HQ) with fisheye lenses to the front of the
device. The next step in the conversion process is creating an augmented
reality application. This software superimposes virtual and real scene. Espe-
cially in the border regions the used fisheye lenses show significant distortion.
To alleviate this problem and heighten immersion the cameras need to be cal-
ibrated. We used the OCamCalib matlab toolbox by Scaramuzza et al. [4] for
this calibration. To improve performance the images are being undistorted
on the graphics card. Our implementation was created for the Oculus Rift
DK1 because it was already available at the start of the project. However,
the software can easily be adapted to work with other hardware as well.

The specifics of the creation of the virtual world are described in chapter 2.
Details about the calibration process are discussed in section 4. A summary
and observations of the achieved results can be read in chapter 6. Finally
ongoing and future work with the described approach concludes this report
in chapter 7.

2 Creating a virtual world

There is a wide variety of methods to create a virtual world known from
computer graphics, but almost all of them use homogeneous coordinates.
Like many others we chose to add a fourth component to the position vec-

1



tor as well. Using homogeneous coordinates allows us to write rotations,
translations, scalings and projections as matrix multiplications [5, 6].

The virtual world is populated by virtual objects. Each object consists of
at least three vertices, where each vertex also has a normal vector associated
with it. Therefore a directed triangle is the most primitive model that can
be created in our application. A texture can be applied to the object by
defining texture coordinates for each vertex and interpolating on the texture
in between. Each object is placed using a position vector x = [x, y, z, w] and
oriented using a rotation vector � = [�

x

,�

y

,�

z

]. Furthermore each object
can be scaled along each of the three dimensions.

To display the virtual world on the screen every vertex x is transformed
into screen coordinates xscreen in the following way:

xscreen = PVMx (1)

In equation 1 the projective transformation is denoted by P. V contains
the viewpoint transformation (i.e. where the virtual camera is and where it
is looking at). The models placement, orientation and scale in the virtual
world is introduced with M.

3 From a virtual world to virtual reality

Achieving the illusion of looking into a virtual world, either by using a hand
held device or through a head mounted display (HMD), requires that the
virtual objects behave as if they were real. The most basic aspect of this
is that the device’s movement and rotation must be transported into the
virtual world and be applied to the virtual camera(s). Measurements about
the device’s position X = [X, Y, Z] and rotation �

R

= [�
X,R

,�

Y,R

,�

Z,R

] are
therefore needed. The measurement coordinate system is depicted in Figure
1.

Given these measurements the virtual cameras can be translated and ro-
tated in correspondence. Only the relative motion �

t

X and rotation �
t

�

R

between two consecutive frames are required. For a 2D display this is al-
ready enough to achieve the illusion. For HMDs further steps are required
to achieve immersion. It is detailed by Rolland and Hua in [2] and Kooi
and Toet in [7] that various techniques exist to gain a 3D perception of the
virtual scene. All of them require to present each eye with a slightly di↵erent
image. Thus the virtual scene has to be rendered twice.

The movement of the virtual cameras has to be in agreement with the
movement of the wearers head. Each eye has a fixed o↵set from the heads
rotation center x

head,t

. This o↵set is denoted by ~x
l,eye

for the left eye and

2



by ~x
r,eye

for the right eye. To determine the 3D positions of the virtual
eyes (cameras) x

l,eye,t

, x
r,eye,t

for frame t the relative head rotation �
t

�

R

and
translation �

t

X is applied as can be seen in equation 2.

x⇤,eye,t = T
t

�
t

T⇤,eyexhead,t�1 (2)

Where x
head,t

denotes the heads position at frame t, �
t

is a homogeneous ro-
tation matrix constructed from �

t

�

R

and T
t

, T⇤,eye are homogeneous trans-
lation matrices constructed from �

t

X, ~x⇤,eye respectively.

Figure 1: Measurement coordinate system for the orientation and movement
of the device. Pitch corresponds with �

X,R

, yaw with �

Y,R

and roll with �

Z,R

.
Image taken from [8].

Now the position of each virtual camera is known, but the viewing direc-
tions of each of the cameras still has to be determined. Since the object the
eyes focus on is in a slightly di↵erent place in each eyes image the standard
projection in equation 1 has to be replaced by an o↵ axis projection as de-
scribed in [9]. Figure 2 shows the principle of the o↵ axis stereo projection.

4 Camera calibration

Before the camera images can be incorporated into the virtual scene an undis-
tortion step is needed. In order to acquire the undistortion function the used
webcams need to be calibrated. We chose to use the approach described by
Scaramuzza et al. in [10]. This method calibrates the full system including
external and internal parameters and has an open source Matlab toolbox

3



Figure 2: Top view of the principle of o↵ axis stereo projection. The center
eye (black) depicts a standard projection, the left eye (blue) and right eye
(green) depict the used stereo projection mapping.

publicly available. Another important motivation for choosing this approach
is the simplicity of its usage. The user only needs to take several images of
a calibration pattern of known geometry from various viewpoints for a cali-
bration to be possible. Except for a Matlab licence no additional expensive
equipment is required. One of the images used in calibration can be seen in
Figure 3.

As described in [10] the imaging process of a fisheye lens camera can be
split into three parts:

1. A central projection of a scene point X to a direction vector p.

2. A non-perspective optics transform by a function g mapping the direc-
tion vector p to a position on the camera sensor u00 = [u00

x

u

00
y

]T .

3. A digitization of the position on the camera sensor u00 to a pixel position
u0 on the final image.

The first point can be described with equation 3 where P denotes the (stan-
dard) projection matrix.

�p = �


u00

g(ku00k)

�
= PX (3)

The mapping of the direction vector to a position on the camera sensor is
defined in [10] as a Taylor series missing the second term and can be seen in
equation 4.

g(ku00k) = a0 + a2ku00k2 + · · ·+ a

N

ku00kN (4)

4



In the third part of the imaging process the fact that sensor and lens axis are
not necessarily aligned is taken into account. Fixing this alignment exactly
requires an Homography however as shown in [11] an A�ne transformation,
as can be seen in equation 5, supplies a good approximation.

u00 = Au0 + t (5)

Figure 3: Example for an image used in calibration of the webcams.

5 Melding the real and the virtual

The last remaining steps to achieve augmented reality is to meld the already
created virtual reality with the images from the cameras and displaying them
on the screen. To achieve this we first render the undistorted camera image of
the respective eye orthographically. Then the virtual scene is rendered on top
for the same eye as described in the previous sections. Once the images for

(a) Image before undistortion. (b) Undistorted image in grayscale.

Figure 4: Results of the undistortion step.

5



both eyes are rendered they are passed on to the Oculus SDK that applies a
barrel distortion and displays the images on the screen. The barrel distortion
is needed to counteract the pincushion distortion introduced by the lenses
inside the HMD.

A final calibration of the HMD is needed to get rid of misalignment of
the camera images for the left and right eye. To do this the wearer looks
at the calibration pattern and adjusts the o↵set of the left and right camera
images using the keyboard until no blurry o↵set remains visible.

6 Conclusion

Combining all the described steps reveals the final HMD augmented reality
pipeline after all calibration has been done:

1. Get rotation readings from HMD driver

2. Capture images on eye cameras

3. Retrieve image from first eye’s camera

4. Undistort image on GPU

5. Render image with o↵set orthographically

6. Move first eye’s virtual camera according to rotation readings

7. Render virtual scene for first eye on top

8. Repeat steps 3 to 7 for the other eye

9. Apply barrel distortion to both eyes’ images

10. Display on the HMD screen

We have shown that it is possible to upgrade a virtual reality HMD to an
augmented reality capable device using two front mounted cameras. Immer-
sive 3D augmented reality can be achieved using our application and such
a device. The hardware modifications can be seen in Figure 5. Our appli-
cation supports multiple textured virtual objects of any geometry based on
triangles. Objects can be animated using key frames and linear interpolation
in between. It incorporates head rotation measured by the accelerometers
in the HMD. Ambient and di↵use lighting is used to illuminate the virtual
objects. Using the undistorted camera images our application creates an aug-
mented reality by combining these with the virtual world. Figure 6 shows a

6



still frame from the final result of our work. A short overview of the program
code can be found in appendix A.

Figure 5: Hardware modifications.

Figure 6: Still frame of the image displayed on the Oculus DK1 screen.

7 Ongoing and future work

Currently only the HMD rotation is measured and taken into account when
moving the virtual cameras. Since almost any natural pose change incor-
porates some head translation the immersion su↵ers if it is not taken into
account. Therefore a big improvement can be made when the HMDs trans-
lation is also measured and transferred into the virtual world. Measuring
the HMDs position could be achieved by the computer vision method LSD-
SLAM [12] that can be applied to one or both cameras video streams. The
upside of this method of measurement is that it does not require any further
hardware.

Another point that can be improved is the brightness and capture fre-
quency of the cameras. The currently used IDS uEye UI-122-1LE-C-HQ
cameras only provide about 25 frames per second in an averagely lit indoor
environment without loosing too much brightness to impair vision. This is

7



not enough to provide a smooth appearance of movement, especially for fast
head rotations. The best but also most expensive way to alleviate this flaw
would be to use cameras with higher ISO. Furthermore, the framework for
loading and saving virtual objects and textures can be improved, since it
does become slow for many or simply single large objects and especially for
large textures. The currently used wavefront format is human readable but
also very slow to load. Using a more compact binary format would vastly
improve startup time.

8



References

[1] W. Steptoe, S. Julier, and A. Steed, “Presence and discernability in con-
ventional and non-photorealistic immersive augmented reality,” inMixed
and Augmented Reality (ISMAR), 2014 IEEE International Symposium
on, pp. 213–218, IEEE, 2014. ii

[2] J. Rolland and H. Hua, “Head-mounted display systems,” Encyclopedia
of optical engineering, pp. 1–13, 2005. 1, 2

[3] I. E. Sutherland, “A head-mounted three dimensional display,” in Pro-
ceedings of the December 9-11, 1968, fall joint computer conference, part
I, pp. 757–764, ACM, 1968. 1

[4] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A flexible technique
for accurate omnidirectional camera calibration and structure from mo-
tion,” in Computer Vision Systems, 2006 ICVS’06. IEEE International
Conference on, pp. 45–45, IEEE, 2006. 1

[5] L. G. Roberts, Machine perception of three-dimensional soups. PhD
thesis, Massachusetts Institute of Technology, 1963. 2

[6] J. Bloomenthal and J. Rokne, “Homogeneous coordinates,” The Visual
Computer, vol. 11, no. 1, pp. 15–26, 1994. 2

[7] F. L. Kooi and A. Toet, “Visual comfort of binocular and 3d displays,”
Displays, vol. 25, no. 2, pp. 99–108, 2004. 2

[8] Oculus VR LLC, Oculus Developer Guide. 3

[9] R. Kooima, “Generalized perspective projection,” School of Elect. Eng.
and Computer Science, pp. 1–7, 2008. 3

[10] D. Scaramuzza, Omnidirectional vision: from calibration to robot motion
estimation. PhD thesis, Citeseer, 2008. 3, 4

[11] D. Scaramuzza and R. Siegwart, Monocular omnidirectional visual
odometry for outdoor ground vehicles. Springer, 2008. 5

[12] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale di-
rect monocular slam,” in Computer Vision–ECCV 2014, pp. 834–849,
Springer, 2014. 7

9



A Program code description

The augmented reality application was written in C++ for Microsoft Win-
dows 7 & 8 using Microsoft Visual Studio 2013 Community. This project
depends on the Oculus SDK version 0.4.4 for interfacing with the HMD, the
IDS uEye API for utilizing the cameras e�ciently and the Microsoft Win-
dows 8.1 development kit for DirectX11. The code is publicly available under
https://github.com/MaXvanHeLL/ARift.

At the start of the program first the GraphicsAPI and the ARiftControl
objects are created. Following this a new thread is started that encapsulates
the whole application. The main function then continues to keep running in
an endless loop until ARiftControl.keepRunning() returns false. In the other
thread the OculusHMD instance, the DirectX window and rendering is set
up. Once the setup is successfully completed the main loop of the application
initiated. The main loop starts o↵ with checking for windows system mes-
sages (keystrokes, mouse movements, application closure commands,. . . ). If
there is a keyboard stroke incoming the handling of said input is handed over
to the ARiftControl instance. Then images are captured on both cameras
and saved to memory. Finally the virtual and real scene is rendered by the
GraphicsAPI object instance before the loop repeats.

If the application received a WM QUIT message the main loop is broken
and the shutdown is initiated. During the shutdown first the GraphicsAPI
instance is destroyed. Then the ARiftControl is informed that the loop in
the main function shall be shut down. Before the thread is destroyed the
OculusHMD instance is destroyed. The ARiftControl instance is destroyed
in the main function as soon as the main loop ends.

In the following all implemented classes and their purpose are described
shortly.

ARiftControl
Retrieves and interprets the user interface input. Currently only key-
board input is considered.

IDSuEyeInputHandler
Manages the control of the cameras via interfacing with the camera
driver. Image capture and retrieval as well as camera settings can be
changed using this class.

OculusHMD
Provides an abstraction layer for the Oculus HMD SDK. It initializes
the HMD and retrieves the rotation measurements. Once the scene

10

https://github.com/MaXvanHeLL/ARift


rendering in GraphicsAPI is complete the OculusHMD class passes the
images on to Oculus SDK for predistortion and display.

GraphicsAPI
Creates, updates and destroys the DirectX scene. In the constructor the
scene is set up, the models are loaded and placed. While the application
is running the scene is updated according to user input and HMD
rotation measurements. When the application is prompted to close
this class handles the destruction of the scene and the cleanup.

Camera
The parameters and calculations needed for a virtual camera for stan-
dard projection are enclosed in this class.

HeadCamera
This class is derived from Camera. The calculations needed to get from
the head rotation update to the camera parameter update are provided
by this class.

Model
Represents a model in the virtual scene. A model’s vertices, scale,
position, rotation and texture are pooled together in this class. It
further allows to specify and progress a model’s animation. The loading
of a model from a wavefromt file is also part of this class’ methods.

Texture
This class represents a texture in the virtual scene. It provides methods
to load it from a *.dds file and updating it from a camera image.

RenderTexture
Initializes, updates and destroys a render target that can be accessed
as a texture. All rendering is done to such a RenderTexture whose
texture is then passed on to the Oculus SDK.

BitMap
To meld virtual and real scene the camera images need to be rendered,
this class provides the required functionality. It is a virtual object - a
rectangle - that is always placed so that it fills the respective eyes full
field of view. The camera images are then rendered using an undis-
tortion shader onto this rectangle as a texture. Finally a orthographic
projection is applied to it in GraphicsAPI.

Shader
Loading, compiling and applying shaders is encapsulated here. The

11



application compiles and loads a lighting pixel and vertex shader for the
virtual objects and a undistortion pixel shader for the camera images
from hlsl shader files.

EyeWindow
For debug purposes a window for each eye can be provided.

Lighting
Information about the ambient and di↵use lighting that is calculated
in the lighting shader is saved here.

12


	Introduction
	Creating a virtual world
	From a virtual world to virtual reality
	Camera calibration
	Melding the real and the virtual
	Conclusion
	Ongoing and future work
	Program code description

