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Abstract

We present a template-based approach to detecting human silhouettes in a specific walking pose. Our templates consist of short
sequences of 2D silhouettes obtained from motion capture data. This lets us incorporate motion information into them and helps dis-
tinguish actual people who move in a predictable way from static objects whose outlines roughly resemble those of humans. Moreover,
during the training phase we use statistical learning techniques to estimate and store the relevance of the different silhouette parts to the
recognition task. At run-time, we use it to convert Chamfer distance to meaningful probability estimates. The templates can handle six
different camera views, excluding the frontal and back view, as well as different scales. We demonstrate the effectiveness of our technique
using both indoor and outdoor sequences of people walking in front of cluttered backgrounds and acquired with a moving camera, which
makes techniques such as background subtraction impractical.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Methods for recognizing 3-D human body poses in indi-
vidual frames have become increasingly popular [1–6]
because they are indispensable to achieve full automation
in tracking. When occlusions are to be expected and back-
ground subtraction is not an option, for example because
the camera is moving, Chamfer-based methods [7,8] are
among the most robust ones.

However, as can be seen in Fig. 1b, Chamfer-based
matching can easily produce many false positives and some
false negatives, especially when the background is clut-
tered. In this work on detecting human silhouettes in spe-
cific walking pose, we achieve much lower error rates by
introducing sophisticated templates that let us effectively
take into account additional information.
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• Motion information. We use motion capture data to cre-
ate sequences of 2-D silhouettes that we match against
short image sequences. The resulting spatio-temporal

templates let us differentiate between actual people
who move in a predictable way and static objects whose
outlines roughly resemble those of humans, which are
surprisingly numerous. Motion is well known to be
important and optical flow methods have been proposed
to exploit it [9]. However, accurately computing the flow
on human limbs is notoriously difficult, especially if the
background is not static. Replacing flow computation
by matching against a set of moving silhouettes effectively
addresses this issue.

• Statistical relevance. During a training phase, we use
statistical learning techniques to estimate and store the
relevance of the different silhouette parts to the recogni-
tion task. At run-time, we use it to convert Chamfer dis-
tances into meaningful probability estimates. For
example, for walking motions, this accounts for the fact
that feet and shoulders provide much more discriminant
information than the trunk.
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Fig. 1. Detection against a cluttered background. (a) Edge images corresponding to two images of a sequence acquired using a moving camera. (b) The
two best matches obtained using single frame matching in each image, which are all wrong. (c) The best match using the spatio-temporal templates we
advocate. (d) The corresponding 3D pose.
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In this work, all the templates represent the specific part
on the walking cycle where the feet are on the ground and
the angle between the legs is greatest. We chose this pose
because it is the one for which the temporal information
is most informative. The angle between the legs first
increases and then decreases. The templates cover six differ-
ent camera views, excluding frontal and back view, as well
as different scales.

As shown in Fig. 1c, we obtain much improved results
even when the background is cluttered and background
subtraction is impractical because the camera moves. Fur-
thermore, because the detected templates are projections of
3-D models, we can map them back to full 3-D poses. Our
method retains its effectiveness indoors, outdoors, and under
difficult lighting conditions. It can also handle subjects who
move closer or further so that their apparent scale changes
Fig. 2. ROC curves for three different techniques. Ordinary template
matching (dotted curve), temporal template matching without (dashed
curve) and with (full line curve) taking statistical relevance into account.
The curves are computed for 2647 frames of the sequence acquired with a
moving camera depicted by Fig. 1. The ordering of the curves from top to
bottom quantifies the improvements that our technique brings about.
and turn so that the angle from which they are seen also var-
ies. In Fig. 2, we superpose ROC curves when using ordinary
templates versus our spatio-temporal templates with or
without taking statistical relevance into account. These
graphs clearly show that including motion information
and accounting for statistical relevance both contribute sig-
nificantly to improving the level of performance.

Note that, even though we chose a specific pose to test it,
our approach is generic and could be applied to any other
actions that all people perform in roughly similar ways but
with substantial individual variations. For example, there
also are characteristic postures for somebody sitting on a
chair or climbing stairs. In the area of sports, we could
use a small number of templates to represent the consecu-
tive postures of a tennis player hitting the ball with a fore-
hand, a backhand, or a serve, as is done in [5]. We could
similarly handle the transition between the upswing and
the downswing for a golfer. In short, characteristic pos-
tures are common in human motion and, therefore, worth
finding. The only requirement for applying our method is
that a representative motion database can be built.

2. Related work

Until recently, most approaches to capturing human
3-D motion from video relied on recursive frame-to-frame
pose estimation. While effective in some cases, these tech-
niques usually require manual initialization and re-initializa-
tion if the tracking fails. As a result, there is now increasing
interest for techniques that can detect a 3-D body pose from
individual frames of a monocular video sequence.

One approach [10–12] is to use classification-based tech-
niques to decide whether or not image-windows contain a
person. Such global approaches tend to be very occlusion
sensitive and bag-of-features approaches have proved more
effective at detecting pedestrians in crowded scenes [13].
They involve combining the local information provided
by specific image patches with global clues provided by
image silhouettes. The Chamfer distance is used for this
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purpose but these techniques are not designed to handle
viewpoint changes or recover 3-D pose and the best results
are obtained for people seen from profile.

A different tack is to look for individual body parts and
then to try assembling them to retrieve the pose
[14,4,15,16]. This can be done by minimizing an appropri-
ate criterion, for example using an A* algorithm. This has
the potential to retrieve human bodies under arbitrary pos-
es and in the presence of occlusions. Furthermore, it can be
done in a computationally effective way using pictorial
structures [17]. However, it can easily become confused
because there are many limb-like objects in real world
images.

Another class of approaches relies on techniques such as
background subtraction to produce silhouettes that can
then be analyzed. Several methods learn during an offline
stage a mapping between the visual input space formed
by the silhouettes and the 3-D pose space from examples
collected manually or created using graphics software.
For example, [18] uses multilayer perceptrons to map the
silhouette represented by its moments to the 3-D pose. In
[19] the mapping is performed using robust locally weight-
ed regression over nearest neighbors that are efficiently
retrieved using hash tables. In [2], it is done indirectly via
manifolds embedded in low dimensional spaces, where
each manifold corresponds to the subset of silhouettes for
walking motion seen from a particular viewpoint. Local
Linear Embedding is used to map the manifolds to both
the silhouettes and the 3-D pose. In [1], the mapping
between the couple formed by an extracted silhouette and
a predicted pose to the corresponding 3-D pose is estab-
lished using Relevant Vector Machines. More recently, it
has been shown that combining a powerful statistical rep-
resentation of the articulated body contours with silhouette
and color information yields excellent performance [6].
While these works introduce powerful tools to associate
3-D poses to detected silhouettes, they tend to be of limited
practical use because they require relatively clean silhou-
ettes or foreground masks that are not always easy to
obtain.

A more robust way to match global silhouettes against
image contours is to use both a hierarchy of templates
and the Chamfer distance, an approach originally intro-
duced in [7] and extended in [20,3]. This produces excellent
results when applied to difficult outdoor images. However,
it seems to have a relatively high false detection rate.
Reducing this rate involves either introducing a priori

assumptions about where people can be [20] or incorporat-
ing additional processing such as texture classification or
stereo verification [3]. In the context of hand tracking,
[21] also relies on the Chamfer matching and a tree struc-
ture quite similar to the hierarchy of templates of [7] for
efficiency. In this case, the false positives and negatives
problem is avoided by assuming that one and only one
hand is present in the image. Bayesian tracking is combined
with detection to disambiguate the hand pose. [22] presents
a method for estimating 3D hand pose that uses Chamfer
distance and probabilistic line matching. It gives good
results for cluttered images but, similarly to [21], requires
a bounding box of roughly the right location and size
placed around the hand.

Our method, which also relies on global silhouettes
matching, includes an original way to take motion into
account to avoid false positives. Such information was also
exploited in [23] for human action recognition, but under
the assumption that preprocessed and centered subimages
of the people are available. In our case, we directly use
the full images as input.

3. Approach

In this section, we first describe how we introduce
motion information into the silhouette matching process,
and then show how statistical relevance can be added. This
is done on the sole basis of the noisy and potentially incom-
plete silhouettes that can realistically be extracted from
images of cluttered scenes acquired by a moving camera.

3.1. Creating the templates

As shown in Fig. 3, we focus on the part of the walking
cycle where both feet are on the ground and the angle
between legs is greatest. We use motion capture data from
several people walking at different speeds to create a data-
base of templates such as the ones of Fig. 4. They consist of
several silhouettes corresponding to consecutive time steps
and are represented as sets of oriented pixels. The silhou-
ettes are rendered from six different camera views and at
seven different scales.

More specifically, we used a Vicontm optical motion cap-
ture system and a treadmill to capture 8 people, 5 men and
3 women, walking at nine different speeds ranging from 3
to 7 km/h, by increments of 0.5 km/h. We also built a vir-
tual character that can perform the captured motions, and
rendered images at a rate of 25 frames per second as seen
from the virtual cameras depicted by Fig. 4a. Note that
Camera 3 (frontal view) and Camera 7 (back view) are
not used, since these views give images of the model in
which it is very difficult to distinguish the target pose from
others. The rendered images are then used to create tem-
plates such as those depicted by Fig. 4b. The rendered
images are rescaled at seven different scales ranging from
52 · 64 to 92 · 113 pixels, so that an image at one scale is
10% larger than the image one scale below. From each
one of the rendered images, we extract the silhouette of
the model. Each template is made of a short sequence of sil-
houettes that includes a key frame, that is the frame repre-
senting the specific walking pose and which is always taken
to be the middle frame in the sequence. The silhouettes are
represented as sets of oriented pixels that can be efficiently
matched against image sequences, as will be discussed in
Section 3.2.1.

In practice, we use 3 frame silhouette sequences. The top
row of Fig. 4b corresponds to a profile view in which the ui



Fig. 3. Detected silhouettes in several indoor and outdoor sequences acquired by a moving camera. Since we search for a specific posture—the one where
both legs are on the ground and the angle between them is greatest—the fact that the algorithm does not respond to some of the people in the second and
third image of the third row is correct. In that sense, the detection on the left of the first image in the third row is one of the rare false positives it produces.
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represent the angles between the two legs. Here, we have
u2 > u1 and u2 > u3. The bottom row represents the same
motion but seen from a different angle. To highlight the dif-
ferences between the three silhouettes, we superpose the
three profile ones in Fig. 4c.

3.2. Template matching

We first discuss robust template matching in individual
images. We then outline our procedure for matching the
whole spatio-temporal template to a short sequence.
3.2.1. Single silhouette matching

We match the silhouettes to individual input images
using Chamfer distance, which we compute using the Dis-
tance Transform (DT) of Canny edge images. We write the
distance between S, a silhouette containing n points, and C,
a set of edge points detected in the image, as

dchamferðS;CÞ ¼
1

n

X
si2S

dðsi;CÞ; ð1Þ

where d (si,C) can be taken to be the distance between si

and the closest point on C.



Fig. 4. Creating spatio-temporal templates. (a) Eight virtual cameras are placed around the model. (b) A template corresponding to a particular view
consists of several silhouettes computed at three consecutive instants. The small blue arrows in image Camera 1/Frame 1 represent edge orientations used
for matching silhouettes for some of the contour pixels. (c) The three silhouettes of a template are superposed to highlight the differences between outlines.
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In the presence of clutter, defining dchamfer in this man-
ner lacks robustness. To increase it, we take edge orienta-
tion into account by introducing a penalty term

hðsi; cjÞ ¼ Kðtanðasi � bcj
ÞÞ2;

where asi and bcj
are the edge orientation, respectively, at

the silhouette point si and at the contour point cj, and K
is a weight that defines the slope of the penalty function.
The DT algorithm is modified so that each location in
the DT image also contains the edge orientation of the clos-
est edge pixel. In practice, we use K = 20, which is enough
to completely eliminate the influence of the pixels that have
the edge orientation difference greater than 30�.

Since our database contains templates at different scales,
to allow effective comparison between Chamfer distances,
we also introduce a scale factor k. Its role is to normalize
the distance to the value that would be computed, had
the template not been scaled.
Fig. 5. A spatio-temporal template matched a
We therefore take d (si,C) in Eq. (1) to be

dðsi;CÞ ¼ q
1

k
ksi � cðsiÞk þ hðsi; cðsiÞÞ

� �
; ð2Þ

where c (si) is the closest contour point to point si, and q(.)
is the Tukey robust estimator [24] that further reduces the
effect of outliers or missing edges.

3.2.2. Spatio-temporal template matching

Instead of single silhouette matching, we match our
multi-silhouette templates against portions of the input
sequence, as depicted by Fig. 5. Let I1; I2; . . . ; I t; . . . ; I tmax

be an image sequence, where t represents the discretized
time and tmax the time at which the last frame was acquired.
Each template T ¼ fS1; . . . ; Si; . . . ; SNSg includes a
sequence of silhouettes Si, where i is the silhouette index
and NS the number of silhouettes in the templates. In our
experiments, we take NS = 3 but it could be higher.
gainst consecutive images of the sequence.
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For the sake of simplicity, the template scale is not explic-
itly represented in the following.

Let I ðx;yÞt be the rectangular patch of image It whose
upper-left corner is positioned at (x,y) and that is of the
same size as the templates. Area (x,y) denotes an area cen-
tered on point (x,y) such that " (x 0,y 0) 2 Area (x,y),
x � dx < x 0 < x + dx and y � dy < y 0 < y + dy, where dx

and dy are proportional to the template scale.
Using these notations, we take the distance D between

NS consecutive input images I tþ1 . . . I tþNS and a template
T located at pixel (x,y) to be

DðT ; x; y; I tþ1 . . . I tþNS Þ ¼
1

NS

XNS

i¼1

diðx; y; T Þ; ð3Þ

diðx; y; T Þ ¼ min
ðx0;y0Þ2 Areaðx;yÞ

dchamferðSi;CðI ðx
0 ;y0Þ

tþi ÞÞ; ð4Þ

where CðI ðx
0;y0Þ

tþi Þ is the set of the edge points detected in the
I ðx
0 ;y0Þ

tþi .
This allows small variations on the locations of the suc-

cessive silhouettes of a template. That is important because
we make no assumptions about camera motion, which can
be completely arbitrary. The templates can then be
matched against the sequence by looking for local minima
of the distance D (.) when varying the template T, the image
location (x,y), and time t.

3.2.3. Avoiding multiple matches

An exhaustive search for the best matches over the
whole sequence would produce several responses for the
same person around the correct location and time. We
avoid this as follows.

Let the match between an input sequence of NS frames
and a template T be the vector m = [Tm, tm,xm,ym,Dm]T.
We build the sorted list L of mi vectors sorted according
to their distances Dm as follows. For each t =
1 . . . tmax � NS we find the best match m according to Dm

and insert it in the sorted list L. We repeat this parsing
of the sequence until the distance Dm falls above a given
threshold hD excluding the matches already present in L.
hD can be dynamically chosen as discussed below. This
gives us a single match per person because a match m is
inserted into the list L only if it does not overlap either
in space or time another match m 0 already in L with a
smaller distance. More formally m is inserted if there is
no match m0 2L such that

D0m < Dm;

ðxm; ymÞ 2 Areaðxm0 ; ym0 Þ and

tm0 � dt < tm < tm0 þ dt

8><
>: ; ð5Þ

where dt is a constant that defines a frame range within
which multiple detections in the same area are not allowed.
Finally, we end up with the sorted list of matches L for the
whole input sequence. Assuming the best match to be cor-
rect, it is possible to dynamically set the threshold to
hD ¼ KDDm1

where KD is the same scalar value for all
results shown in this paper.
3.2.4. Implementation issues

To avoid an exhaustive search for each silhouette in
each frame, we implement our algorithm as follows. At
each time step t, we search for the silhouettes Si of each
template T in the image It + i, 1 < i < NS. We also build a
lookup table for a fast access to the silhouettes detected
in an image around a given location. As before, to avoid
multiple responses for the same person, we reject detections
that overlap with better ones.

From these silhouette detections, we will build the list
Lt of detected templates for which the silhouette sequence
starts at time t. By fusing the successive lists Lt while
respecting the conditions given in (5), we retrieve the final
list L introduced in Section 3.2.3.

To build Lt, we consider each silhouette Si detected in
image It + i, where i ranges between 1 and NS, and check
if the other silhouettes Sj of the same template T have been
detected around the location of Si in the other images It + j.
Using a lookup table lets us perform this search effectively.
If all the successive silhouettes that compose spatio-tempo-
ral template are coherently detected, it is inserted into Lt.
The associated distance is simply the mean of the Chamfer
distance of the successive silhouettes.

Since this involves matching all the silhouettes from the
database against corresponding image region I ðx;yÞt , this
could still be very slow as it might require wT · hT · NS ·
NT operations for Chamfer score computation, where wT

is the silhouette width, hT is the silhouette height, NS is
the number of silhouettes per template and NT is the num-
ber of templates. To decrease this complexity, we precom-
pute a list of edge pixels that belong to at least one
database silhouette. This list lets us reduce the number of
accesses to the Chamfer map to less than wT · hT because
only the pixels from the list are accessed. At the same time,
the required number of operations is reduced by a factor
K . 0.07, which is the ratio of edge pixels to the template
size. In practice, this roughly corresponds to a speed-up
by a factor of 15.

All the techniques introduced above are exact and do
not decrease the performance in any way. As a result, it
takes a little under 0.06 s per spatio-temporal template
per video frame on a 2.8 GHz PC. Since we use 432 such
templates, it takes 25 s to process a frame. This is admitted-
ly not particularly fast but adequate to demonstrate feasi-
bility, which is our goal. Furthermore, since the current
technique could be significantly speeded up by using a tem-
plate hierarchy [7,20], we do not see any theoretical obsta-
cle to ultimately incorporating it into a practical real world
application.

3.3. Statistical relevance

Using templates as described above gives the same
importance to all silhouette pixels. Intuitively, this is
wrong because some body parts are clearly more
informative than others. In our specific case, since we
seek the pose where the legs are furthest apart, they
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are clearly more important than the trunk whose silhou-
ette is mostly made of two parallel vertical lines, which
match many background shapes such as doors or
windows. To solve this problem, we learn the relevance
of different silhouette portions in a Bayesian framework.
More specifically, we divide the templates into the patch-
es depicted by Fig. 6a. We then learn the relevance of
these patches using training sequences other than those
we use to test our algorithm as follows.

Let HI, T denote the fact that a given image portion I

contains a human silhouette in a specific pose T. Maximiz-
ing P (HI, T = yes j I) is equivalent to minimizing the ratio of
the likelihood terms P (I jHI, T = no) and P (I jHI, T = yes).
We therefore replace the distance dchamfer in Eq. (4) by
dbayes-chamfer, the logarithm of this ratio:

dbayes-chamferðT ; IÞ ¼ log
PðI jH I;T ¼ noÞ
P ðI jH I;T ¼ yesÞ :

We define these terms as

P ðI jHI ;T ¼ yesÞ ¼
Y
s2S

P ðdðs;CÞjH I;T ¼ yesÞ
" #1

n

;

P ðI jH I;T ¼ noÞ ¼
Y
s2S

P ðdðs;CÞjH I;T ¼ noÞ
" #1

n

;

where d (s,C) is the distance of Eq. (2), C is the set of con-
tour points extracted from I, and the distributions
P (d (s,C)jHI, T = yes) and P (d (s,C)jHI, T = no) are learned
from training examples. The 1=n power is for normaliza-
tion over the number of the contour pixels n.

To handle the fact that not all the body parts have the
same relevance, instead of learning one distribution for
the whole image I, we divide I into several patches and
we learn different distributions, one for each patch,
depending on which of the patches of Fig. 6 the point s falls
into. We therefore write
Fig. 6. (a) The templates are divided into 25 square patches p. (b) The ratios
integer values for d. One of the template contours is superimposed in order to
P ðI jH I;T ¼ yesÞ ¼
Y
p2P

Y
s2S\p

P pðdðs;CÞjHI ;T ¼ yesÞ
" #1

n

;

where P is the set of patches p depicted by Fig. 6, and
Pp (d (s,C)jHI, T = yes) is the distribution learned for patch
p. We do the same to estimate P (IjHI, T = no). To learn the
Pp distributions, we ran the algorithm described in the pre-
vious subsection on several sequences of about 5000
frames. The detections, among which there are false posi-
tives, were manually classified into correct and incorrect
ones. This training set is then used for representing the dis-
tributions as histograms, one for each patch and for each
view. dbayes-chamfer(S,C) therefore becomes

dbayes-chamferðT ; IÞ ¼
1

n

X
p2P

X
s2S\p

log
Histp;no½dðs;CÞ�
Histp;yes½dðs;CÞ�

; ð6Þ

where Histp, no and Histp, yes are the histograms representing
the corresponding distributions. Fig. 6b depicts the ratio
between Histp, no[d(s,C)] and Histp, yes[d(s,C)] for a side
camera view. Note that, not all patches have the same
influence on dbayes-chamfer. The patches that are far away
from the contour have flat histograms, when none of the
contour pixels of any of the templates belongs to them, or
histograms that are highly non-uniform, when only few
contour pixels of some of the templates belong to them.
These patches are irrelevant to the final score since they con-
tain a negligible number of pixels with respect to the overall
number of pixels. Among the more central patches, those
with monotonously increasing histograms are the most
relevant ones: as expected, they mostly lie on the leg region.
For these patches, image contours close to the template sil-
houette do not increase very much the final distance, while
contours far from the silhouettes are strongly penalized.
Using dbayes-chamfer instead of dchamfer therefore gives more
importance to such relevant parts of the silhouettes, and thus
yield better matching results as shown in Figs. 2, 7 and 12.
Pp (d (s,C) = djHI, T = no)/Pp (d (s,C) = djHI, T = yes) for each patch p and
distinguish relevant patches.



Fig. 7. Taking statistical relevance into account. (a) Best matches using the spatio-temporal templates and giving all silhouette pixels the same weight.
(b) Best matches once statistical relevance is incorporated. Both scale and orientation are now correct.
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4. Results

We have already shown in Fig. 3 some of the results
obtained from several image sequences with cluttered back-
grounds. Note that the people move closer or further so
that their apparent scale changes. They also turn so that
the angle from which they are seen varies as well.

4.1. Qualitative analysis

Our method is designed to detect people in a specific
pose. As shown in the walking sequences of Fig. 8, that
is exactly what it does. Note that the camera moves to
follow the person.

In Fig. 9, we further demonstrate that the detections are
correct even when the edge data is very poor. All the tem-
plates in our database are rendered from virtual cameras
that are positioned at 1.20 m above ground level, so that
optimal results can be expected when the real camera is
at that height. However, our algorithm is very robust with
respect to camera position. Fig. 10 shows that we can still
recover full 3-D poses even when the camera is placed high
above the person’s head or very close to the ground level.
The quantitative analysis is shown in Fig. 13. Our
approach shows certain robustness to different clothing
and shape appearance, as shown in Fig. 11, although the
templates are created using one single virtual character.

False negatives occur only in frames where human sil-
houettes are so poor as to be unrecognizable, as in the case
of Fig. 15a and b. When this happens, they can be accom-
panied by false positives because the Chamfer distance
scores become unreliable and cannot be depended upon
to eliminate dubious candidates. Another kind of failure
depicted by Fig. 15c and d involves correctly detecting a
person but with an inaccurate orientation or scale. The
latter is slightly more frequent than the former but, as will
be shown in the quantitative analysis below, both remain
very rare.

4.2. Quantitative analysis

We provide quantitative performance-analysis in the
form of the ROC curves of Figs. 2 and 12 , which corre-
spond to the 2647-frame sequence of Fig. 1 and the 456-
frame sequence depicted by the second and the third row
of Fig. 3, respectively. Computing the required false-posi-
tive and false-negative error rates is not trivial because,
for a 2647-frame sequence, the theoretical number of pos-
sible matches is larger than 15 · 109. We address this
problem by first running our algorithm, retaining all
matches that are within an extremely tolerant Chamfer
distance threshold, and manually labeling these matches
as good or bad. In our experience, this is a meaningful
measure because the threshold can be easily chosen
high-enough so as not to miss any of the true positives.
Note that the labeling is done only for validation purpos-
es and the test sequences are completely disjoint from the
training ones.



Fig. 8. Frames from two different sequences in which our algorithm finds only humans in the correct key pose. Note that the camera is moving to follow
the person.

Fig. 9. Robustness to clutter and occlusions. We show the edge image in the first row and the corresponding detection in the second one. (a) Partial
occlusion by a tree. (b) Cluttered background. (c) A substantial fraction of the silhouette edges are missing.

M. Dimitrijevic et al. / Computer Vision and Image Understanding 104 (2006) 127–139 135



Fig. 10. Robustness to changes in camera height. First two rows: the 3-D pose is correctly recovered even though the actual camera is much further above
ground level than the virtual cameras used to create the templates. Third row: correctly detected silhouettes when the camera is placed only 30 cm above
the ground level.

Fig. 11. Robustness to changes in clothing. First row: the subject is detected even though she wears a shirt. Second row: correctly detected person wearing
knee-length pants.
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We take the False Positive Rate to be the ratio between
the number of false positives and overall number of bad

matches. Similarly, 1 � false negative rate is computed as
the ratio between the number of true positives and the over-
all number of good matches. For both sequences, in Figs. 2
and 12, we show three ROC curves computed by matching
against ordinary templates, spatio-temporal templates
without taking statistical relevance into account, and the
same spatio-temporal templates with statistical relevance
taken into consideration. Since the three curves are clearly
above one another, this demonstrates the clear improve-
ment that using both statistical relevance and motion infor-
mation brings about.

4.3. Number of silhouettes

Motion information is incorporated into the templates
by using several silhouettes from consecutive frames. The
specific pose in which the legs are furthest apart is the
one for which the temporal information is most informa-
tive because the angle between them first increases and then
decreases. However, to detect this at least three silhouettes



Fig. 12. ROC curves for the 456-frame sequence of the second and the
third row of Fig. 3. The bottom curve depicts the results obtained using
simple templates. Using the spatio-temporal templates yields a very
marked improvement as the corresponding curve is much higher. The
results are further improved by incorporating statistical relevance, which
yields the topmost curve.

Fig. 13. ROC curves for the 260-frame sequence of the second row of
Fig. 10 where the actual camera is placed much further above ground
level. The bottom curve depicts the results obtained using simple templates
while the top one corresponds to the use of bayesian spatio-temporal
templates.

Fig. 14. ROC curves for different number of template silhouettes:
ordinary template matching (dotted curve), bayesian temporal template
matching with the templates consisting of three silhouettes (dashed curve)
and five silhouettes (full line curve). The curves are computed for the 456-
frame sequence of the second and the third row of Fig. 3.
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are needed, which is therefore the minimum number we
have used in our experiments. Quantitative analysis is pre-
sented by ROC curves (Fig. 14) that are created on the
image sequence depicted by the second and the third row
of Fig. 3. While the use of three silhouettes per template
brigs considerable performance improvement, further
increasing the number of silhouettes does not significantly
improve the results. Moreover, the use of five instead of
three silhouettes increases the computation time for about
30%. Therefore, we conclude that the use of three silhou-
ette templates is the most reasonable.
4.4. Summary

Our method detects people in the target posture with a
very low error rate. The few false positives mostly corre-
spond to people but at somewhat inaccurate scales or ori-
entations. While this paper focuses on pure detection, it
is therefore clear that the performance of our algorithm
could be further increased by linking the various detections
to create plausible trajectories, using an algorithm such as
dynamic programming.

5. Conclusion

We have presented a method for human body pose
detection based on template matching. The templates are
rendered from a virtual character that performs real human
motions captured by a motion capture system. They can be
used for detecting a characteristic human body pose at dif-
ferent scales and six different camera views, excluding the
frontal and back view.

Our method combines silhouette matching, motion
information, and statistical relevance estimates in an origi-
nal way. This is important because human motion is very
different from other kinds of motions and can be effectively
used to reduce the false positive and negative detection
rate. As a result, even though we do not use color or tex-
ture, we have been able to demonstrate very good results
for indoor and outdoor sequences for which background
subtraction is impossible, under difficult lighting condi-
tions, different camera viewpoints and apparent scale
changes. Obviously, in future work, these additional clues
should also be taken into account to increase performance.
Furthermore, since the detected templates are projections



Fig. 15. Failure modes. (a and b) The subject is partially hidden by the foreground bush, which completely prevents recovery of edges on the legs. This
results in both a false negative and a false positive. (c) Wrong scale. (d) Wrong orientation.
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of 3-D models, mapping them back from 2-D to full 3-D
poses is straightforward.

Our approach, even though tested on a specific human
pose, is generic and could be applied for any other actions
that all people perform in roughly similar ways but with
substantial individual variations. The only requirement is
that a representative motion database can be built.

This method, with its accurate 3-D pose detections, is a
key step towards robust full 3-D body pose tracking
algorithms that can initialize and re-initialize themselves
in difficult real world conditions where techniques such as
background subtraction are impractical.
Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.cviu.
2006.07.007.
References

[1] A. Agarwal, B. Triggs, 3d human pose from silhouettes by relevance
vector regression, in: Conference on Computer Vision and Pattern
Recognition, 2004.

[2] A. Elgammal, C. Lee, Inferring 3D body pose from silhouettes using
activity manifold learning, in: CVPR, Washington, DC, 2004.

[3] J. Giebel, D. Gavrila, C. Schnorr, A bayesian framework for multi-
cue 3d object tracking, in: Proceedings of European Conference on
Computer Vision, 2004.

[4] G. Mori, X. Ren, A. Efros, J. Malik, Recovering human body
configurations: combining segmentation and recognition, in: Confer-
ence on Computer Vision and Pattern Recognition, Washington, DC,
2004.

[5] J. Sullivan, S. Carlsson, Recognizing and tracking human action, in:
European Conference on Computer Vision, 2002.

[6] J. Zhang, R. Collins, Y. Liu, Bayesian body localization using
mixture of nonlinear shape models, in: International Conference on
Computer Vision, Beijing, China, 2005.

[7] C.F. Olson, D.P. Huttenlocher, Automatic target recognition by
matching oriented edge pixels, IEEE Transactions on Image Process-
ing 6 (1997) 103–113.

[8] D. Gavrila, J. Giebel, S. Munder, Vision-based pedestrian detection:
the protector system, in: Intelligent Vehicles Symposium, 2004, pp.
13–18.

[9] R. Fablet, M. Black, Automatic detection and tracking of human
motion with a view-based representation, in: European Conference on
Computer Vision, 2002.

[10] P. Viola, M. Jones, D. Snow, Detecting pedestrians using patterns of
motion and appearance, in: International Conference on Computer
Vision, 2003, pp. 734–741.

[11] K. Okuma, A. Taleghani, N. de Freitas, J. Little, D. Lowe, A Boosted
Particle Filter: Multitarget Detection and Tracking, in: ECCV,
Prague, Czech Republic, 2004.

[12] N. Dalal, B. Triggs, Histograms of oriented gradients for human
detection, in: Conference on Computer Vision and Pattern Recogni-
tion, 2005.

[13] B. Leibe, E. Seemann, B. Schiele, Pedestrian detection in crowded
scenes, in: Conference on Computer Vision and Pattern Recognition,
vol. 1, San Diego, CA, 2005.

[14] R. Ronfard, C. Schmid, B. Triggs, Learning to parse pictures of
people, in: European Conference on Computer Vision, vol. 4,
Copenhagen, Denmark, 2002, pp. 700–714.

[15] K. Mikolajczyk, C. Schmid, A. Zisserman, Human detection based
on a probabilistic assembly of robust part detectors, in: European
Conference on Computer Vision, vol. I, 2004, pp. 69–81.

[16] T.J. Roberts, S.J. McKenna, I.W. Ricketts, Human pose estimation
using learnt probabilistic region similarities and partial configura-

http://dx.doi.org/10.1016/j.cviu.2006.07.007
http://dx.doi.org/10.1016/j.cviu.2006.07.007


M. Dimitrijevic et al. / Computer Vision and Image Understanding 104 (2006) 127–139 139
tionsEuropean Conference on Computer Vision, vol. 4, Prague,
Czech Republic, 2004, pp. 291–304.

[17] P. Felzenszwalb, D. Huttenlocher, Pictorial structures for object
recognition, International Journal of Computer Vision 61 (1)
(2005).

[18] R. Rosales, S. Sclaroff, Infering body pose without tracking body
parts, in: Conference on Computer Vision and Pattern Recognition,
2000.

[19] G. Shakhnarovich, P. Viola, T. Darrell, Fast pose estimation with
parameter-sensitive hashing, in: International Conference on
Computer Vision, Nice, France, 2003.
[20] D. Gavrila, V. Philomin, Real-time object detection for ‘‘smart’’ vehicles,
in: International Conference on Computer Vision, 1999, pp. 87–93.

[21] B. Stenger, A. Thayananthan, P. Torr, R. Cipolla, Filtering using a
tree-based estimator, in: International Conference on Computer
Vision, vol. 2, 2003, pp. 1063–1070.

[22] V. Athitsos, S. Sclaroff, Estimating 3d hand pose from a cluttered
image, in: Conference on Computer Vision and Pattern Recognition,
Madison, WI, 2003, pp. 432–439.

[23] A. Efros, A. Berg, G. Mori, J. Malik, Recognizing action at a distance,
in: International Conference on Computer Vision, 2003, pp. 726–733.

[24] P. Huber, Robust Statistics, Wiley, New York, 1981.


	Human body pose detection using Bayesian spatio-temporal templates
	Introduction
	Related work
	Approach
	Creating the templates
	Template matching
	Single silhouette matching
	Spatio-temporal template matching
	Avoiding multiple matches
	Implementation issues

	Statistical relevance

	Results
	Qualitative analysis
	Quantitative analysis
	Number of silhouettes
	Summary

	Conclusion
	Supplementary data
	References


