
0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2708711, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Robust 3D Object Tracking from Monocular
Images using Stable Parts

Alberto Crivellaro, Mahdi Rad, Yannick Verdie, Kwang Moo Yi, Pascal Fua, Fellow, IEEE ,
and Vincent Lepetit

Abstract—We present an algorithm for estimating the pose of a rigid object in real-time under challenging conditions. Our
method effectively handles poorly textured objects in cluttered, changing environments, even when their appearance is corrupted
by large occlusions, and it relies on grayscale images to handle metallic environments on which depth cameras would fail. As
a result, our method is suitable for practical Augmented Reality applications including industrial environments. At the core of
our approach is a novel representation for the 3D pose of object parts: We predict the 3D pose of each part in the form of the
2D projections of a few control points. The advantages of this representation is three-fold: We can predict the 3D pose of the
object even when only one part is visible; when several parts are visible, we can easily combine them to compute a better pose
of the object; the 3D pose we obtain is usually very accurate, even when only few parts are visible. We show how to use this
representation in a robust 3D tracking framework. In addition to extensive comparisons with the state-of-the-art, we demonstrate
our method on a practical Augmented Reality application for maintenance assistance in the ATLAS particle detector at CERN.

Index Terms—3D Detection, 3D Tracking

F

1 INTRODUCTION

M Ethods for 3D object detection and tracking
have undergone impressive improvements in recent

years [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14]. However, each of the current approaches
has its own weaknesses: Many of these approaches [1],
[3], [9], [13] rely on a depth sensor, which would fail
on metallic objects or outdoor scenes; methods based on
feature points [6], [8] expect textured objects; those based
on edges [4], [7] are sensitive to cluttered background; most
of these methods [3], [2], [5], [11], [15], [10], [12] are not
robust to occlusion. We also want a method fast enough for
interactive 3D applications.

As Fig. 1 shows, we are interested in scenes exhibiting
the conditions of real-world Augmented Reality applica-
tions, that is, scenes with poorly textured objects that
are possibly visible only through heavy occlusions, drastic
light changes, and changing background. A depth sensor
is not an option in our setup, as the target objects often
have specular surfaces. Feature point-based methods are
also prone to fail because of the lack of texture and the
ambiguous, repetitive patterns present in the scene.

• A. Crivellaro is with S&H, Milan, Italy.
E-mail: a.crivellaro@sehitaly.com

• K. M. Yi and P. Fua are with the Computer Vision Laboratory, IC
Faculty, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne
CH-1015, Switzerland.
E-mail: firstname.lastname@epfl.ch

• M. Rad and V. Lepetit are with the Institute for Computer Graphics
and Vision, Graz University of Technology, Graz 8010, Austria.
E-mail: lastname@icg.tugraz.at

• Y. Verdie is with NCam-Tech, Paris, France.
E-mail: yannick.verdie@ncam-tech.com

1Figures are best seen in colors.

Fig. 1. Our method in action during a demonstra-
tive technical intervention at CERN, Geneva. Detected
parts are shown as colored rectangles. The appear-
ance of the scene constantly changes and undergoes
heavy occlusions. Despite these difficulties, we accu-
rately estimate the 3D pose of the box, even if only
one part is detected or in presence of false detections
caused by the cluttered environment.1

At the core of our approach is the efficient detection of
discriminative parts of the target object. Relying on parts
for 3D object detection is not new [16], [2], [17], [12], [10].
The novelty in our approach is a powerful representation
of the pose of each part.

Some previous methods use homographies [18], [16],

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2708711, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

[10] to represent a part pose, however this assumes that the
object is piece-wise planar, and it is not easy to combine
the homographies from several parts together to compute
a better pose for the target object. Feature point-based
methods simply use the 2D locations of the feature points,
which wastes very useful information.

As shown in Fig. 2, we therefore represent the pose
of each part by the 2D reprojections of a small set of
3D control points. The control points are only “virtual”,
in the sense they do not have to correspond to specific
image features. This representation is invariant to the image
location of the part and only depends on its appearance.
We show that a Convolutional Neural Network [19] (CNN)
can accurately predict the locations of these reprojections,
as well as the uncertainty of the location estimates. We
analyse in detail the theoretical underpinnings of why this
representation is more effective than alternative approaches
such as the direct prediction of a rotation and translation, or
the prediction of 3D control points themselves; our exper-
imental results confirm our analysis showing a substantial
performance gain when employing our part representation.

Given an input image, we run a detector to locate each
part on the image. We also use a CNN for this task, but
another detection method could be used. We then predict
the reprojections of the control points by applying a specific
CNN to each hypothesis. This gives us a set of 3D-2D
correspondences, from which we can compute the 3D pose
of the target object with a simple robust algorithm.

This approach has several advantages:
• We do not need to assume the parts are planar, as was

done in some previous work;
• we can predict the 3D pose of the object even when

only one part is visible;
• when several parts are visible, we can combine them

easily to compute a better pose of the object;
• the 3D pose we obtain is usually very accurate, even

when only few parts (possibly a single one) are visible.
Early work on our approach was originally published in

[20]. Here, we introduce several contributions, including:
• We discuss a more general algorithm for robust selec-

tions of detection candidates exploiting the pose prior;
• we introduce a more sophisticated system for evaluat-

ing the pose hypothesis;
• when tracking an object across a video sequence,

we make use of an Extended Kalman filter [21] for
reducing the jitter and providing smoother trajectories;

• we use a new architecture for the part detector, making
use of Local Contrast Normalization for better gener-
alization in presence of heavy light changes;

• we present new experimental results assessing the
effectiveness of our method and of the innovations
introduced. The dataset originally presented in [20] has
been refined with supplementary manual annotations
for all the object parts;

• we demonstrate our method on a real Augmented Re-
ality application for maintenance assistance at CERN.

In the remainder of the paper, we first discuss related

(a) (b)

Fig. 2. Our representation of the 3D pose of an
object part. (a) We consider seven 3D control points
for each part, arranged to span 3 orthogonal directions.
(b) Given an image patch of the part, we predict the 2D
reprojections of these control points using a regressor,
and the uncertainty of the predictions.

work in Section 2, we describe our approach in Sections 3
to 7, and we evaluate it in Section 8 on challenging datasets.

2 RELATED WORK

3D object detection has a long history in Computer Vi-
sion, and we focus here on representative works. A well-
established research direction relies on edges [22], [23],
[24], but they are sensitive to large occlusions and clut-
ter. More recently, keypoint-based methods became pop-
ular [25], [26], [27] probably because keypoints can be
extracted and matched more reliably. Unfortunately, the use
of keypoints is limited when the target object is poorly
textured. Some works combine keypoints with edges [28],
[29] or stereo information [6]. However, extracting and
matching edges remains delicate, and requiring a stereo
configuration limits the applicability of the 3D tracker.

Besides keypoints, silhouettes and region based methods
have also been proposed. In [30], [31], 3D tracking problem
is considered as joint 2D segmentation and 3D pose estima-
tion problem, and the method looks for the pose that best
segments the target object from the background. Contours
and edges are used in [32] with multiple hypotheses to
provide robust pose estimation. Partial occlusions, however,
are difficult to handle with such approaches.

The development of inexpensive 3D sensors such as the
Kinect has recently sparkled different approaches to 3D
object detection. [1], [33] use votes from pairs of 3D points
and their normals to detect 3D objects. [34] uses a decision
tree applied to RGB-D images. [3] uses a template-based
representation for dealing with poorly textured objects. De-
spite its robustness to clutter and light changes, according
to our experimental results, this approach is sensitive to oc-
clusions, a key-requirement in our context. The more recent
[9], [11] rely on recognition of local patches. However all
these methods were designed for RGB-D images, which
are not an option in our target applications. Like [35],
we address the problem of evaluating a pose hypothesis
in a reliable way in presence of clutter and occlusions.
Our solution, presented in Section 6.4, provides a fast and
reliable solution without relying on depth images.

Like [36], [16], we learn 3D poses. Nonetheless, our part-
based approach with our representation for the part poses

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2708711, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

allow us to be much more robust to occlusions, while such
approaches are not straightforwardly generalizable to a part-
based framework.

Since our approach is based on object parts, it is also
related to works such as [37], [2], [10], [12] that mostly
focus on category rather than instance detection. These
works were mostly motivated by the success of the De-
formable Part Model [38] developed for 2D detection,
which was extended successfully to 3D, for example in [2].
[10] also performs 3D tracking through part-based particle
filtering by integrating multi-view. [37] uses contours as
parts. In [12], 3D shared parts are learned with CAD models
and real images for fine pose estimation. However, these
works are not robust to occlusions of some of the parts,
especially because the 2D location of the part is solely
considered to constrain the object pose.

Finally, a very active and related field is SLAM (Si-
multaneous Localization and Mapping) [39], [40], [41]. On
one hand, SLAM does not require prior 3D knowledge, but
on the other hand it is limited to estimate a relative pose
only, which is not suitable for many Augmented Reality
applications. The semi-dense approach proposed by [41] is
particularly effective in handling sparsely textured surfaces;
on the other hand, as other SLAM approaches, it is prone
to fail on dynamic scenes and highly occluded targets.

3 ROBUST 3D POSE ESTIMATION WITH
PARTS

Our goal is to estimate the 3D pose of a known rigid object
with respect to a projective camera given a grayscale image
of the object. We assume the internal parameters of the
camera are known. Additionally, we assume that we are
given a non-textured 3D model of the object, such as a
triangular mesh, and a set of manually labeled parts on it.
A part is simply defined as a discriminative region of the
object, which can easily be detected on an input image. The
object model is only used for annotating the 3D location of
the parts on the object and for computing the silhouette of
the object under different views, as described in Section 6.4.
This allows us to use very simple models, for example a
parallelepiped for an electric box, or a cylinder for a food
can. We can thus neglect details that would be difficult
or impossible to reconstruct, such as the interior of the
electric box depicted in Fig. 1. Ideally, the parts should
be spread over the object. No assumption is made about
their size: usually, bigger parts are more discriminative, but
smaller parts are less likely to be partially occluded. The
3D pose of the object is retrieved exclusively from its parts,
while the appearance of the rest of the object can freely
vary with occlusions, clutter, etc., without affecting the final
result. A very small number of parts is required by our
framework—in all our tests we employed at most 4 parts
for an object, and, in general, our objects of interest have
very few discriminative regions, so we select the parts by
hand. For training our algorithm, we make use of a set of
registered training images, showing the parts under different
poses and lighting conditions.

symbol meaning

i index of a training image
p index of a part
k index of a control point or its projection
l index of a detection candidate on a testing image
Cp 3D center of the p-th part
Ii i−th training image
cip projection of Cp in the i-th training image
vipk projection of Vpk in the i-th training image
ĉpl l-th detection candidate for the projection of Cp in an input image
spl score for this detection
Vpk k-th 3D control point of the p-th part
v̂pk prediction for the projection of Vpk (no outlier)
Spk covariance for prediction for the projection of Vpk (no outlier)
v̂pkl l-th prediction for the projection of Vpk in an input image
q an image patch
Sq Size of image patch q
I incoming image at test time
M number of components of the Mixture-of-Gaussians pose prior
(pm, Sm) average and covariance of the m-th component of the pose prior
p̂(m) pose estimated starting from the m-th component of the prior
p̂ final estimation of the pose

TABLE 1

Main notations.
After detecting several candidates for each of the parts

of the target object as described in Section 4, we select
the most likely candidates given a prior on the pose as
explained in Section 6.2. For each selected candidate, we
estimate the 3D pose of the target part (Section 5) and, if
more than one part are visible, we combine the 3D poses
computed for each part for estimating the pose of the target
object (Section 6). Since several priors can be used at the
same time, we assign a score to each of the computed poses.
This score depends on several cues, and is also learned
using linear regression (Sections 6.3 and 6.4). Finally, we
select the pose with the best score as our final estimation.
When tracking frames across a video sequence, we employ
the Extended Kalman filter described in Section 7 in order
to reduce the jitter and provide smoother trajectories.

4 PART DETECTION

The first step of our pipeline is the detection of the visible
object parts on the image. Different methods could be em-
ployed for this step. Motivated by the recent success of the
Convolutional Neural Networks for object detection [42],
[43], [44], we use a CNN for predicting the parts locations
on the image, which appears to work also well for this task.

In order to learn to detect the parts, we exploit a set of
registered training images as the one shown in Fig. 3(a).
We denote our training data as 2:

T =
{(
Ii, {cip}p , {vipk}pk

)}
i
, (1)

where Ii is the i-th training image, cip the projection of the
center Cp of the p-th part on Ii, and vipk the projection of
the k-th control point of the p-th part on the image.

During an offline stage, we train a CNN with a standard
multi-class architecture shown in Fig. 4 to detect the parts.
The input to this CNN is a 32×32 image patch q, its output
consists of the likelihoods of the patch to correspond to

2The main notations are summarized in Table 1.

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2708711, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

(a) (b)

(c) (d)

Fig. 3. Detecting the parts. (a) An input image of the
box. (b) The output of the CNNpart-det for each image
location. Each color corresponds to a different part. (c)
The output after Gaussian smoothing. (d) The detected
parts, corresponding to the local maximums in (c).

Fig. 4. Architecture of CNNpart-det for part detection.
The last layer outputs the likelihoods of the patch to
correspond to each part or to the background.

one of the NP + 1 parts. We train the CNN with patches
randomly extracted around the centers cip of the parts
in the training images Ii and patches extracted from the
background, and by optimizing the negative log-likelihood
over the parameters w of the CNN:

ŵ = arg min

NP∑
p=0

∑
q∈Tp

− log softmax(CNNpart-det
w (q))[p] ,

(2)
where Tj is a training set made of image patches cen-
tered on part p and T0 is a training set made of image
patches from the background, CNNpart-det

w (q) is the NP +1-
vector output by the CNN when applied to patch q, and
softmax(CNNpart-det

w (q))[p] is the p-th coordinate of vector
softmax(CNNpart-det

w (q)).
At run time, we apply this CNN to each 32 × 32 patch

in the input images captured by the camera. This can be
done very efficiently as the convolutions performed by the
CNN can be shared between the patches [45]. As shown in
Fig. 3, we typically obtain clusters of large values for the
likelihood of each part around the centers of the parts. We
therefore apply a smoothing Gaussian filter on the output
of the CNN, and retain only the local maximums of these
values as candidates for the locations of the parts.

The result of this step is, for each part p, a set Sp =
{(ĉpl, spl)}l of 2D location candidates ĉpl for the part along
with a score spl that is the value of the local maxima
returned by the CNN. We will exploit this score in our pose
estimation algorithm described in Section 6. We typically
get up to 4 detections for each part on an input image.

For better robustness to illumination changes, we nor-

malize the images with a Difference-of-Gaussians:

q = (Gσ2
−Gσ1

) ∗ q′ (3)

where q′ is the original grayscale input patch before
normalization, Gσ1 and Gσ2 are 2D Gaussian kernels of
manually selected standard deviations σ1 and σ2 respec-
tively, and ∗ the symbol for the product of convolution. We
experimentally found this method to perform better than
Local Contrast Normalization, which is often the normal-
ization method used with Convolutional Neural Networks.

5 PART POSE ESTIMATION

5.1 Representation of the Part Pose

The second step of our pipeline consists in predicting the
pose of each part, starting from information about its local
appearance, i.e. an image patch q extracted on an image
I around the projection of the part center c. More exactly,
we seek a function:

P : Q× R2 −→ SE(3) (4)

that, given q and c, computes the pose of the part p =
P(q, c) on image I; Q and SE(3) are, respectively, the
space of the image patches of size Sq × Sq , and the space
of the 3D rigid transforms.

For a given c, P(·, c) should be insensitive to imaging
changes due to noise, light conditions, etc., and it has no
clear analytical form. Moreover, in order to simplify the
problem, we seek for a pose representation P of the form:

P(q, c) = R(Q(q), c), (5)

where Q(q) is some representation of the pose of the patch
that does not depend on the position of the patch on the
image, and R is a function that does not depend on the
patch appearance, but on the pose representation computed
by Q. To allow Q to account for all the appearance changes
of the patch, we approximate it with a non-linear regressor.

A crucial point to address is how to define Q(·), that is,
how to choose the most suitable representation for the pose
of each part. Q should satisfy the following constraints:
• Combining the poses of an arbitrary number of parts

must be easy and efficient;
• the pose representation should be translation invariant,

that is, Q(q) should not depend on the position of the
patch on the image;

• since we approximate Q with a regressor, the pose
representation should be should be tied-in with the
regressor’s capabilities. For example, as our experi-
mental results show, it is very hard for a regressor to
accurately estimate the scale or the depth of a part
from a patch.

A priori, we can imagine several ways to represent the
3D poses of the parts:
• Homography: it is possible to use homographies for

representing the pose of each part [18], [16], [10].
However, this assumes that the part surface is planar,

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2708711, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Fig. 5. Architecture of the CNN CNNcp-pred-p predicting
the projections of the control points.

and makes it difficult to merge the individual pose
estimations from the different parts.

• 3D Pose: Another possibility is having the output of
Q(q) consists of a 3D rotation and the depth value
for the patch center. It is then possible to retrieve
the 3D translation as well, from the location of the
patch on the image and the predicted depth. However,
this representation is not translation invariant in a
fully perspective model. Also it is not easy to merge
rotations for estimating the pose of the whole target
object. Finally, this choice requires to predict the depth
accurately from a single image patch, which appears
to be very difficult to do accurately in our experiments.

• 3D Control points: Since our final solution is based
on 3D control points, as already mentioned, we could
set the output of Q(q) to be the 3D locations of the
control points in the camera reference system. In this
case, estimating the pose becomes simple, since it
only involves computing the rigid motion between two
sets of 3D points [46]. Moreover, also combining the
poses of the parts becomes a trivial task, as we simply
need to compute the rigid motion between multiple
sets of 3D points. However, as it will be explained in
Section 8.4, this pose representation is not translation
invariant under a fully perspective model, and more
importantly in practice, accurately predicting the 3D
points is difficult.

• 2D reprojections of 3D control points: This is
the representation we propose. The part poses are
represented as the 2D reprojections of a set of 3D
control points. This representation is fully translation
invariant. It is straightforward to combine the poses of
an arbitrary number of parts, by grouping all the 2D
reprojections together and solving a PnP problem. We
don’t have to predict the depths or the 3D locations
of the control points, which, as noted above, is very
difficult to do accurately. These advantages entail a
significant accuracy gain, as shown by our results in
Section 8.4. The control points are purely virtual and
do not correspond to any physical feature of the parts,
therefore we can freely set their configuration. We
evaluate different configuration in Section 8.5.

5.2 Prediction of the Reprojections of the Control
Points
Once the parts are detected, we apply a regressor to
the patches centered on the candidates ĉpl to predict the
projections of the control points for these candidates. We
also implemented this regressor as a CNN; each part has its
specific CNN. As shown in Fig. 5, these networks take as
input a patch of size of 64× 64. The output layer is made

of 2NV neurons, with NV the number of control points
of the part, which predicts the 2D locations of the control
points. We train each of these CNNs during an offline stage
by simply minimizing over the parameters w of the CNN
the squared loss of the predictions:

ŵ = arg min
∑

(q,w)∈Vp

||w − CNNcp-pred-p
w (q)||2 , (6)

where Vp is a training set of image patches q centered
on part p and the corresponding 2D locations of the
control points concatenated in a (2NV)-vector w, and
CNNcp-pred-p

w (q) is the prediction for these locations made
by the CNN specific for part p, given patch q as input. At
run-time, we obtain for each ĉpl candidate, several predic-
tions {v̂pkl} for the control points projections. In addition,
we can estimate the 2D uncertainty for the predictions,
by propagating the image noise through the CNN that
predicts the control point projections [21]. Let us consider
the matrix:

SV = Jĉ(σId)J>ĉ = σJĉJ
>
ĉ , (7)

where σ is the standard deviation of the image noise (
assumed to be Gaussian and to affect each image pixel
independently), Id the 642×642 Identity matrix, and Jĉ the
Jacobian of the function computed by the CNN, evaluated
at the patch centered on the candidate ĉ. Such a Jacobian
matrix can be computed easily with a Deep Learning
framework such as Theano [47] thanks to the Chain Rule,
by multiplying the Jacobians of the successive layers of
the network together. By neglecting the correlation between
the different control points, we can compute the 2 × 2
uncertainty matrix Spk for each control point k efficiently
of part p, without having to compute the entire, and very
large, product in Eq. (7):

Spk = σJpkĉ Jpkĉ
>
, (8)

where Jpkĉ is made of the two columns of Jĉ that correspond
to the reprojection of the control point k. An example of
predicted control points is shown in Fig. 2(b).

6 OBJECT POSE ESTIMATION

In this Section, we detail how we use the predicted repro-
jections to robustly estimate the object pose.

As in previous work [48], we assume that we are given a
prior on the pose p, in the form of a Mixture-of-Gaussians
{(pm,Sm)}. This prior is very general, and allows us to
define the normal action range of the camera. For example,
the camera is unlikely to be a few centimetres from the
object, or more than tens of meters away, or facing the
object upside-down. Moreover, the pose computed for the
previous frames can be easily incorporated within this
framework to exploit temporal consistency.

In the following, we will first assume that this prior
is defined as a single Gaussian distribution of mean and
covariance (p0,S0). We will extend our approach to the
Mixture-of-Gaussians in Section 6.3.

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2708711, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 6. Pose prior for an electric box: Projections of the
box by each of the 9 Gaussians centers pm.

6.1 Using a single Gaussian Pose Prior

Let us first assume there is no outlier returned by the part
detection process or by the control point prediction, and
that all the parts are visible. Then, the object pose p̂ can
be estimated as the minimizer of F (p), with F (p) =

1
NP

∑
p,k

dist2(Spk,Γp(Vpk), v̂pk) +

(p− p0)>S−10 (p− p0) ,
(9)

where the sum is extended over all the control points
of all the parts, and Γp(V) is the 2D projection of V
under pose p. v̂pk is the projection of control point Vpk

and Spk its uncertainty estimated as in Eq. (8). Since we
assume here that there is no outlier, we dropped here the
l index corresponding to the multiple detections. dist(.) is
the Mahalanobis distance:

dist2(S,v1,v2) = (v1 − v2)>S−1(v1 − v2) . (10)

F (p) is minimized using the Gauss-Newton algorithm
initialized with p0. At each iteration, we update the esti-
mated covariance of the computed pose using the Extended
Kalman Filter update formula [21] when optimizing Eq. (9).

6.2 Outlier rejection for the detected parts

In practice, for the location of the p-th part, the detection
procedure described in Section 4 returns a set of hypotheses
Sp = {ĉpl}l. To reject outliers in detection, we use the fact
that at most one detection is correct for each part, and keep
the hypotheses that are most in agreement with the pose
prior: After ranking the candidates according to their score
spl, we examine the best three candidates for each part
and we form all the possible sets C = {ĉ1, . . . , ĉp, . . .} of
detections containing at most one candidate for each part.
Given the pose prior p0, we evaluate the set of candidates
C with the following steps:

1) Select two random candidates ĉp1 , ĉp2 ∈ C, and
translate the pose prior p0 to obtain a new prior pTS0

that best fits ĉp1 , ĉp2 . More exactly, we adjust the
in-plane translation such that:

ΓpTS
0

(Cp1) + ΓpTS
0

(Cp2) = ĉp1 + ĉp2 (11)

and the off-plane component such that:

||ΓpTS
0

(Cp1)− ΓpTS
0

(Cp2)|| = ||ĉp1 − ĉp2 ||. (12)

2) We keep considering C only if all the detections it
contains are consistent with the new prior. This test
can be formalized as:

∀ĉp ∈ C : ρp < T 2

with ρp = dist2(Ŝ0(Cp),ΓpTC
0

(Cp), ĉp)
(13)

where Ŝ0(Cp) = J S0J
>, with J the jacobian of

ΓpTS
0

(Cp), is the covariance of the projected control
point ΓpTS

0
(Cp); we set the threshold T = 40 pixels

in all our experiments.
3) If several sets C pass this test, we retain the one

with the largest number of detected parts. If several
retained sets have the same number of points, we keep
the one with the smallest average error ρ = 1

|C|
∑
p ρp

of its points.
4) Finally, we run the Gauss-Newton optimization of

Eq. (9) using the detections in the retained set to
obtain a pose estimate.

If the object of interest has a single part, we simply select
the detection candidate with the highest score.

6.3 Using a Mixture-of-Gaussians for the Pose
Prior
In practice, the prior for the pose is in the form of a
Mixture-of-Gaussians {(pm,Sm)}m with M = 9 compo-
nents. The prior we use for the BOX dataset is shown
in Fig. 6. We apply the method described above to
each component, and obtain M possible pose estimates:
p̂(1), . . . , p̂(M).

6.4 Identifying the Best Pose Estimate
To finally identify the best pose estimate p̂ among the
different estimates obtained with the Mixture-of-Gaussians
prior, we evaluate each p̂(m) using several cues. As it is
difficult to combine cues of different natures, our key idea
here is to train a linear regressor to weight the contributions
of the different cues and predict a penalty.

More exactly, we use the angle α and the scale difference
δscale between the quaternions for p̂(m) and the correspond-
ing component of the prior, the final value of the objective
function F (p̂(m)) defined in Eq. (9), and a score ξ(p̂(m))
measuring the correlation between the edges in the image
and the object contours after projection by p̂(m). ξ(p̂(m))
is computed as:

ξ(p̂(n)) =
∑
x

(
n(x) · [Iu(x), Iv(x)]>

)
, (14)

where n(x) is the unit normal of the projected object con-
tour at pixel x, Iu(x) and Iv(x) are the partial derivatives
of the incoming image I at pixel x, and the sum is over the
pixels x lying on the re-projected contours of the object.

Offline, we create a training set generated from the
training sequence by adding noise to the ground truth
poses, and computing the values of our different cues. For
each sample, we compute a penalty that is the sum of the
euclidean norms of the rotation and translation components

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2708711, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

of the absolute pose error [49] introduced by the noise.
We can then train a linear regressor to predict this penalty
given our different cues. At run-time, we simply have to
use the linear regressor to predict the penalties of the pose
estimates, and keep the one with the smallest penalty.

7 TRACKING FRAMES ACROSS A VIDEO
SEQUENCE AND POSE FILTERING

When tracking an object across a video sequence, if a pose
is estimated for a given frame, we add it as a component of
the pose prior for the next frame. This allows us to easily
exploit temporal constraints. 3 Moreover, we use a Kalman
Filter for reducing jitter and provide smoother trajectories.

7.1 Extended Kalman Filter for 3D Tracking
In visual tracking, Kalman Filters typically treat images
as observations. However, this requires the linearisation of
the imaging process with respect to the 3D pose, which
can result in a poor approximation. Therefore, we chose to
consider our pose estimation method as a “black box”, and
we treat the poses it predicts as observations for the filter,
alleviating the need for linearisation.

7.1.1 State Vector
We model the camera motion as a first order, discrete-time
dynamic system, and the state vector at time t is provided
by the (12)−vector:

st = [t>t , r>t , v>t , ω
>
t]> , (15)

where tt is the translation component of the camera pose, rt
is the exponential map representation of the rotation compo-
nent of the pose, vt is the linear velocity and ωt the angular
velocity. At each time step, our estimation of the system
state is updated according to the available observations with
the predictor-corrector scheme of Kalman Filters. First, the
state estimate s̃t−1 and its covariance S̃t−1 are updated with
a motion model to predict the state at current time s̃tt−1 and
the covariance S̃tt−1. Then, the observation of the current
state is employed for correcting the initial prediction and
obtain the final state estimation s̃t.

7.1.2 Notations
For sake of clarity, we summarize here the notation con-
vention of this section. For a given quantity x, then:
• x̃t−1 is the estimate of x at the end of step t− 1;
• x̃tt−1 is the estimate of x at time t obtained by updating

x̃t−1 according to the dynamic model;
• x̂t is the observed value of x at step t, typically the

camera pose predicted by the method described above.
• x̃t is the final estimate of x at time t, obtained

correcting x̃tt−1 according to the observation x̂t.

3The covariance of the new component can be computed as explained in
Section 6.1. We empirically found that this lead to very small values of
the covariances of the computed poses, so the covariance of the new prior
component is set as 10−3

|C̃|
Id, where |C̃| is the number of parts employed

for computing the pose and Id is the (6× 6)−identity matrix.

7.1.3 Predictor: State Update
The state at each time step is predicted from the estimate
of the state at the previous time step using the following
motion model:

t̃tt−1 = t̃t−1 + δt ṽt−1

r̃tt−1 = log(δq(ω̃t−1) · q(r̃t−1)) (16)
ṽtt−1 = ṽt−1

ω̃tt−1 = ω̃t−1 ,

where δt is the time difference between 2 subsequent
time steps, δq(·) and q(·) are unit quaternions obtained
from exponential map representations with the exponential
mapping, · denotes the quaternion multiplication and log(·)
maps the quaternion back to the exponential map represen-
tation. Without loss of generality, we will take δt = 1.

The covariance of the state is updated using:

S̃tt−1 = JupdateS̃t−1J
>
update + A , (17)

where Jupdate is the (12 × 12)−jacobian matrix of the
update (16), and A is given by :

A =

1
3aId 0 1

2aId 0
0 1

3bId 0 1
2bId

1
2aId 0 aId 0

0 1
2bId 0 bId

 , (18)

where Id is the (3 × 3)−identity matrix, and a and b are
2 parameters corresponding to the incertitude about the
temporal derivatives of the velocities. We empirically set
a = b = 100 in all our experiments. Interested readers can
refer to [50] and its references for further details about the
derivation of matrix A.

7.1.4 Corrector: Taking into Account Observations
After computing a prediction of the current state and its
covariance, we correct it taking into account our observa-
tion, the pose p̂t. Since we cannot observe the velocities
directly, their estimations would stay indefinitely stuck in
the initial state if we only use the motion model of Eq. (16).
To avoid this problem, we compute the velocities as:

v̂t = (t̂t − t̃t−1) and ω̂t = ω(r̃t−1, r̂t) , (19)

where the angular velocity ω(r1, r2) between 2 consecutive
rotations r1, r2 is estimated as follows:

R1 = R(r1) , R2 = R(r2) , δR = R2R
>
1 ,

θ = acos
(

trace(δR)− 1

2

)
,Ω =

θ

2 sin(θ)
(δR− δR>) ,

ω(r1, r2) = [Ω21,Ω02,Ω10]>,

where R(r) is the (3 × 3)−rotation matrix corresponding
to the rotation vector r, and ω = [0, 0, 0]> if ||θ|| is
smaller than a threshold for preventing division by 0.

For the covariance of the observed state Ŝt, we employ
a constant, diagonal covariance matrix. Finally, we simply
have to apply standard Kalman update equations for cor-
recting the pose estimate.

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2708711, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

7.1.5 Initialization - Outlier Rejection
For the first frame of the video sequence, we initialize the
state vector estimate with p̂t and null velocities. Special
care must be taken in order to detect and reject outliers in
the observed poses. In practice, we use the following tests:
• if an observed pose p̂t is not close to the last estima-

tion p̃t−1, then it is probably an outlier and should
not be taken into account;

• if 2 consecutive observed poses p̂t−1 and p̂t are close
to each other, then they are probably not outliers, even
if they are far from the last pose estimate.

If the observed pose p̂t is detected an outlier according to
these tests, we then set s̃t := s̃tt−1. If outlier observed poses
are observed for more than 3 frames in a row, we assume
that tracking is lost. Tracking is then automatically re-
initialized with the observed pose as soon as 2 consecutive
poses are observed, sufficiently close to each other.

8 EXPERIMENTAL RESULTS
In this section, after describing the datasets we use for
evaluating our method in Section 8.2, we present and
discuss the results of our evaluation. In Section 8.3 we
assess the effectiveness of our part detection method, as
well as that of the Diffference-of-Gaussians (DoG) Nor-
malization introduced in Section 4. In Sections 8.4 and 8.5
we validate the choice of reprojections of control points
for representing the pose of each part, and investigate
the different possible configurations. Then, in Section 8.6
and 8.7 we present the results of an extensive comparison
with other methods, showing that our approach achieves
state-of-the-art performances on our challenging sequences.
In Section 8.8 we describe our experiments on a recent
dataset, the T-less dataset, investigating the influence of
the number and shape of the object parts on the pose
detection results. Finally, in Section 8.9 we present a real
use case application of our method, an Augmented Reality
application for maintenance assistance at CERN.

8.1 Evaluation protocol
In order to quantitatively evaluate the performances of a
method on a video sequence, we compute the rotation and
translation components of the absolute pose error [49] for
each frame, and then trace their Cumulative Distribution
Functions (CDF), as shown for example in Figures 11. The
Area Under Curve (AUC) score, defined as the integral
of the CDF curve between 0 and some maximum error
threshold E, is reported for facilitating comparisons be-
tween methods, for example in Table 2. We select E = 0.5
for all our experiments and divide all the AUC scores by
E for normalizing them, so that a perfect method would
have a score of 1.

8.2 Datasets
We run our extensive evaluations on datasets originally
introduced in [20] and on the recent T-less dataset [51] ,
consisting of both learning data and testing video sequences
representing several non-textured, highly occluded objects.

8.2.1 Occlusion Datasets
The datasets introduced in [20] consist in non-textured
CAD models, training and testing sequences for 3 objects.
All the images are in the VGA resolution (640×480). For
each dataset, we randomly select 3000 frames from the
training images as training set. We test our approach on
the following datasets:
• BOX Dataset: The target object for this dataset is an

electric box. In the test videos, it is manipulated by a
user, filled and emptied with objects, simulating, for
example, a technical intervention. The training images
show the box on a uniform background, with different
objects inside and outside it. A CAD model is made
by a simple parallelepiped. We use 4 corners of the
box as parts, as shown in Fig. 8(a).

• CAN Dataset: The target object of this dataset is a
food can. The label is completely blank, and the top
of the can is specular. Distractor objects are present
in the scene and large occlusions occur. Only the can
lid breaks the the cylindrical symmetry of the object,
making the pose estimation almost ambiguous. We use
the top of the can as a single part, Fig. 8(b). A CAD
model of the can is provided.

• DOOR Dataset: This datasets consists of one video
showing a daily set-up where a non-textured door is
opened and closed by a user. Despite the apparent
triviality of the sequence, our tests show that it is very
challenging to track the pose of the door along the full
video, when it moves on a cluttered background. For
this dataset, we track the 3 parts shown in Fig. 8(c), the
knob, the keyhole and the lock of the door. A simple
CAD model of the door is available as well.

The images of the training and testing videos of the
datasets were registered using the ARUCO marker tracking
tool [52]. The markers on the test sequences have been
cropped or masked, so that they could not influence detec-
tion and tracking performance when testing the methods.

We also manually labelled the ground-truth locations of
the detected parts for all the test video sequences of the
original dataset presented in [20], so that more accurate
experiments for evaluating the detector can be performed,
such as those presented in Section 8.3. The manually
labelled parts have also been employed for refining the
ground-truth poses. Because of this, some of the experi-
mental results presented in this work may be numerically
slightly different from the ones reported in [20], although
no substantial difference in the results has been detected.
All the refined datasets are publicly available at http:
//cvlab.epfl.ch/data/3d_object_tracking.

8.2.2 T-less Dataset
This challenging dataset [51] is made of a collection of
21 non-textured objects, mainly plugs, plastic boxes and
electric components. Non-textured CAD models, training
and testing sequences are given for each object. For our
tests, we employed monocular images captured with the
Canon IXUS 950 IS camera. At the best of our knowledge,

http://cvlab.epfl.ch/data/3d_object_tracking
http://cvlab.epfl.ch/data/3d_object_tracking

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2708711, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Fig. 7. Qualitative results for our challenging datasets. Top: We track the box despite large changes in the
background and in the lighting conditions on both sequences of the BOX dataset. Middle: Our method correctly
estimates the 3D pose of the can using the can tab only. Bottom: The pose of the door is retrieved starting from
the door knob, the keyhole and the lock. The video sequences are provided as the supplementary material.

(a) (b) (c)
Fig. 8. Training images and control points we used for the BOX, the CAN and the DOOR datasets. The center
of each part is shown in yellow. Control points are zoomed for better visualization.

this is the first work presenting results on this recent and
challenging dataset. Even the simplest testing sequences,
where the objects undergo under moderate occlusions over
a uniform background, are challenging, because of ambigui-
ties, lack of texture, symmetrical items, repetitive structures,
and shape similarities among the objects. We tested our
method on Sequence 3, which exhibits 5 non-textured
objects from a uniformly sampled view hemisphere. Since
the objects do not move within the scene, we employed
the 4 objects shown in Figure 9,(a)-(d) as parts in our
framework, considering the whole scene as target object
and the fifth object as an occlusion.

8.3 Part Detection
Our pipeline does not depend on a particular choice of
a detector for localizing the object parts on the image.
Nonetheless, the detector described in Section 4 provides an
excellent trade-off between speed and accuracy: We assess
here our choice by comparing it with a state-of-the-art
detector, LINE-2D [3].4 In this case, we trained an instance
of LINE-2D for each part, starting from 32 × 32 RGB
patches surrounding the part of interest. The amount of
learning data was the same as for our CNN-based detector.

4For all the tests presented in this paper, we employed the LINE-
2D implementation provided by OpenCV-2.4.12. Implementation of the
authors was used for other methods employed in Section 8.6, LSD-SLAM
and PWP3D.

At test time, we kept the best 4 candidates in each image
for each detector and computed the detection error as the
euclidean norm between the ground-truth position of the
part on the image and the closest detection candidate. The
CDF curves for the BOX dataset are shown in Fig. 10.
We also assessed the importance of the DoG normalization
introduced in Section 4. For all parts, our detector consis-
tently outperforms LINE-2D, and the DoG normalization
further increases performances in most of the cases.

In both videos, LINE-2D performs reasonably well on
the upper corners of the box—parts #3 and #4—while the
accuracy for the two other corners is much lower. This
is probably because in our test dataset, the edges of the
upper corners are visible against a bright background and
their shapes are easily recognizable. We also observed that
DoG normalization is particularly effective for the Video
#2, where the lighting and the background are completely
different from the training videos, as opposed to the Video
#1. Finally, the scores of all detectors for the Video #2,
for the bottom-left corner (Part #1) is significantly lower.
This is probably due to the fact that at about half of the
sequence a distractor object is very close to the part, altering
its appearance, and the shadow patterns change frequently
around this part. Still, we can accurately predict the pose
of the object because the other parts are reliably detected.

Moreover, we tested our detector on the objects of Scene
3 of the T-less dataset shown in Figure 9. Results are

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2708711, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

(a) (b) (c) (d) (e)

Fig. 9. Parts and test sequence from the T-less dataset. (a)-(d): four items employed as parts of the scene. (e):
Testing sequence. The fifth object in the scene is not employed, acting as a supplementary occlusion.

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNNpart-det

CNNpart-det + DoG

(a) BOX - Video #1 - Part 1

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNNpart-det

CNNpart-det + DoG

(b) BOX - Video #1 - Part 2

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNNpart-det

CNNpart-det + DoG

(c) BOX - Video #1 - Part 3

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNNpart-det

CNNpart-det + DoG

(d) BOX - Video #1 - Part 4

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNNpart-det

CNNpart-det + DoG

(e) BOX - Video #2 - Part 1

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNNpart-det

CNNpart-det + DoG

(f) BOX - Video #2 - Part 2

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNNpart-det

CNNpart-det + DoG

(g) BOX - Video #2 - Part 3

Error [pixels]
0 5 10 15

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNNpart-det

CNNpart-det + DoG

(h) BOX - Video #2 - Part 4

Error [pixels]
0 10 20 30 40

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNNpart-det

CNNpart-det + DoG

(i) T-less - Part 1

Error [pixels]
0 10 20 30 40

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNNpart-det

CNNpart-det + DoG

(j) T-less - Part 2

Error [pixels]
0 10 20 30 40

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNNpart-det

CNNpart-det + DoG

(k) T-less - Part 3

Error [pixels]
0 10 20 30 40

C
D

F(
x)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNNpart-det

CNNpart-det + DoG

(l) T-less - Part 4

Fig. 10. Results of the experiment described in Section 8.3: detection error Cumulative Distribution Functions
(CDF) for the BOX and the T-Less datasets for different detectors. Top row: BOX - Video #1. Middle row: BOX -
Video #2. Bottom row: T-less dataset.

reported on the bottom row of Figure 10. Ambiguities
badly affect LINE-2D results. Because of shape similarities
between different objects of the dataset, we trained our
detector hard-sample mining. Part 1 is particularly diffi-
cult to detect because of the presence of the occlusion
object, whose parts closely resemble to the other objects.
On this dataset, DoG normalization does not enhance the
performances of the detector, possibly because the lighting
conditions of the training and testing sequences are closer
than those of the Occlusion datasets.

8.4 Validation of the Part Pose Representation
To validate our part pose representation based on the 2D
reprojections of 3D control points introduced in Section 5,
we trained several regressor CNNs for predicting the object
pose of all the frames of the first video of the BOX
Dataset. Each CNN was trained to predict a different part
pose representation, which yields to different strategies to
combine the contributions of the different parts:

• Averaging Poses: The output of the CNN is a 3D
rotation and a depth for each part. The in-plane
components of the translation are retrieved from the
position of the patch on the image. The full object
pose is then obtained by averaging the parts poses.
Rotations were averaged as proposed in [53].

• 3D Control Points: The predicted representation is
made by the coordinates of the 3D control points
shown in Fig. 2 in the camera reference system. Since
the 3D coordinates of the control points in the camera
system depend on the position of the patch on the
image, we employ the following indirect estimation:
The output of the CNN consists in a depth value
for the center of the patch, and a set of offsets for
all the other control points {(δx/δz, δy/δz, δz)}k.
The 3D locations of all the control points can be
straightforwardly retrieved. The poses of the parts are
then estimated and combined by computing the 3D
rigid transform aligning the points in the camera and in

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2708711, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

the world reference system in a least-square sense [54].
• 2D Reprojections of 3D Control Points: The output

of the CNN is given by the coordinates of the reprojec-
tions of the control points, as described in Section 5.
The pose is computed by solving the PnP problem
after gathering all the 3D-2D correspondences given
by all the parts.

The results are shown in Fig. 11. The last choice entails a
significant accuracy gain over the previous ones.

To obtain more insight, we also performed two other
experiments:
• we replaced the predicted 2D reprojections in the case

of the 3D Control Points experiment by the ground
truth (3D Control Points - GT X and Y);

• instead of replacing the 2D reprojections by the ground
truth, we replaced the depth by its ground truth (3D
Control Points - GT Depth).

In the first case, the results did not improve much. In the
second case, the results are equivalent to the ones of 2D
Reprojections of 3D Control Points (for sake of clarity,
the 3D Control Points - GT Depth curve is not shown in
Fig. 11). This shows that predicting the depths is a much
more difficult task, than predicting the 2D locations.

8.5 Virtual Points Configuration
In order to assess the influence of the number and config-
urations of control points on the accuracy of our method,
we tested the configurations shown in Fig. 13 on the CAN
dataset. We created different configurations with an increas-
ing number of virtual points, and disposed them regularly
around the part center. The comparison is performed on the
CAN dataset, probably the most challenging one, because
the object of interest is tracked using a single part, so
we expect the pose estimation results to be particularly
sensitive to the disposition and number of control points.
We trained one regressor for each of the configurations
shown in Fig. 13 from the same learning data, and run
the pose estimation for each configuration, starting from
the same detection candidates for the can lid. Results are
shown in Fig. 12. In general, we observed that:
• configurations spanning the 3 orthogonal directions

perform better than planar configurations;
• increasing the number of control points improves re-

sults up to 7 points, while no noticeable improvement
is obtained by using configurations with more points.

8.6 Comparison Framework
We compared our approach with three state-of-the-art meth-
ods, LINE-2D [3], PWP3D [31] and LSD-SLAM [41].
LINE-2D proceeds using very fast template matching.
PWP3D is an accurate and robust model-based 3D tracking
method based on segmentation. LSD-SLAM is a recent,
powerful and reliable SLAM system: amongst other things,
it does not require prior 3D knowledge, while we know the
3D locations of the control points and their appearances.
The comparison should therefore be taken with caution, as

this method does not aim to achieve exactly the same task
as us. Nevertheless, we believe the comparison highlights
the strengths and weaknesses of the compared methods. For
every test video, we compare the poses computed by each
method for all frames. Following the evaluation framework
in [49], we align each trajectory with respect to the same
reference system. In each test, the templates for LINE-
2D were extracted by the same 3000 images we employed
for training our method. PWP3D was manually initialized
using the ground-truth pose data, while LINE-2D, LSD-
SLAM and our method do not require any initial pose.

8.7 Results

Quantitative results of our tests are shown in Table 2. LINE-
2D, LSD-SLAM, and PWP3D actually fail very frequently
on our sequences, drifting or loosing track.

In the BOX dataset, on the longest of our video se-
quences, we also re-initialized LSD-SLAM and PWP3D
using the ground-truth pose at roughly half of the video,
but their accuracy over the whole sequence remains out-
performed by our method. LINE-2D often fails matching
the templates not only when the contours of the box are
occluded, but also because its appearance is constantly
changed by objects put inside and outside it.

For the CAN dataset, we use a single part to track the
full object. In the first video the silhouette of the can is
seldom occluded: LINE-2D and PWP3D achieve similar
performances, while the lack of texture and the distractor
objects make LSD diverge. In the second video, where
occlusions occur more often but the background color is
different from the one of the can, LSD-SLAM performs
better. On both videos, our method consistently outperforms
all other methods. Notice that all methods have a quite bad
score in retrieving the rotation on this dataset, probably
because of the symmetric shape of the object.

In the DOOR dataset test, LSD-SLAM fails as soon as
the door starts to move. LINE-2D fails very often because
of the ambiguous contours present in the scene. PWP3D
immediately looses tracking. Our method manages to track
frames across the whole video. This result is somehow
surprising, since PWP-3D exploits the appearance of the
whole door, while our method just exploits a minimal part
of its structure. We only use the CAD model for predicting
contours and evaluating the computed poses, as explained
in Section 6.4. On all datasets, both the Kalman Filtering
and the DoG normalization entail a significant improvement
of the performances. Qualitative results of our method are
reported in Figure 7.

8.8 Results on the T-Less dataset

In order to assess the effectiveness of the prediction of the
pose when varying the number and shape of parts, we tested
our method on Sequence 3 of the T-Less dataset, employing
the 4 differently shaped objects shown in Figure 9,(a)-(d) as
parts in our framework, considering the whole scene as the
target object and the fifth, largest object as an occlusion.

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2708711, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

Rot. error [.]
0 0.1 0.2 0.3 0.4

C
D

F(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Averaging Poses
3D Control Points
3D Control Points - GT X and Y
2D Reprojections of 3D Control Points

(a) Rotation error CDF: BOX - Video #1
Transl. error [m]

0 0.1 0.2 0.3 0.4

C
D

F(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Averaging Poses
3D Control Points
3D Control Points - GT X and Y
2D Reprojections of 3D Control Points

(b) Translation error CDF: BOX - Video #1

Fig. 11. Rotation and translation error CDF graphs for the BOX dataset - Video #1 and for the pose
parametrizations presented in Section 8.4. Our pose representation entails a substantial performance gain.

Rot. error [.]
0 0.1 0.2 0.3 0.4

C
D

F(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4vp
5vp (coplanar)
7vp
7 vp-Far
9vp
13vp

(a) Rotation error CDF: CAN - Video #1

Transl. error [m]
0 0.1 0.2 0.3 0.4

C
D

F(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4vp
5vp (coplanar)
7vp
7 vp-Far
9vp
13vp

(b) Translation error CDF: CAN - Video #1

Fig. 12. Rotation and translation error CDF graphs for the configurations of virtual points shown in Figure 13
for the CAN dataset-Video #1. Best results are obtained by the configurations spanning the 3 orthogonal axes.
Increasing the number of virtual points does not improve results above 7 virtual points.

(a) (b) (c) (d) (e) (f)
Fig. 13. Different configurations of control points tested on the CAN dataset, with (a) 4 control points spanning
the 3 axes; (b) 5 co-planar control points; (c) 7 control points spanning the 3D axes; (d) 9 control points disposed
in the center and on the corners of a cube; (e) 13 control points disposed in the center and on the corners of an
icosahedron; (f) 7 control points spanning the 3 axes, with a larger spacing.

We run a first series of experiments predicting the scene
pose using different numbers of parts and using the ground-
truth detections for each part, so that the effect of the shape
and the number of parts employed for the pose estimation
is better highlighted. Moreover, we also tested our full
method, as originally proposed in [20], as well as with
the Kalman filter and the patch normalization. Results are
reported in Table 3. Unsurprisingly, results confirm that
adding parts is always beneficial to the tracking. The DoG
normalization does not improve the accuracy of the pose
prediction on this dataset, while the Kalman filter still does.

8.9 A Real Use Case: Augmented Reality at CERN
We implemented our pipeline within an Augmented Reality
application in a real use case scenario, providing assistance
for technical and maintenance interventions in extreme
environments in the ATLAS particle detector at CERN.
Technical interventions are made particularly challenging
by factors as radioactivity, difficulty of access, exposition
to hazardous gases, etc. Augmented Reality is being inves-
tigated as a way of reducing the time of each intervention
and the stress of the operators, by providing them instruc-
tions and environmental data in visual form through an

head-mounted display (HMD). We built a prototype where
images captured by a camera mounted on the operator’s
helmet are streamed to a server. There, the pose of the
object of interest—the electric box of our BOX dataset—is
computed and transmitted back to the user’s HMD, where
authoring content is rendered on the head-mounted display.
The setup is shown in Fig. 14, while an example of the
outcome of our pipeline is shown in Fig. 1.

8.10 Runtimes
Our current implementation on an Intel i7-6700K laptop
with Nvidia NVIDIA Gtx 1080 takes between 100ms (one
part) and 140ms (4 parts). Detailed computational times are
given in the supplementary material. Many optimizations
are possible. For example, the control point predictions for
each part could be run in parallel.

9 CONCLUSION

We showed the advantages of predicting the reprojections
of virtual points as a way to estimate the 3D pose of
object parts. We believe that this representation, simple
and powerful, could be useful not only for object instance

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2708711, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Experiment BOX dataset CAN dataset DOOR dataset
Video #1 Video #2 Video #1 Video #2 Video #1

nb. of frames 892 500 450 314 564

LSD-SLAM 0.37 - 0.61* 0.48- 0.63 0.17 - 0.29 0.38 - 0.48 0.50 - 0.38
PWP3D 0.10 - 0.20* 0.16 - 0.52 0.13 - 0.64 0.13 - 0.51 0 - 0
LINE-2D 0.34 - 0.41 0.34 - 0.44 0.20 - 0.62 0.29 - 0.65 0.13 - 0.14
Our method 0.75 - 0.85 0.57 - 0.85 0.35 - 0.85 0.51 - 0.70 0.72 - 0.61
Our method - KAL 0.78 - 0.86 0.65 - 0.88 0.36 - 0.86 0.51 - 0.70 0.79 - 0.66
Our method - DoG 0.76 - 0.85 0.80 - 0.88 0.42 - 0.92 0.52 - 0.74 0.76 - 0.69
Our method - KAL+DoG 0.78 - 0.86 0.82 - 0.90 0.42 - 0.93 0.55 - 0.75 0.76 - 0.70

TABLE 2

Experimental results. We report the AUC scores for the rotation and the translation errors for the five video
sequences of the Occlusion datasets. A star (*) after the scores indicates that the method was re-initialized
with the groundtruth for frame 500. We report results of our method as implemented in [20], as well as with the
contributions of this work, the Kalman filter (KAL) and the patch normalization (DoG). Both innovations sensibly
enhance performances. We report all the corresponding CDF graphs in the supplementary material.

Experiment T-less dataset - Sequence 3

GT-Det - All Parts 0.87 - 0.75

GT-Det - Parts 1 2 3 0.66 - 0.57
GT-Det - Parts 1 2 4 0.83 - 0.72
GT-Det - Parts 1 3 4 0.79 - 0.63
GT-Det - Parts 2 3 4 0.82 - 0.70

GT-Det - Parts 1 2 0.19 - 0.21
GT-Det - Parts 1 3 0.16 - 0.29
GT-Det - Parts 1 4 0.59 - 0.42
GT-Det - Parts 2 3 0.32 - 0.22
GT-Det - Parts 2 4 0.71 - 0.59
GT-Det - Parts 3 4 0.70 - 0.47

Experiment T-less dataset - Sequence 3

Our method 0.50 - 0.37
Our method - KAL 0.53 - 0.37
Our method - DoG 0.45 - 0.34
Our method - KAL+DoG 0.49 - 0.37

(a) (b)TABLE 3

Pose estimation results on the T-less dataset - Sequence 3. (a): the ”GT-Det” experiments are run using ground-
truth detections for the selected parts; for these experiments we only consider the frames where the relevant
parts are visible. (b): results using our full pipeline as well as with the Kalman filter and the normalization.

(a) (b)

Fig. 14. The AR system developed at CERN for
assisting technical interventions. (a): a camera over the
user’s head streams images to a server for pose esti-
mation; the pose is sent back to an head-mounted see-
through display (HMD) for rendering. (b): an example of
augmented content seen through the HMD.

detection, but also for the 3D pose estimation of categories
of objects, where current approaches drastically suffer from
partial occlusions.

Acknowledgement: This work was supported in part by
the CDL Semantic for 3D Computer Vision and in part by
the EU projects EDUSAFE and MAGELLAN.

REFERENCES

[1] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model Globally, Match
Locally: Efficient and Robust 3D Object Recognition,” in CVPR,
2010.

[2] B. Pepik, M. Stark, P. Gehler, and B. Schiele, “Teaching 3D
Geometry to Deformable Part Models,” in CVPR, 2012.

[3] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua,
and V. Lepetit, “Gradient Response Maps for Real-Time Detection
of Textureless Objects,” PAMI, vol. 34, no. 5, pp. 876–888, 2012.

[4] D. Damen, P. Bunnun, A. Calway, and W. Mayol-cuevas, “Real-Time
Learning and Detection of 3D Texture-Less Objects: A Scalable
Approach,” in BMVC, 2012.

[5] R. Rios-cabrera and T. Tuytelaars, “Discriminatively Trained Tem-
plates for 3D Object Detection: A Real Time Scalable Approach,”
in ICCV, 2013.

[6] K. Pauwels, L. Rubio, J. Diaz, and E. Ros, “Real-Time Model-Based
Rigid Object Pose Estimation and Tracking Combining Dense and
Sparse Visual Cues,” in CVPR, 2013.

[7] F. Tombari, A. Franchi, and L. D. Stefano, “BOLD Deatures to
Detect Texture-Less Objects,” in ICCV, 2013.

[8] N. Kyriazis and A. Argyros, “Scalable 3D Tracking of Multiple
Interacting Objects,” in CVPR, 2014.

[9] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and
C. Rother, “Learning 6D Object Pose Estimation Using 3D Object
Coordinates,” in ECCV, 2014.

[10] Y. Xiang, C. Song, R. Mottaghi, and S. Savarese, “Monocular
Multiview Object Tracking with 3D Aspect Parts,” in ECCV, 2014.

[11] A. Tejani, D. Tang, R. Kouskouridas, and T.-K. Kim, “Latent-Class
Hough Forests for 3D Object Detection and Pose Estimation,” in
ECCV, 2014.

[12] J. Lim, A. Khosla, and A. Torralba, “FPM: Fine Pose Parts-Based
Model with 3D CAD Models,” in ECCV, 2014.

[13] S. Song and J. Xiao, “Sliding Shapes for 3D Object Detection in
Depth Images,” in ECCV, 2014.

[14] P. Wohlhart and V. Lepetit, “Learning Descriptors for Object Recog-
nition and 3D Pose Estimation,” in CVPR, 2015.

[15] K. He, L. Sigal, and S. Sclaroff, “Parameterizing Object Detectors
in the Continuous Pose Space,” in ECCV, 2014.

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2708711, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[16] S. Hinterstoisser, S. Benhimane, N. Navab, P. Fua, and V. Lepetit,
“Online Learning of Patch Perspective Rectification for Efficient
Object Detection,” in CVPR, 2008.

[17] A. Shrivastava and A. Gupta, “Building Part-Based Object Detectors
via 3D Geometry,” in ICCV, 2013.

[18] K. Koser and R. Koch, “Perspectively Invariant Normal Features,”
in ICCV, 2007.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” IEEE, 1998.

[20] A. Crivellaro, M. Rad, Y. Verdie, K. Yi, P. Fua, and V. Lepetit, “A
Novel Representation of Parts for Accurate 3D Object Detection and
Tracking in Monocular Images,” in ICCV, 2015.

[21] G. Welch and G. Bishop, “An Introduction to Kalman Filter,”
Department of Computer Science, University of North Carolina,
Technical Report, 1995.

[22] C. Harris and C. Stennett, “RAPID-a Video Rate Object Tracker,”
in BMVC, 1990.

[23] D. G. Lowe, “Fitting Parameterized Three-Dimensional Models to
Images,” PAMI, vol. 13, no. 5, pp. 441–450, June 1991.

[24] G. Klein and D. Murray, “Full-3D Edge Tracking with a Particle
Filter,” in BMVC, 2006.

[25] I. Skrypnyk and D. G. Lowe, “Scene Modelling, Recognition and
Tracking with Invariant Image Features,” in ISMAR, November 2004.

[26] L. Vacchetti, V. Lepetit, and P. Fua, “Stable Real-Time 3D Tracking
Using Online and Offline Information,” PAMI, vol. 26, no. 10,
October 2004.

[27] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-
stieg, “Pose Tracking from Natural Features on Mobile Phones,” in
ISMAR, September 2008.

[28] E. Rosten and T. Drummond, “Fusing Points and Lines for High
Performance Tracking,” in ICCV, 2005.

[29] C. Choi, A. Trevor, and H. Christensen, “RGB-D Edge Detection
and Edge-Based Registration,” in IROS, 2013.

[30] V. Prisacariu, A. Segal, and I. Reid, “Simultaneous Monocular 2D
Segmentation, 3D Pose Recovery and 3D Reconstruction,” in ACCV,
2012.

[31] V. Prisacariu and I. Reid, “PWP3D: Real-Time Segmentation and
Tracking of 3D Objects,” IJCV, vol. 98, pp. 335–354, 2012.

[32] G. Chliveros, M. Pateraki, and P. Trahanias, “Robust Multi-
Hypothesis 3D Object Pose Tracking,” in ICCV, 2013.

[33] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and
A. J. Davison, “SLAM++: Simultaneous Localisation and Mapping
at the Level of Objects,” in CVPR, 2013.

[34] K. Lai, L. Bo, X. Ren, and D. Fox, “A Scalable Tree-Based Approach
for Joint Object and Pose Recognition,” in AAAI, 2011.

[35] A. Krull, E. Brachmann, F. Michel, M. Y. Yang, S. Gumhold, and
C. Rother, “Learning Analysis-By-Synthesis for 6D Pose Estimation
in RGB-D Images,” in ICCV, 2015.

[36] D. Tan and S. Ilic, “Multi-Forest Tracker: A Chameleon in Tracking,”
in CVPR, 2014.

[37] N. Payet and S. Todorovic, “From Contours to 3D Object Detection
and Pose Estimation,” in ICCV, 2011.

[38] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Ob-
ject Detection with Discriminatively Trained Part Based Models,”
PAMI, vol. 32, no. 9, pp. 1627–1645, 2010.

[39] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small
AR Workspaces,” in ISMAR, 2007.

[40] R. Newcombe, S. Lovegrove, and A. Davison, “DTAM: Dense
Tracking and Mapping in Real-Time,” in ICCV, 2011.

[41] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale
Direct Monocular SLAM,” in ECCV, 2014.

[42] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in NIPS, 2012.

[43] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun, “Overfeat: Integrated Recognition, Localization and De-
tection Using Convolutional Networks,” in International Conference
on Learning Representations, 2014.

[44] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in ICLR, 2015.

[45] A. Giusti, D. C. Ciresan, J. Masci, L. M. Gambardella, and
J. Schmidhuber, “Fast Image Scanning with Deep Max-Pooling
Convolutional Neural Networks,” in ICIP, 2013.

[46] S. Umeyama, “Least-Squares Estimation of Transformation Param-
eters Between Two Point Patterns,” PAMI, vol. 13, no. 4, 1991.

[47] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow.,
A. Bergeron, N. Bouchard, and Y. Bengio, “Theano: New Features
and Speed Improvements,” in NIPS, 2012.

[48] F. Moreno-noguer, V. Lepetit, and P. Fua, “Pose Priors for Simulta-
neously Solving Alignment and Correspondence,” in ECCV, 2008.

[49] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
Benchmark for the Evaluation of RGB-D SLAM Systems,” in IROS,
2012.

[50] A. Ude, “Filtering in a unit quaternion space for model-based object
tracking,” Robotics and Autonomous Systems, vol. 28, no. 23, 1999.

[51] T. Hodaň, J. Matas, and S. Obdržálek, “On evaluation of 6d object
pose estimation,” in ECCV Workshops, 2016.

[52] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and
M. Marı́n-Jiménez, “Automatic Generation and Detection of Highly
Reliable Fiducial Markers Under Occlusion,” PR, vol. 47, no. 6, pp.
2280–2292, 2014.

[53] F. Markley, Y. Cheng, J. Crassidis, and Y. Oshman, “Averaging
quaternions,” Journal of Guidance, Control, and Dynamics, vol. 30,
no. 4, pp. 1193–1197, 2007.

[54] D. Eggert, A. Lorusso, and R. Fisher, “Estimating 3D Rigid Body
Transformations: A Comparison of Four Major Algorithms,” Ma-
chine Vision and Applications, vol. 9, no. 5-6, pp. 272–290, 1997.

Alberto Crivellaro received his MSc in Math.
Engineering from Politecnico di Milano, Italy,
his Diplôme d’Ingénieur from the EC Lyon,
France, in 2011, and his a Ph.D. at CVLab,
EPFL, Switzerland, in 2016, under the super-
vision of prof. P. Fua and prof. V. Lepetit . His
research interests include Augmented Real-
ity, visual tracking, and machine learning.

Mahdi Rad received his B.S. and M.S.
degrees in Computer Science from EPFL,
Switzerland, in 2012 and 2014. Currently, he
is a PhD student in the Computer Vision
and Graphics Laboratory at Graz University
of Technology. His research interests include
Augmented Reality, deep learning, and 3D
object tracking.

Yannick Verdie received his B.S. from
Virginia-Tech, USA, and his Ph.D. degrees
from INRIA, France in 2010 and 2013. After
a two-years postdoc position at the CVLab,
EPFL, Switzerland, he currently works as
R&D Engineer at NCam-Tech, Paris, working
on vision-based systems for real-time aug-
mented reality in movies and TV-shows.

Kwang Moo Yi received his B.S. and Ph.D.
degrees from the Department of Electrical
Engineering and Computer Science of Seoul
National University, Korea, in 2007 and 2014.
Currently, he is a postdoc researcher in the
CVLab at EPFL. His research interests in-
clude Augmented Reality, keypoint learning,
deep learning, visual tracking, and motion
detection.
Pascal Fua is a Professor of Computer Sci-
ence at EPFL, Switzerland. His research in-
terests include shape and motion reconstruc-
tion from images, analysis of microscopy im-
ages, and Augmented Reality. He is an IEEE
Fellow and has been an Associate Editor
of the IEEE journal Transactions for Pattern
Analysis and Machine Intelligence.

Vincent Lepetit is a Professor at the Institute
for Computer Graphics and Vision, TU Graz.
Before that, he was a Research and Teach-
ing Associate at EPFL. His research interests
include vision-based Augmented Reality, 3D
camera tracking, Machine Learning, object
recognition, and 3D reconstruction. He is an
editor for the International Journal of Com-
puter Vision (IJCV) and the Computer Vision
and Image Understanding (CVIU) journal.

