
Pareto-optimal Dictionaries for Signatures⋆

Michael Calonder, Vincent Lepetit, Pascal Fua

CVLab, EPFL, Lausanne, Switzerland

e-mail: firstname.lastname@epfl.ch

Abstract

We present an effective method to optimize over the pa-

rameters of an image patch descriptor to obtain one that

is computationally more efficient while maintaining a high

recognition rate. We formulate the optimization problem

in a multi-objective manner, which balances two conflict-

ing goals while removing the need for traditional weighting

coefficients. To this end we introduce the Pareto efficiency

criterion, which helps finding solutions that increase one

objective without decreasing the other. Despite the vast size

of the search space, we show how a state-of-the-art Genetic

Algorithm can be tailored to find good solutions.

Not only does the resulting descriptor perform better

than state-of-the-art ones, but our approach is of broader

significance as optimization problems with balanced goals

are often encountered in Computer Vision.

1. Introduction

Many vision applications rely on local image descrip-

tors to establish correspondences between images. SIFT [9]

has become the de facto reference, and fast implementations

now exist and run in real-time on relatively slow devices

such as cell phones [2, 13]. This, however, is not the end

of the story because real-time performance is only obtained

for limited numbers of points and requires most of the CPU,

whereas a truly useful application should be able to run in

the background.

Recently, an approach with similar accuracy but substan-

tially decreased computational requirements has been intro-

duced [3, 4]. It involves training a fast classifier [12] offline

to recognize keypoints from a dictionary and taking its re-

sponse to previously unseen keypoints as description vec-

tors, or Signatures, which can be matched by nearest neigh-

bor search. In the first version of that approach, the dimen-

sion of the Signatures was that of the dictionary, about 500

elements, which is too large for maximal efficiency. It was

⋆This work has been supported in part by the Swiss National Science

Foundation.

then shown that the dimensionality could be dropped to 176

by exploiting the sparsity of the Signatures and projecting

them in a lower dimensional space using Random Orthopro-

jections. This resulted in run-times about 10 times as fast as

those of SURF [2], with comparable matching accuracy.

In this paper, we replace the Random Orthoprojections

by a Genetic Algorithm (GA) that selects the best subset

of keypoints from the dictionary and balances the desired

recognition rate against Signature size and therefore algo-

rithmic complexity. This way, not only can we almost dou-

ble the speed for the same matching performance of the al-

ready fast method in [4] but we can also optimally trade

some matching performance against additional speed if we

want to handle more points or run on a less capable device.

Selecting the best subset of keypoints is a large combi-

natorial problem and requires powerful optimization tech-

niques to explore the search space effectively. In this con-

text, GAs can be designed to find good “Pareto optimal”

solutions, that is solutions to a multi-criterion optimization

problem such that any improvement on one criterion would

inevitably render them worse in another criterion. It fol-

lows that we do not have to weigh the different optimization

goals, which is a recurrent issue in Computer Vision.

For the above-mentioned reasons we believe that our ap-

proach tailoring a state-of-the-art GA [15] to the specific

needs of this problem is of interest for many other, similar

problems in Computer Vision. For example, [14] and [8]

previously described the optimization of local image de-

scriptors but [14] optimized only on the recognition perfor-

mances whereas the method introduced in [8] is sub-optimal

by design to avoid the combinatorial explosion.

In the remainder of the paper we start by reviewing re-

lated work. We then formalize our problem, and show how

to solve it with a Genetic Algorithm. Finally we compare

the optimized Signatures obtained from the GA against ear-

lier ones and SURF. We demonstrate substantial improve-

ment in both cases.

2. Related Work

Many of the local image descriptors—SIFT, SURF, and

others—were hand-crafted and, as such, there is no guar-

antee that there is no set of parameters that would make

them work better. A notable exception are the descriptors

presented in [14]. This is the method most similar to what

we propose that we know of, however it only optimizes the

descriptors’ parameters to maximize the recognition perfor-

mance. In this work, we explicitly look for solutions that

balance recognition performance against descriptor com-

plexity.

A different approach is to look for projections that re-

duce the dimensionality of the descriptor. PCA is a popular

choice, but there is no proof of optimality either. There-

fore [8] uses a variant of LDA to build a sub-optimal pro-

jection but, because of the combinatorial nature of the prob-

lem, the optimization proceeds one direction only at a time,

an can get stuck in a local minimum. By contrast, by means

of the Genetic Algorithm, we are able to perform a full-scale

optimization on this rather complex problem.

3. Formulation

We first summarize the Compact Signatures method

of [3] and formalize the dictionary selection problem that

aims at making these Signatures computationally effective

while preserving their recognition performance. We then

show how this problem can naturally be set up in the Pareto

efficiency framework and explain in Section 4 how to solve

it using a widely-applicable multi-objective Genetic Algo-

rithm.

3.1. Signatures for Keypoint Matching

The Signatures of [3, 4] are computed by first training

offline a Fern classifier [11] to recognize a set of keypoints,

which we call a dictionary. The classifier response to an-

other keypoint not in the dictionary is a set of probabilities,

expressing the similarity of that keypoint to all of the dictio-

nary points. It is characteristic and stable under viewpoint

variations, lighting changes, and noise. It can therefore be

treated as a descriptor for arbitrary keypoints and can be

matched by simple nearest neighbor search in descriptor

space.

More precisely, as sketched in Figure 1, a Signature s′ ∈
RN for an image patch p is computed as

s′(p) =
∑

1≤i≤J

ti(p) (1)

where J is the number of Fern classifiers [11] and the

ti ∈ RN denote the leaves of the Ferns indexed by p. N
is the size of the dictionary, and each coordinate of the ti

vectors corresponds to a keypoint in the dictionary, whose

keypoints were picked from an arbitrary image.

Because Signatures computed that way are long vectors

and thus not efficient to match, [4] uses a simple Random

The only constraint being that the image exhibits enough “structure”.

Figure 1. Keypoint Signature computation. Top: (a) The patch p

surrounding the keypoint is dropped through all ferns Fi, indexing

into J ti vectors. (b) All ti are summed up to get the classifier re-

sponse r(p). (c) Thresholding yields a Sparse Signature. Bottom:

Summation of J compressed vectors which is all that needs to be

carried out at runtime.

Orthoprojection to reduce the dimensionality of the ti vec-

tors and therefore of the resulting Signature s ∈ RM . By

contrast, in this paper, we show how to select the best subset

of keypoints to create a short dictionary with good recogni-

tion performance.

3.2. Creating a Dictionary

Creating a dictionary for training the classifier is inher-

ently difficult: A typical dictionary contains N ≈ 500 ele-

ments and exhaustive search would therefore have to evalu-

ate 2N ≈ 10150 solutions, which is absurdly large.

However, in combinatorial optimization problems

heuristics often work remarkably well. Assuming that the

dictionary’s keypoints can be treated independently, we

could use a simple greedy algorithm that needs to evaluate

“only” about N2 solutions and pick the best one. Unfor-

tunately, as will be shown in the results section, keypoints

are interdependent and the resulting solutions are poor. We

therefore use a Genetic Algorithm to perform the explo-

ration. Also, it is important to note that the recognition rate

relates in a non-monotonic way to the number of dictionary

elements and hence varying that parameter is insufficient to

find a good set of elements.

The search for a good dictionary is made even more diffi-

cult by the fact that we need to balance out two competitive

goals, that is the size of the dictionary and the recognition

performance. To avoid having to weight these conflicting

goals, we optimize the Pareto efficiency, as described be-

low.

3.3. Problem Formalization

From a large initial dictionary containing N keypoints,

we seek to select a subset of keypoints that is optimal w.r.t.

our two competitive goals. A solution x is defined as a N -

vector of 0 and 1 values indicating which of the dictionary’s

elements are active.

Our problem can be formulated as seeking to solve the

bi-objective optimization problem:
{

max f1(x)
min f2(x)

, (2)

where f1(x) measures the recognition rate for dictionary x,

and f2(x) is the number of active keypoints in x, or the

number of coordinates set to 1.

To evaluate f1(x) we use a training set T made of match-

ing pairs of points in two images. In practice we create it by

extracting several keypoints from a training image and com-

puting random views of them by warping it. f1(x) is then

taken to be the recognition rate when matching the points in

T to their nearest neighbors, based on the Signatures com-

puted using only the active keypoints in x.

Traditional algorithms minimize normalized objectives.

We therefore define f̄1(x) = −f1(x) and f̄2(x) = 1

N
f2(x)

and reformulate the problem as
{

min f̄1(x)
min f̄2(x)

, (3)

which is equivalent to Eq. 2.

3.4. Pareto Optimality

In the single-objective case, it is straightforward to com-

pare the quality of two solutions based on the objective

function, whereas in the above bi-objective problem, no

such natural ordering exists. As illustrated by Figure 2, only

a partial ordering is possible, and if

f̄1(x1) ≤ f̄1(x2) and f̄2(x1) < f̄2(x2) or

f̄1(x1) < f̄1(x2) and f̄2(x1) ≤ f̄2(x2) ,
(4)

x1 is said to dominate x2, or x1 ≻ x2.

A solution x is said to be Pareto optimal if there is no

other solution x′ that dominates x. The Pareto set is the set

that of all non-dominated solutions.

4. Optimization

A Genetic Algorithm (GA) is an iterative, stochastic

optimization method that works on a population of solu-

tions [10]. Good introductory texts can be found in [5, 7,

10], for example. Inspired by evolutionary biology, GAs ap-

ply at each iteration operations such as mutation, crossover,

and selection to the population, driving the solutions to-

wards a optimum defined by the objective functions. Specif-

ically, variation operators work on a solution x by flipping

one or more bits or copying parts from or to another solu-

tion. By contrast, selection defines which of the solutions

survive.

Figure 2. Dominance concept. In a multi-objective problem, two

solutions can be incomparable, as opposed to single-objective

problems.

Parameter Value

Population size |P | 200

Mutation probability pm 0.2

Recombination probability pr 0.7

Independent bit flip probability 3/|P | = 0.015
Number of iterations Nit 445

Table 1. GA parameters. Typical values for the population size are

around 100. However, the huge search space reduces the solution

density dramatically and promotes genetic drift, which both justify

an increased number of solutions.

4.1. Variation Operators

Variation encompasses the mutation and crossover oper-

ations. Mutation accounts for small variations that occur

naturally and at random where crossover defines how two

good solutions should be combined to form two other, even

better ones. Here we briefly detail how a solution x is af-

fected by these operators.

Mutation operator. We experimented with two mutation

operators, one that independently flips a coordinate and one

that flips a 1 and a 0 and hence preserves the solution size.

Experimentally we found that the first one performs slightly

better.

Crossover operator. The operator takes two solutions

and recombines them by exchanging blocks of bits, yielding

two new solutions. This is often called two-point crossover.

4.2. Solution Selection

Given the variation operator described above, a critical

component of GAs is the selection of good solutions for the

next iteration. The ultimate goal of this selection is to make

the population P of solutions converge towards the Pareto

set. Most of the successful methods to-date [6, 1, 16, 15]

achieve this by computing a fitness measure F (x) for each

x ∈ P and differ merely in the way F is defined. Note that

F maps the two objective values to a scalar which is to be

maximized.

For our problem, we have tried the two probably most

successful selectors of the past years, SPEA2 [16] and

IBEA [16], and found superior performance for the latter,

which we briefly summarize here.

Given the population size α and the maximum number

of iterations Nit, IBEA outputs an approximation A to the

Pareto set. This involves the following steps:

1. Initialization. We initialize the population with 200

solutions of length N = 500. The number of coor-

dinates set to 1, or active keypoints, is uniformly dis-

tributed over [10, 500] in order to avoid a bias on the

length.

2. Fitness Assignment. Compute F (xi) for all xi ∈ P .

3. Environmental selection. Remove x⋆ =
arg minx∈P F (xi), recompute the fitness values

and repeat until the population is reduced to α
solutions.

4. Termination. If Nit is reached, take A to be all non-

dominated solutions in the current population and stop.

5. Mating selection. Choose solutions for the mating

pool P ′ using binary tournament selection with re-

placement on P .

6. Variation. Apply crossover and mutation operators to

P ′ and add the resulting offspring to P . Go to step 2.

IBEA computes the fitness measure F (·) based on what

is called the “binary additive ǫ-indicator”, usually denoted

I+
ǫ [15]. In our case, and as illustrated by Fig. 3, I+

ǫ reduces

to a function that measures the relative quality between two

solutions, as the amount of translation needed for the first

solution to be as good as the second one. This can be written

as

I+
ǫ (x1,x2) = ǫ, s.t.

∀i : f̄i(x1) − ǫ ≤ f̄i(x2) and

∄ ǫ′, 0 < ǫ′ < ǫ, s.t. ∀i : f̄i(x1) − ǫ′ ≤ f̄i(x2) .

Then the fitness F (x) for solution x in a population P reads

F (x) =
∑

x
′∈P\{x}

− exp

(

−
I+
ǫ (x′,x)

κ

)

(5)

with κ > 0 a scaling factor.

A refined version of the algorithm allows to set κ = 0.05
for all optimization problems by requiring ∀xi,xj ∈ P :

Figure 3. Illustration of the ǫ-indicator I+
ǫ . I+

ǫ (x1,x2) measures

how much x1 needs to be translated in its worst objective so that

it gets as good as x2. Also, I+
ǫ (x1,x2) 6= I+

ǫ (x2,x1) in general.

I+
ǫ (xi,xj) ∈ [−1, 1], rendering κ independent of the prob-

lem at hand. κ = 0.05 was found via benchmark prob-

lems [15].

Furthermore, it is easy to show [15] that F based on I+
ǫ

satisfies xi ≻ xj ⇒ F (xi) > F (xj), which is called Pareto

dominance relation, and is important for correct operation

of any multi-objective GA.

We experimented with the GA’s parameters and found

no particular sensitivity to any of them. The final values we

used in our experiments are given in Table 4.1.

5. Results

To assess matching performance, we use the same two

publicly available datasets as in the Signature paper [4].

These datasets are called Wall, and Fountain. The Wall

scene is planar and the relationship between two images in

the database can be expressed by a homography. By con-

strast the Fountain scene is fully three-dimensional. For il-

lustration, the datasets are shown in Figure 4.

5.1. Convergence of the GA

One weakness of GAs is that there is no generic stop-

ping criterion which requires us to define one for our appli-

cation. We consider that the algorithm has converged when

the mean objective values f1 and f2 have changed no more

than 0.1% over the last 10 iterations. Under this criterion,

we ran the simulation for 445 generations.

The resulting solutions exhibit a structure that is highly

unlikely under the assumption that the bits were chosen at

random. Because a random solution is the most general or

the least adapted one to the problem, comparing the solu-

tions’s structure to the that of random solutions is a good

To be accurate, this version of the algorithm is called “Adaptive IBEA”

although adaptive behavior is usually implicit when speaking of IBEA, as

it is in this paper.

http://www.robots.ox.ac.uk/˜vgg/research/

affine

http://cvlab.epfl.ch/˜strecha/multiview

Figure 4. Datasets used for evaluation. Left: 6 Wall datasets. All homographies H1i for 2 ≤ i ≤ 6 are known, H12 is indicated for

illustration. Right: 2 Fountain datasets. Ground-truth point-wise known.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

bits in solution

#
 c

o
m

m
o

n
 b

it
s

GA solutions

Random solutions

+3 std dev

−3 std dev

y=x

Figure 5. Compares the number of common bits for GA (’•’) and

random solutions. The thick line shows the mean number of com-

mon bits in random solutions for a given size and the dashed lines

mark ± 3 standard deviations. The gray line represents y = x (i.e.

all bits identical). To find the number of common bits for a GA so-

lution x, we take the solution x
′ with the same (or if not possible,

a similar) number of bits and compute x
⊤
x
′. We see that GA so-

lutions are i) highly non-random and ii) for a given number of bits

very similar, indicating the existence of stable keypoint groups in

the dictionary.

indicator for the quality of the solution for the present prob-

lem, as shown in Figure 5.

5.2. Compressibility of GA Solutions

As earlier work [3, 4] showed, sparsity in descriptors is

desirable because it allows compression by a Random Or-

thoprojection (ROP) without a significant loss of recogni-

tion rate. This even holds if for signatures that are only

sparse in some space of the same dimension.

Vice versa, we can assess the compressibility of a solu-

100 150 200 250 300 350 400 450

40

45

50

55

Solution size

R
e
c
o
g
n
it
io

n
 r

a
te

 [
%

]

wall 1/3, projecting to 104 dimensions

GA−induced signatures (ROP−104)

Original signatures (ROP−104)

Figure 6. Compressibility of GA solutions. GA-induced Signa-

tures are significantly better compressible than Compact Signa-

tures (ROP).

tion by projecting it to a lower dimensional space with a

fixed number of dimensions, which we choose to be 104.

This way we can compress GA solutions with dimension

di > 104 as well as random solutions of the same dimen-

sion with an ROP and compare the two in terms of recog-

nition rate. The solution with the higher recognition rate

must be sparser in its original representation and is there-

fore better compressible. The result is shown in Figure 6

and suggests that in all cases GA-induced Signatures com-

press better than Compact Signatures.

5.3. Random and Greedy Approach

In this section we compare the GA-optimized Signatures

against those obtained by a random algorithm and by a

As random solutions merely are instances of Compact Signatures, av-

eraging over them provides us with a good estimate of the Compact Signa-

tures’ performance.

greedy one. These competing methods are:

• Random: Generate a pre-defined number of random

solutions xi, evaluate them and keep the best for the

given dictionary size.

• Bottom-up: Start with x0 = (0, 0, . . . , 0)⊤ and add

the element that improves the solution the most, yield-

ing x1. Iterate until the desired number of elements is

reached.

• Top-down: Start with x0 = (1, 1, . . . , 1)⊤ and remove

the element that decreases the performance the least,

yielding x1. Iterate until the desired number of ele-

ments is reached.

Note that the random approach disregards any group struc-

ture in the selected elements whereas the latter two ap-

proaches consider a very limited neighborhood in the search

space. The latter two approaches compute the recognition

rate on the same test set T as described in Section 3.1.

All of these approaches, however, are clearly outper-

formed by the GA, as shown in Figure 7.

5.4. Comparison to Compact Signatures

Here we compare the GA and the three simple ap-

proaches to the dictionary selection problem with the ROP

approach proposed in [4], as shown in Figure 7. Note that

• down-projecting a 500-D Signature to 172-D by a ROP

does only slightly better than selecting an arbitrary set

of 172 keypoints from the dictionary. This should not

be surprising since a random selection can always be

written as a random orthogonal projection.

• the greedy top-down approach can reduce the descrip-

tor length by 12%.

• the GA identifies by far the best set of dictionary el-

ements, reducing the descriptor length by up to 50%.

We attribute this behavior to the global design of the

GA.

For instance, the top row of Figure 7 shows that a ROP

projecting into 172 dimensions yields the same recognition

rate as a GA solution with 104 dimensions. Or in terms

of efficiency, the GA reduced the memory consumption

of the underlying Fern classifier and the Signatures them-

selves by 41%, while the CPU time for matching drops by

1 − (1 − .41)2 = 65% w.r.t. the Compact Signatures, as

tmatch ∝ M2.

The GA result quantifies the trade-off between the recog-

nition rate and the Signature length in an optimal way. Thus,

We show no errorbars on the random curve as the variance is very

small, typically below 0.5% for all M .

ROP BU TD RANDOM
0

5

10

15

20

25

30

35

F
ra

c
ti
o

n
 o

f
n

o
n

−
d

o
m

in
a

te
d

 s
o

lu
ti
o

n
s
 [

%
]

Method

Wall 1/2

Wall 1/3

Wall 1/4

Wall 1/5

Wall 1/6

Fount 1/3

Fount 1/4

Figure 8. Percentage of non-dominated solutions for different

methods, test sets and test cases. Note that all of the values are

far below the value of the GA, which is not shown as it is always

100% by construction. Also, the number of dominated solutions

shows a strong dependence on the difficulty of the test set.

from an end-user perspective, the operation point can be

chosen according to the application or the available compu-

tational resources of the problem at hand.

Also, non-GA methods yield mostly suboptimal solu-

tions under the above Pareto criterion, that is, most of the

solutions are dominated, as shown in Figure 8.

5.5. Comparison to SURF

Recent work showed comparable recognition rates for

Signatures and SURF [4] on different data sets and also

across all view-points. Both methods select the match for

a given keypoint as its nearest neighbor in descriptor space.

From a practical point of view, comparing the recog-

nition rate may seem sufficient. However, this measure

does not account for the robustness of the method, which

comes into play when using approximate Neareast Neigh-

bor schemes and we define it as the ordering that the re-

spective descriptor imposes on the points in the descriptor

space. To evaluate this measure, we introduce a ROC plot

showing the recognition rate versus the fraction of candi-

date keypoints considered for matching. This is depicted in

Figure 9 for a typical real-world test data set of intermediate

difficulty. We see that the descriptor space induced by GA-

optimized Signatures exhibits a much more robust ordering

compared to that of SURF.

5.6. Selected Dictionary Elements

Visually inspecting the GA-selected dictionary is inter-

esting although interpreting the selected elements is very

50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

descriptor length M

re
c
o
g
n
it
io

n
 r

a
te

 n
o
k
/(

n
o
k
+

n
k
o
)

 [
%

]
WALL 1/3

BOEA

ROP

BU

TD

random

50 100 150 200
45

50

55

60

65

70

X: 104

Y: 63.48

X: 172

Y: 63.28

X: 151

Y: 63.28

GA

ROP

BU

TD

random

50 100 150 200

46

48

50

52

54

56

58

60

62

64

66

X: 157
Y: 58.4

FOUNT 1/3

X: 104
Y: 58.4

descriptor length M

re
c
o

g
n

it
io

n
 r

a
te

 n
o

k
/(

n
o

k
+

n
k
o
)

 [
%

]

GA

ROP

BU

TD

random

50 100 150 200
10

12

14

16

18

20

22

X: 182
Y: 19.92

descriptor length M

re
c
o

g
n

it
io

n
 r

a
te

 n
o

k
/(

n
o

k
+

n
k
o
)

 [
%

] X: 105
Y: 19.53

X: 141
Y: 19.92

WALL 1/5

GA

ROP

BU

TD

random

Figure 7. Comparison of five different dictionary selection methods, on three datasets: top, bottom left, bottom right (in order of increasing

difficulty). Methods are random (Random), TD (top-down), BU (bottom-up), GA (Genetic Algorithm), and ROP (Compact Signatures

based on a ROP). In the top right graph, the dashed vertical line is at x ≈ 176, which is the dimensionality of the originally proposed

descriptor [4] and intersects with the ROP curve. From that point, a horizontal line extends to the left where it intersects the GA curve.

Clearly, the recognition rate is the same while the dimensionality of the GA is much lower. The analogous argumentation is true for the

two datasets in the bottom row.

difficult as the classifier is highly non-linear. Figure 10

shows both the image source and the selected dictionary for

an optimal solution of length 104. Note that each patch has

its own distribution of bright and dark areas. We believe

this to be an important aspect of a good dictionary because

the combination of these keypoints is what defines the clas-

sifier’s efficiency. Also the intuition that redundancy in the

patch appearances should be avoided is confirmed.

6. Conclusion

We demonstrated the effectiveness of a Genetic Algo-

rithm approach to balancing the two conflicting require-

ments of an algorithm designed to match feature points,

namely high matching rates versus low computational re-

quirements. Even though the search space is huge, we were

able to tailor the Genetic Algorithm so that the resulting al-

gorithm clearly outperforms its un-optimized predecessors

over the whole operating range.

This is an important result because these type of compro-

mises have to be made in a wide range of Computer Vision

algorithms and, in future work, we intend to generalize our

approach to other problems in that class.

We are commited to release the source code for both our

implementation of the Compact Signatures and the Genetic

Algorithm.

Figure 10. Left: The image that served as dictionary source for both the GA and the Compact Signatures [4]. Right: 104 patches the GA

selected.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fraction of database searched (according to distance)

re
c
o
g
n
it
io

n
 r

a
te

WALL 1/4

Signatures (176 dim)

Signatures (104 dim)

Standard SURF (64 dim)

Figure 9. ROC curve comparing the robustness of SURF and Sig-

natures on the Wall dataset. Both Signatures of dimension 176 and

104 clearly outperform SURF.

References

[1] J. Bader and E. Zitzler. HypE: Fast Hypervolume-Based

Multiobjective Search Using Monte Carlo Sampling. TIK

Report 286, Institut für Technische Informatik und Kommu-

nikationsnetze, ETH Zürich, Oct. 2006.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. SURF:

Speeded Up Robust Features. Computer Vision and Image

Understanding, 10(3):346–359, 2008.

[3] M. Calonder, V. Lepetit, and P. Fua. Keypoint signatures for

fast learning and recognition. In European Conference on

Computer Vision, Marseille, France, October 2008.

[4] M. Calonder, V. Lepetit, K. Konolige, J. Bowman, P. Mihe-

lich, and P. Fua. Compact signatures for high-speed interest

point description and matching. In International Conference

on Computer Vision, Kyoto, Japan, September 2009.

[5] C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen.

Evolutionary Algorithms for Solving Multi-Objective Prob-

lems (Genetic and Evolutionary Computation). Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[6] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast

elitist non-dominated sorting genetic algorithm for multi-

objective optimization: NSGA-II. In Parallel Problem Solv-

ing from Nature (PPSN VI). Springer, 2000.

[7] D. E. Goldberg. Genetic Algorithms in Search, Optimization

and Machine Learning. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 1989.

[8] G. Hua, M. Brown, and S. Winder. Discriminant embedding

for local image descriptors. In International Conference on

Computer Vision, 2007.

[9] D. Lowe. Distinctive Image Features from Scale-Invariant

Keypoints. International Journal of Computer Vision,

20(2):91–110, 2004.

[10] Z. Michalewicz and D. B. Fogel. How to Solve It: Modern

Heuristics. Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 2004.

[11] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast Key-

point Recognition using Random Ferns. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2008. Ac-

cepted for Publication.

[12] M. Ozuysal, P. Fua, and V. Lepetit. Fast Keypoint Recogni-

tion in Ten Lines of Code. In Conference on Computer Vision

and Pattern Recognition, Minneapolis, MI, June 2007.

[13] D. Wagner, T. Langlotz, and D. Schmalstieg. Robust and

Unobtrusive Marker Tracking on Mobile Phones. In Inter-

national Symposium on Mixed and Augmented Reality, Nara,

Japan, Sept. 2007.

[14] S. Winder and M. Brown. Learning Local Image Descriptors.

In Conference on Computer Vision and Pattern Recognition,

Minneapolis, MI, June 2007.

[15] E. Zitzler and S. Künzli. Indicator-based selection in mul-

tiobjective search. In Parallel Problem Solving from Nature

(PPSN VIII). Springer-Verlag, 2004.

[16] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving

the strength pareto evolutionary algorithm for multiobjective

optimization. pages 95–100, Barcelona, Spain, 2002. Center

for Numerical Method (CIMNE).

